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Abstract: A key challenge of guidance, navigation, and control for clustered satellite flight is long
duration station-keeping of the cluster. The secular perturbations that force the cluster to drift
apart must be corrected periodically, and the satellites must maintain safe relative orbits. Ideally,
the station-keeping would be semi-autonomous to the point that the ground crew required for the
mission is similar to that required for a traditional monolithic satellite performing the mission.
A unique strategy is developed that efficiently maintains the cluster by using control boxes in the
relative frame. Several alternative cluster station-keeping strategies are discussed as well. Their
performance is analyzed over 500 orbits using a high-fidelity simulation with GPS navigation. The
strategies are down-selected based on the results of this trade study and implemented into flight
software for DARPA’s System F6 (Future, Fast, Flexible, Fractionated, Free-Flying Spacecraft
United by Information Exchange) program, which seeks to address the challenge of developing
future space systems via fractionated architectures wherein wirelessly networked modules would
communicate, collaborate and share resources to accomplish their mission.
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1. Introduction

Efficient station keeping is a key challenge of guidance, navigation, and control for clustered satel-
lite flight [1]. Secular perturbations, such as forces due to a non-spherical Earth and atmospheric
drag, pull modules in the cluster apart and must be corrected periodically by maneuvers [2]. The
corrections not only require fuel, but can also demand attitude changes that may interrupt the mis-
sion’s objectives. This paper develops multiple station keeping strategies for clustered flight, and
performance criteria for efficient station keeping are defined to evaluate the strategies. A Monte
Carlo analysis is conducted to quantify the performance of each strategy. The most efficient strat-
egy is down-selected for implementation into flight software.

Station keeping and control of multiple spacecraft in clusters has long been studied. Early research
into cluster flight investigated proximity operations for rendezvous [3]. More recently, there is in-
terest in long-term maintenance of a cluster that cooperate to achieve a common goal [4, 5]. Some
missions require the modules to maintain a specific formation. If a formation is not required, the
cluster still needs to avoid collisions while keeping nearby one another for wireless communica-
tion. The flocking controller maintains passive safety and an upper bound on inter-module distance
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while allowing the modules to drift freely otherwise [6]. The flocking controller defines passive
safety using relative orbit elements (ROEs), which were first introduced for formation keeping by
Lovell [7]. ROEs are also the basis of the contracting controller, which is not efficient but has
guaranteed convergence [8]. Other research has shown that specifying the formation as variations
in Keplerian orbital elements (VKOE) is more accurate for clusters with large separation [9]. Al-
though the strategies in this paper use ROEs to define the geometry of the cluster, the methods
could be adapted to define the geometry using VKOEs. A two burn correction of VKOEs for for-
mation keeping was developed by Vadali [10], which was adapted for the PRISMA mission [11].
VKOEs have also been used to formulate receding horizon control (RHC) for formation keeping
[9].

The station-keeping strategies developed in this paper build on the concept of RHC. RHC repeat-
edly solves an optimal control problem over a finite time window [12]. In spite of being developed
for constrained problems without analytical solutions, RHC has proven performance and stability
for nonlinear systems under different sets of assumptions [13]. RHC has seen practical applications
for industrial settings in which constrained systems are common. There has also been recent re-
search into RHC for formation keeping of satellite systems [9]. In addition, RHC was investigated
for an application to proximity operations during a Mars return scenario [14].

Three strategies are developed in this paper and analyzed with various tuning configurations. The
first strategy is RHC in its standard formulation. The other two strategies are modifications to RHC
that preclude the generic proofs of stability but significantly improve the performance of long-term
station-keeping. The first modification is the addition of control regions to the RHC strategy, which
are specified using ROEs. This strategy reduces the frequency of burns by updating maneuver plans
only when necessary to prevent secular drift and maintain passive safety. This approach is similar
to the traditional station-keeping control strategy used for geostationary satellites using control
box regions. For our station-keeping strategy, the control box concept is applied to ROEs in the
relative space. The third strategy is based on modifying the control horizon such that the maneuver
window deadline no longer recedes into the horizon.

The trade study in this paper considers the three strategies that are developed as well as the flocking
controller. A set of performance metrics for efficient station-keeping is defined for a cluster, related
to fuel requirements, burn frequency, and safety. ROE targeting (adapted from reference [7]) and
the contracting controller were also investigated, but were down-selected before the Monte Carlo
analysis of long duration station-keeping was started due to their performance. The remaining
station-keeping strategies were evaluated using Monte Carlo analysis over 40 runs of 500 orbits
each, approximately four weeks each. The mean results over 500 orbits were extrapolated to
determine the fuel requirements for a nominal six month mission. The efficiency of the strategies
was evaluated from the performance metrics.

The results of this study were used to down-select to a single station-keeping strategy, which
has been implemented into flight software for DARPA’s System F6 (Future, Fast, Flexible, Frac-
tionated, Free-Flying Spacecraft United by Information Exchange) program. System F6 seeks to
address the challenge of developing future space systems via fractionated architectures wherein
wirelessly networked modules would communicate, collaborate and share resources to accomplish
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their mission. This station keeping algorithm is part of Orbit Maintenance Service (OMS) within
Cluster Flight Application (CFA) developed by Emergent Space Technologies to provide guidance,
navigation, and control for System F6 [15]. Figure 1 is a diagram of OMS responsibilities for guid-
ance and control in CFA. The strategies developed in this paper provide maneuver time windows
and specific targets to a robust Maneuver Planning Service (MPS) [16]. OMS relies on the Navi-
gation Service (NAV) for module state estimates [17]. Cluster Flight Manger (CFM) is responsible
for managing the frequency of orbit maintenance and distributing maneuver plans to Module Ma-
neuvering Service (MMS). MMS sends maneuver commands to the bus at the appropriate time,
which are translated by Module Proxy (MPx).
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Figure 1: The role of OMS for guidance and control in the Cluster Flight Application (CFA).

This paper is organized as follows. Section 1 is this introduction. Section 2 reviews the concept of
ROEs and defines passive safety of the cluster in terms of ROEs. The coordinate frames and effects
of a non-spherical Earth are also reviewed. Section 3 introduces the station-keeping strategies
based on the concept of RHC and ROE control boxes. Design and tuning of the strategies are
discussed. Section 4 briefly reviews the concepts and implementation of the flocking controller.
Section 5 describes the long-term station-keeping Monte Carlo analysis and presents the trade
study results. Section 6 summarizes conclusions from the results and announces the down-selected
station-keeping strategy.

2. Defining Passive Safety using Relative Orbit Elements

Passive safety ensures that modules are always on trajectories with a low probability of collision in
case the propulsion systems on a module fail without advanced notice. We define passive safety in
terms of ROEs, as was done by Schwartz [6]. This analysis is done in the absence of perturbations.
In this section, we start by reviewing the reference frames used in this paper followed by a brief
definition of ROEs and their precession due to a non-spherical Earth. The interested reader should
reference Lovell [7] for more information on ROEs.
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2.1. Frames of Reference

The International Celestial Reference Frame (ICRF) represents absolute positioning relative to
Earth. ICRF uses a quasi-inertial coordinate frame centered at the Earth and a set of orthogonal
Cartesian unit vectors with the z̄ axis pointing through the North Pole. A useful frame for defining
the relative motion of two spacecraft is the RSW frame.∗ RSW is an orthogonal reference frame,
often referred to as Hill’s frame [18] for circular orbits, centered at the origin of one spacecraft
and rotating as it moves around in its reference orbit. Figure 2 demonstrates the geometry of the
RSW frame at a single instance in the reference orbit. The x axis (R component) of RSW is defined
along the instantaneous position vector in the direction of zenith, which is referred to as the radial
axis. The z axis (W component) points in the direction of the orbit angular momentum vector, and
is referred to as the cross-track axis. The y axis (S component) completes the orthogonal, right
handed coordinate system, which is referred to as the along-track axis because it points along the
direction of motion for the orbit. A local vertical curvilinear (LVC) frame is similar to RSW, but
the axes curve along the shape reference orbit. The y axis curves along the direction of along-track
motion, and the z axis curves along the direction of cross-track motion as demonstrated in Fig. 2.
This improves the accuracy of relative orbit propagation for long along-track distances.
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Figure 2: Diagrams of RSW and LVC with respect to ICRF centered at the Earth’s origin
at an instance in time. The reference orbit is the dotted ellipse. LVC is an RSW frame with
curvilinear along-track axis (y) and curvilinear cross-track axis (z).

2.2. Relative Orbit Elements

ROEs are a six-tuple (ae, xd , yd , β , zmax, γ) that represents the geometry of a relative orbit in the
LVC frame of a reference orbit. The transformation of LVC position and velocity to ROEs is a
nonlinear transformation defined by the following functions:

ae = 2

√(
ẋ
ω

)2

+

(
3x+2

ẏ
ω

)2

,

∗For circular orbits, the along-track and in-track directions are always the same, so this coordinate frame is some-
times called ‘RIC.’
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xd = 4x+2
ẏ
ω
,

yd = y−2
ẋ
ω
,

β = arctan
(

ẋ
3ωx+2ẏ

)
,

zmax =

√(
ż
ω

)2

+ z2,

γ = arctan
(

ωz
ż

)
− arctan

(
ẋ

3ωx+2ẏ

)
(1)

where ẋ, ẏ, and ż are the velocities in the radial, along-track, and cross-track directions, respec-
tively. The inverse transformation also has a functional representation:

x = xd−
ae

2
sin(β ),

y = ae sin(β )+ yd,

z = zmax sin(γ +β ),

ẋ =
ae

2
ω sin(β ),

ẏ = aeω cos(β )− 3
2

ωxd,

ż = zmaxω cos(γ +β )

The geometric interpretation of ROEs is the key to their usefulness. Figure 3 and later in Fig. 4
diagram the geometric meaning of ROEs in LVC.
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β

(a) When xd = 0 the relative orbit is a closed and
repeating in the x-y plane.

y

x

xd

(b) When xd 6= 0 the relative orbit is open and drifts along
the y axis (along-track).

Figure 3: Relative orbits in the x-y plane of the LVC frame when propagated using CW
equations. These diagrams depict the effect of non-zero xd on the relative orbits. The ae, yd
and β elements are also depicted.
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ROEs also simplify the propagation of relative orbits in the LVC, which is analogous to the simpli-
fication that KOEs afford in the ICRF. The propagation of the ROEs is similar to the propagation of
position and velocity using the Clohessy-Wiltshire (CW) equations on linearized relative motion
[3]. Under Clohessy and Wiltshire’s assumption of a circular reference orbit, ae, xd , zmax and γ

remain constant. β (t) is propagated from β (0) using Eq. 2:

β (t) = β (0)+ωt (2)

where ω is the mean motion of the circular reference orbit. Hence, β is the phase angle of the
relative orbit that results in the periodic angular motion. yd(t) is propagated from yd(0) using Eq.
3:

yd(t) = yd(0)−
3
2

ωxdt. (3)

If xd = 0, then there is no yd drift, and the relative orbit is closed as seen in Fig. 3a. When the
energy of the two absolute orbits is not equal, xd 6= 0, and secular drift in yd results as modeled in
Eq. 3 and shown in Fig. 3b. The difficulty of maintaining two orbits with exact xd = 0 motivates
the concept of passive safety.

2.3. Definition of Passive Safety

It is extremely difficult (if not impossible) to equate the energies of two orbits when there is naviga-
tion and thruster noise in the systems. Therefore, two orbits will almost certainly have a non-zero
xd with secular drift of yd . If the guidance, navigation, and control malfunctions, then the yd drift
will not be corrected at all. Therefore, the cluster of modules should maintain a passively safe con-
figuration that prevents collisions when yd is not controlled. Because the yd drift is solely along
the y-axis, this requirement equates to maintaining separation in the x-z plane.

Figure 4 is the geometric interpretation of ae, β , zmax, and γ in the x-z plane. Passive safety is
defined using the minimum separation of two relative orbits in the x-z plane of LVC. If the LVC
frame is centered on one of the orbits, then it is defined as the minimum distance of ROEs from the
origin. The sub-figures of Fig. 4 demonstrate the effect of different γ values on the geometry of
relative orbits in the x-z plane. As γ approaches 90° or 270°, the relative orbit will “tip over” itself
in the x-z plan and violate the rule of passive safety. Therefore, two orbits must meet the following
conditions in order to remain passively safe: ae

2 � r1 + r2 and zmax sin(γ)� r1 + r2 where r1 and
r2 are the radii of the modules in the two orbits. These values should be significantly larger than
r1+ r2 to provide a reasonable guarantee of passive safety. For an in-depth discussion of passively
safe cluster design, the interested reader can reference Schmidt [19].

2.4. Secular Drift Due to J2

Secular drift needs to be corrected periodically by station keeping in order to maintain the maxi-
mum inter-module distance (IMD) of the cluster. As long as xd is non-zero, the corresponding yd
secular drift is much larger than the drift due to discarded nonlinear terms and higher order gravity
terms due to non-spherical Earth. After non-zero xd , the second zonal harmonic of gravitational
forces due to non-spherical Earth (J2) is the largest contributor to relative drift of two orbits. J2
causes significant secular drift of zmax and ae, which must be corrected over time to maintain the
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Figure 4: Relative orbits in the x-z plane of the LVC frame when propagated using CW
equations. These diagrams depict the effects of ae, zmax and γ on the cluster. As γ approaches
90° or 270°, the relative orbit is said to “tip over” on itself. The orbit is passively safe with
respect to the origin when ae > 0, zmax > 0, γ 6= 90° and γ 6= 270°.

cluster. J2 also causes drift of γ that threatens passive safety of the cluster. Research into J2-
invariant relative orbits has shown that two orbits on the same inclination do not have any secular
drift in zmax or ae [5, 2]. Therefore, the strategies discussed in this paper place a high priority on
maintaining zero differential inclination. However, two orbits on the same inclination will still
exhibit drift in γ , which needs to be corrected periodically.

3. Loop Closure of Maneuver Planning for Station-Keeping

All of the station-keeping strategies developed in this paper utilize a common algorithm for loop
closure of maneuver planning. There are decision points in the algorithm that define the behavior of
different strategies. Each strategy is defined by its method for deciding whether or not to generate
new maneuver plans and its method for determining the target timing that it uses to plan maneuvers.
These methods and the tuning parameters of the strategies are presented below, including a detailed
discussion of using ROEs to define control boxes and to determine maneuver targets.

3.1. Pseudo-Algorithm for Loop Closure of Maneuver Planning

The algorithm for loop closure of maneuver planning (LCMP) originates from the concept of
receding horizon control (RHC). In its most basic form, LCMP is equivalent to RHC, but the more
effective strategies deviate from true RHC to achieve desired performance characteristics.

The RHC problem is an optimal control problem solved repeatedly for a finite time window. As
time progresses, each repetition of RHC has the same amount of finite time for the optimal control
window. The significance of this is that the final time of the window is receding into the horizon.
LCMP targets and maintains a desired relative orbit defined by a set of ROE, using state feedback
from the navigation system to update maneuver plans in the same manner as RHC. The algorithm
is implemented as a cyclic process as shown in Fig. 5. Each iteration of the algorithm is a control
cycle. At the start of each cycle, the latest available state estimates from Navigation are used to
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Figure 5: Flow diagram for the LCMP algorithm. Different strategies have different control
objects and different methods for determining the maneuver window.

predict if the module’s current set of maneuvers achieves the control objectives of the strategy for
each module in the cluster.

For most of the strategies, the objective is defined as a control box that is defined by ranges of
ROEs. To improve performance, the strategies are implemented using a leader-follower control
architecture. At every check of the objectives, a leader is chosen for the cluster. Changing the
leader frequently balances the fuel requirements across the cluster, but changing the leader too
frequently can cause excessive trajectory corrections. The control box ROE ranges are computed
and checked with respect to the current leader. If the objectives are not satisfied, then OMS requests
a new set of maneuvers from Maneuver Planning Service (MPS) as shown in Fig. 1.

The request includes a list of modules that need new maneuver plans, a desired target (or target
range), and a maneuver window for achieving that target. The decision process for determining the
target and maneuver window is unique to each strategy. The algorithm used for optimal maneuver
planning, which uses the Gim-Alfriend state transition matrix with linearized eccentricity and J2
to solve the maneuver planning problem [20], and its implementation are detailed by Brown [16].
The algorithm computes a maneuver plan that achieves the target with minimal fuel consumption
modeled as the total ∆V of all the maneuvers in the plan. After maneuver planning is complete,
the algorithm pauses until the next control cycle.

3.2. Strategies for Control Objectives and Maneuver Windows

The primary inspiration for LCMP is Tillerson [4], who solves convex programs to achieve ∆V
optimal maneuvers. For station-keeping, Tillerson uses an inner and outer control box. When the
relative trajectory violates the outer control box, a ∆V optimal maneuver plan is solved that returns
the module to the inner control box. LCMP can be configured similarly but offers more variety in
its selection of maneuver windows and control objectives.

Figures 6 through 8 demonstrate the three different strategies for evaluating control objectives and
determining maneuver windows. If the system does not have a strict convergence deadline, then
the first strategy configures LCMP to use a receding horizon that conserves energy. Instead of
evaluating control objectives, RHC requests a maneuver plan every control cycle as demonstrated
in Fig. 6. Every control cycle uses the same maneuver window size, which causes the target
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Time
Control cycle 1st replan 2nd replan Target time of 1st

1st maneuver window Subsequent maneuver windows

maneuver window
Figure 6: Manuever windows for RHC. A new maneuver plan is created at every step of the
control cycle, and the maneuver window recedes into the horizon over time.
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violation & replan

Target time of 1st
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maneuver window
Control box
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Figure 7: Maneuver windows for pRHwCB. At every step of the control cycle, the module’s
latest state estimate and current maneuver plan are checked against its control box. If the
control box is satisfied, then the current maneuver plan is deemed acceptable.

Time
Control Cycle

Predict no
violation & replan

Target time of 1st

1st maneuver window Subsequent maneuver window

maneuver window
Control box

violations

New manuever window
when violated again

Figure 8: Maneuver windows for FHwCB. If a control box is violated when there are no
maneuver plans for that module, then a full maneuver window is used. If the module has a
maneuver plan, then the new window has the same target time as the current maneuver plan.

time to recede into the horizon. This implements traditional RHC, and could be proven to have
guaranteed stability with a suitable maneuver planning subsystem by applying the methods in
Mayne [13].

The second strategy is a modification to traditional RHC with the addition of control boxes. Figure
7 demonstrates LCMP with control boxes, which is named pseudo-receding horizon with control
boxes (pRHwCB). If the current maneuver plan ends within the control box, then pRHwCB does
not request a new maneuver plan. This approach has less frequent maneuvers when the minimum
impulse requirement is large. pRHwCB can be configured with inner and outer control boxes like
in Tillerson [4], but a single control box was found to be more effective. In an attempt to further
reduce the maneuver frequency, fixed horizon control with control boxes (FHwCB) is introduced
as the third strategy. FHwCB fixes the target time of subsequent maneuver plan windows to the
target time of the first maneuver window. This essentially shrinks the size of the maneuver window
of subsequent maneuver plans, which is demonstrated in Fig. 8. The computation of target ROEs
within the control boxes for pRHwCB and FHwCB are discussed in the next section.
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Figure 9: Control box ranges for ae and zmax with notional representation of relative motion
in the plane. The ranges are selected based on the sum of navigation noise, osculating effects
of Earth’s gravity, and targeting errors.

3.3. Using Relative Orbit Elements to Specify Targets and Control Boxes

LCMP uses ROEs to specify controller objectives in the form of control boxes and to specify target
states. Station-keeping should be insensitive to noise and periodic disturbances while maintaining
sensitivity to secular drifts that pull the cluster apart. Control boxes are essentially large deadbands
that desensitize the controller to small perturbations but still allow the correction of larger secular
drifts. Control boxes are defined as ROE ranges. The effects of ROE ranges are diagrammed by
dividing the ROEs into three pairs. Each pair has distinct similarities that stand out when the pair
is plotted on a two-dimensional plane.

Defining control boxes as ROE ranges offers several advantages over defining them as ranges on
position and velocity. Although it is easy to specify polygons in the position and velocity space,
the shape of relative orbits is not linear. A range of ROE better represents the non-linear space,
which can wrap around the target relative orbit. Furthermore, determining the limits for control
boxes on velocity is difficult. This section demonstrates that ROEs offer a convenient visualization
of the control box for all six ROEs using three separate planes. It is also very convenient that β is
the only ROE that is changing over time. Therefore, the control box range for β is the only range
that needs to be parameterized by time. The ranges for all other ROEs can be time-invariant.

The first plane to be investigated contains ae and zmax. Figure 9 is an example of control box
ranges for ae and zmax. There is no secular drift in ae. Therefore, the ae range is chosen by adding
navigation noise, osculating effects of higher order gravity, and targeting errors. If the cluster
configuration places modules on the same inclination, then there will not be any drift in zmax. If
the modules are placed on different inclinations, then the zmax range should be designed with some
additional buffer for the secular drifts. In addition, the zmax target should be offset in the control
box range so that the largest possible drift across the control box is obtained.

The second plane contains β and γ . Figure 10 is an example of control box ranges for β and γ . The
linearized effects of J2 cause a secular drift in β and γ at the same rate but in opposite directions,
which is due to higher order gravity terms. To maintain the same inclination as the reference orbit
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Figure 10: Control box ranges for β and γ with a notional representation of relative motion
in the plane. The ranges are coupled because β and γ have a secular drift at the same rate.

the relationship
β + γ = θre f (4)

must be maintained on average where θre f is the true argument of longitude of the reference orbit.
The natural drift of β (the Drifting β arrow in Fig. 10) maintains this relationship. To prevent
frequent burns, β is allowed to drift as far as possible, without violating passive safety. If γ were
allowed an equal range, then Eq. 4 would be violated significantly at the far corners (dotted line in
Fig. 10). Therefore, the control box around β and γ is designed as a parallelogram.

The third plane contains xd and yd , which sees the most secular drift when xd 6= 0. Two different
methods can be used to control motion along this plane. The first method is the centering method,
which Fig. 11 demonstrates. Natural motion causes the module to drift to the limits of yd . When
the limit is reached, the module is targeted back to the center of the control box for yd and to xd = 0.
Because navigation and guidance is not perfect, xd = 0 will not be obtained exactly, and the process
will continue. The second method is the bouncing method, which Fig. 12 demonstrates. Instead of
targeting back to the center of the yd range and xd = 0, this method purposely sets an xd offset that
is large enough to guarantee that yd will drift in a certain direction. This method is more efficient
for large yd ranges.

3.3.1. Maintenance of Equal Energy

The centering method and bouncing method for xd and yd control rely on accurate targeting of xd .
The target specified for xd is the desired semi-major axis difference of the target relative orbit with
respect to the reference orbit. Unfortunately, higher order gravity terms cause periodic oscillations
in the instantaneous semi-major axis of the module and reference. Therefore, the xd target should
be the mean semi-major axis difference. Therefore, LCMP adjusts the instantaneous xd target so
that the mean semi-major axis difference is correct.

The xd adjustment is accomplished by using an osculating to mean orbital element conversion [21].
To avoid the numerical inaccuracies that accumulate from transforming from ROE to LVC to ICRF
to mean orbital elements to osculating orbital elements, and then back to ICRF, LVC and ROE, a
shortcut is used that only adjust the xd ROE. xd is defined as the difference in semi-major axes.
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yd error
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Drift after positive xd targeting error
Drift after negative xd targeting error
Maneuver plans to correct yd
Control box

largest passively safe xd range

Figure 11: Control box ranges for xd and yd using the centering method with a notional
representation of relative motion in the plane. xd is targeted as close to zero as possible, and
the module could drift forward or backward in yd depending on the xd targeting error.

yd error

xd offset

Forward drift across yd range
Backward drift across yd range
Maneuver plans to change xd

largest passively safe xd range

Control box

Figure 12: Control box ranges for xd and yd using the bouncing method with a notional
representation of relative motion in the plane. xd is targeted to a non-zero value that will
force yd drift in a particular direction. On the other side of the control box, the xd target is
negated.

Therefore, the conversion is evaluated from ROE to LVC to ICRF to mean orbital elements to
osculating orbital elements. The difference of the module mean semi-major axis and the reference
mean semi-major axis is subtracted from the target instantaneous xd .

3.4. Performance Tuning

LCMP has seven primary configurations summarized in Table 1. Configurations that showed poor
performance during initial testing were removed before the Monte Carlo simulation. All configu-
rations share three major tuning parameters. The most effective tuning parameter is the controller
horizon length that determines how far into the future the algorithm is planning. Performance is
also greatly affected by the control cycle of the algorithm, which determines how often the cyclic
process repeats. The third major tuning parameter is the control box. It is also possible to tune the
algorithm by introducing a minimum impulse that is larger than the actual minimum impulse of
the propulsion method, but in practice the control box has been much more effective.
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Table 1: Summary of several strategies configured for station-keeping using LCMP.

Strategy Control
Objective

Maneuver
Window

Control
Boxes

Targeting
Method

Monte Carlo
Performed

RHC Always plan Receding None
Direct

targeting !

pRHwCB
Centering

ROE control
box

Receding Outer only
Center of

control box !

pRHwCB
Bouncing

ROE control
box

Receding Outer only
Bouncing

inside
control box

!

pRHwCB
Centering

Inner/Outer

ROE control
box

Receding
Inner and

Outer
Center of

control box

FHwCB
Centering

ROE control
box

Shrinking Outer only
Center of

control box !

FHwCB
Bouncing

ROE control
box

Shrinking Outer only
Bouncing

inside
control box

FHwCB
Centering

Inner/Outer

ROE control
box

Shrinking
Inner and

outer
Center of

control box

The control horizon is the most effective parameter for tuning the controller. A shorter horizon
causes more frequent burns and larger total ∆V , but reduces trajectory dispersions. A longer hori-
zon will slightly reduce burn frequency, but it will also increase trajectory dispersions. See Fig.
13 for a four module example with a short horizon of 6 control cycle periods and Fig. 14 for an
example with a long horizon of 12 control cycle periods. The control period is 1450 seconds, the
thruster is 10 N and the control box is disabled. The results were obtained by simulating over 300
orbits with perfect navigation, and the ∆V results are extrapolated for a six month mission.

Reducing the control cycle period of LCMP increases the ∆V . When LCMP checks maneuver
plans too often, the targeting errors introduced by unmodeled dynamics and navigation noise will
cause repeated planning and extra burns. A large control box can help to alleviate this problem,
but it is not a cure. One should exercise caution when increasing the control cycle, because an
increased control cycle can result in larger trajectory dispersions and even instability.

Tuning the control box is the least effective method for reducing ∆V . However, it is absolutely
critical for reducing burn frequency. A larger control box allows the modules to drift further
before maneuvers are scheduled to return the module to its original position, which decreases burn
frequency but results in much larger trajectory dispersions. Figure 15 provides an example with a
large control box. The total ∆V over six months is larger than the previous example with the same
horizon length of 12 control cycle periods, but burns occur less frequently at 11.4 orbits between
burns instead of 6.6 orbits between burns without a control box.
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(a) Module trajectories in the LVC frame of the first module that
demonstrate small trajectory dispersions. There are 2.8 orbits be-
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(b) Estimated total ∆V over six
months for the cluster is 19.2 m/s.

Figure 13: Station-keeping performance with control box disabled and a short horizon of 6
control cycle periods.
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(a) Module trajectories in the LVC frame of the first module that
demonstrate medium trajectory dispersions. There are 6.6 orbits
between burns.
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Figure 14: Station-keeping performance with control box disabled and a long horizon of 12
control cycle periods.

4. Review of the Flocking Controller for Station-Keeping

The flocking controller was first developed by Schwartz and Krenzke [6]. It is designed around
the idea that a cluster of modules does not need to hold a formation in order to stay together.
Instead of formation keeping, this controller aims only to keep the cluster together and maintain
the modules in passively safe orbits while minimizing fuel use and burn frequency. Passive safety
is parameterized by a safe zone size that is a distance to maintain separation in the x-z plane of
LVC. Control of in-plane motion is performed by a proportional derivative (PD) controller with a
deadband.
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Figure 15: Station-keeping performance with a control box that allows relative large along-
track drift and horizon of 12 control cycle periods.

The flocking controller will act to enforce a safety zone. The safety zone size determines the prob-
ability of collision and minimum safe distance permitted by the controller. However, a larger safety
zone translates into a larger danger zone that requires larger burns for a module to transfer across
the danger zone. To establish the safety zone, the flocking controller maintains three conditions
between each pair of module ROEs. First, each pair’s zmax must be above a minimum boundary,
which is set by the safety zone size. Second, each pair’s ae must be above a minimum boundary,
which is set by the safety zone size. Third, each pair’s γ must not be approaching 90° or 270°.
More precisely, each neighbor’s gamma value must be a certain angular distance away from 90°
and 270°, and this angular distance is computed from the zone size and the pair’s current zmax
and ae. Corrections of γ are made using a maneuver that is fired along the y axis, ∆Vy, which is
computed from a relationship derived from Eq. 1:

∆γ = arctan
(

ωzmax sin(γ +β +ωtb)
ωzmax0 cos(γ +β +ωtb)

)
− arctan

(
ae sin(β +ωtb)

ae cos(β +ωtb)+ 4
ω

∆Vy

)
where tb is the time of the burn. The time of the maneuver is limited to perigee or apogee to
minimize the size of the required ∆V .

Corrections for along-track drift follow a PD control scheme. The controller observes the current
yd and yd drift rate with respect to the leader module. Then, using a set of PD gains, it performs
a burn that biases xd to correct the situation. The PD controller includes limits on yd and xd ,
which are also used as tuning parameters. The yd limit is essentially a proportional saturation limit
because it represents the maximum yd offset that will be used in the controller computation. The xd
limit is essentially a deadband. It represents the minimum value of xd correction that will trigger a
maneuver.

The PD burns and the γ correction burns not only affect the intended ROEs, but also all other
ROEs. Therefore, the PD controller verifies that a maneuver will not violate the safety zone of any
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pair before the maneuver is scheduled. The PD controller and γ correction also adhere to upper
bounds on ae and zmax. Neither will schedule burns that violate these upper bounds.

5. Performance Analysis and Station-Keeping Results

Station-keeping performance is critical to guaranteeing the mission lifetime. The cluster will be
performing station-keeping maneuvers for the majority of the mission, and fuel is a limited re-
source. If the station-keeping performance does not meet expectations, then the mission lifetime
will be reduced accordingly. This section summarizes the key performance measures and perfor-
mance tuning of LCMP. The differences between RHC, pRHwCB, FHwCB, and flocking controller
are also discussed.

5.1. Mission Scenario

Station-keeping performance of a four module cluster is analyzed for a sun synchronous orbit. The
parameters of the orbit are summarized in Table 2. Table 3 is the cluster configuration that was
used for evaluation, which is plotted for a few orbits in Fig. 16. Each module has a GPS receiver,
and they are using GPS filters for navigation as described by Schmidt [17]. The GPS filters are
tracking the same GPS satellites to reduce relative navigation errors. The true gravity model is a
12x12 model. There is an exponential drag model that is inconsequential at an altitude of 500 km.
The true thruster model is an RCS model with a short rise time and fall time. The thruster provides
70 N of force with a specific impulse (ISP) of 230 seconds. The minimum impulse provided by
this thruster is 1.3 cm/sec. Although the simulation does not model attitude control, noisy burn
directions are modeled. Thruster direction noise is a Gaussian distributed white noise in azimuth
angle and elevation angle of the burn. The three-sigma value of the noise for each angle is six
degrees, which is modeled from 2 degrees of sensor error plus 1 degree of deadband plus 3 degrees
of alignment error. Guidance and control is using a J2 gravity model in its computations.

Table 2: Orbital parameters for station-keeping evaluation
Parameter Value

altitude 500 km
inclination 98.2°
eccentricity 0

right ascension of the ascending node 0°
argument of perigee 0°
true anomaly at start 0°

time at start (sec after J2000) 134308851.184

Monte Carlo simulation was used to validate performance of the station-keeping method. Forty
runs of 500 orbits were conducted for each configuration of the controllers. During every run, each
module is the leader for 125 contiguous orbits to balance fuel. Each run uses a different stream
of random numbers, which affects the navigation noise and thruster noise. In addition, the initial
positions of the modules are randomized within the β -γ and xd control boxes. Initial conditions
for β and γ are still chosen so that modules start out on the same inclination.
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Table 3: Initial cluster configuration and ROE targets with four modules used to evaluate
performance.

Module 1 Module 2 Module 3 Module 4
ae 378 m 378 m 1073 m 1073 m
xd 0 m 0 m 0 m 0 m
yd 0 m 0 m 0 m 0 m
β 270° 90° 270° 90°

zmax 179 m 179 m 537 m 537 m
γ 0° 0° 0° 0°
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Figure 16: Initial cluster configuration for station-keeping simulation, which is plotted in
LVC for one orbit starting at the modules initial conditions.

5.2. Performance Measures

The primary performance measure for station-keeping is total ∆V for station-keeping during the
mission, which reflects the amount of fuel required. The following is a list of other performance
measures, which usually conflict with minimizing ∆V :

Burn Frequency Infrequent maneuvering is desirable to provide more opportunity for scientific
studies, which may be interrupted while the module is slewing and accelerating.

Burn Angles The angles of burns are important when the mission requires the module to point at
a specific attitude.

Inter-module Distances The minimum IMD and maximum IMD specified for the cluster should
not be violated. In practice, noise and disturbances will cause violations of the minimum
IMD. Therefore, significant violations of IMD were noted.

Stability and Trajectories The mission may require accurate tracking of the cluster configura-
tion. In this case, minimizing dispersions from the nominal trajectory often requires more
frequent burns that increase total ∆V over the module lifetime.

Thruster Size Although minimal station-keeping ∆V is more easily achieved using small, fre-
quent burns, the F6 cluster required large thrusters to meet the requirements of a scatter
maneuver during the mission. A large 70N thruster was used for these studies, which is a
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thruster that is capable of achieving the scatter requirement [22].

5.3. Monte Carlo Simulation Results

Table 4 details the results of Monte Carlo simulation conducted for the study. CC is the control
cycle in orbits, which is 0.5 orbit if not specified. MW is the maneuver window length in orbits.
For example, RHC CC3 MW9 has a control cycle of three orbits and a maneuver window of nine
orbits. pRHwCB Centering, 4km yd , MW3 is using the centering method for yd control with a 4
km range across the yd control box and a control cycle of three orbits.

The 500 orbit ∆V number was extrapolated to estimate the ∆V for a six month mission. The three-
sigma (3σ ) value of the ∆V for six months over thirty runs is also listed. The ratio of the smallest
six month ∆V to the largest six month ∆V also provides some indication of the variance in perfor-
mance. Frequency of maneuvers is quantified by the average orbits between burns. Minimum and
maximum IMD are sampled every 10 seconds, and the extreme values over 30 runs are tabulated.
IMD in the x-z plane is sampled every 60 seconds. Figure 17 and Fig. 18 visualize the ∆V con-
sumption and the burn frequency results of the simulations, respectively. Probability of collision
was computed using the covariance computed within the navigation filters, and it was zero for all
cases.

Table 4: Detailed results of Monte Carlo simulation for station-keeping strategies.

Controller
6 mo. ∆V

per Module
(m/s)

6 mo.
∆V 3σ

value

Widest ratio
of small:large

∆V

Ave. Orbits
between

Maneuvers

Min
IMD
(m)

Max
IMD
(m)

Min IMD
x-z plane

(m)
RHC MW3 5.92 9.14 3.34:7.31 9.49 218 7,278 198
RHC CC3

MW9
3.14 4.35 1.26:3.74 19.2 224 11,670 196

pRHwCB
Centering, 4km

yd , MW3
4.51 9.44 0.97:10.3 27.3 155 8,564 113

pRHwCB
Centering, 4km

yd , MW2
6.03 11.6 0.84:8.36 17.4 151 8,666 17

pRHwCB
Bouncing, 4km

yd , MW2
4.20 7.74 1.67:6.82 22.7 150 8,719 96

FHwCB
Centering, 4km

yd , MW3
4.83 8.33 1.71:6.27 23.1 94 8,517 80

Flocking
Controller

10.4 38.4 1.17:23.2 19.7 76 18,565 74

RHC MW3 has acceptable ∆V performance over six months, but the burn frequency is very high
at about one burn for every nine orbits. A wide range of tunings were attempted in order to
reduce the burn frequency without increasing the six month ∆V . The RHC CC3 MW3 tuning has
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Figure 17: Graphical ∆V summary for the station-keeping methods in Table 4.
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Figure 18: Graphical burn frequency summary for the station-keeping methods in Table 4.

a much lower burn frequency of one burn for every nineteen orbits, however, checking the orbits
infrequently at a control cycle of three orbits can lead to stability issues. Although this tuning
maintains a safe minimum IMD, the higher maximum IMD indicates that the dispersions from the
target orbits are much larger than with RHC MW3. Therefore, in spite of the favorable numbers
for the other performance measures, RHC CC3 MW3 is not recommended.

The control box approaches are the most stable, and they also have hard limits on the module po-
sitions during drift periods. Both pRHwCB and FHwCB maintain the cluster using small total ∆V
and infrequent maneuvers. The only tuning of pRHwCB that had poor performance was Center-
ing with MW2 where the short maneuver window of two orbits causes dangerous flybys when the
modules return to the center of the xd-yd control box. The modules use extra fuel to avoid these
flybys at the last minute, which is reflected in the total ∆V .

The results indicate that the flocking controller is least efficient, but the data in Table 4 does not
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tell the entire story. For most runs, the flocking controller was efficient as indicated by the lower
limit of the ∆V range, but it occasionally encountered problems finding efficient changes for γ .
These few cases skew the results dramatically. In addition, flocking controller lacks differential
inclination control. The effects of non-zero differential inclination build up over a 500 orbit simu-
lation.

6. Conclusions

Ultimately, selection of a station-keeping strategy depends on the mission objectives and module
capabilities such as mission-specific quiet periods, a required mission formation, or the minimum
impulse of the thruster. Table 5 is a summary of advantages and disadvantages for each algorithm.
A flexible strategy that is configurable for RHC, pRHwCB, and FHwCB is implemented in OMS as
part of CFA. The centering and bouncing methods are also configurable. pRHwCB with centering
is the most efficient station-keeping for the simulated mission, and it is the method that is currently
being validated for long runs of CFA using a software in the loop simulation.

Table 5: Summary of advantages for the investigated station-keeping strategies.
Algorithm Advantages Disadvantages

RHC Consistent burn directions
Frequent replanning; Potential for high
burn frequency; No guaranteed finite

convergence time

pRHwCB
Only replans when necessary; Lower
burn frequency than RHC; Flexible

design (encompasses RHC)

Unpredictable maneuver windows;
Less consistent burn directions; No
guaranteed finite convergence time

FHwCB
Predictable maneuver windows;

Flexible design
Inconsistent burn directions; Higher

∆V than RHC or pRHwCB

Flocking Low burn frequency
No ae, zmax, inclination control, or

formation keeping; Single burn
maneuvers

The flocking concept could be a viable control strategy worth further R&D study, but the current
implementation does not demonstrate enough performance improvement over the pRHwCB to
warrant its use. A ‘hybrid’ controller was attempted that combines the pRHwCB method with
rules of Flocking to determine γ . Testing of this controller in long simulations revealed several
defects in the algorithms that have not been addressed. However, in theory a set of flocking rules
should exist that would, at the very least, replicate the functionality of pRHwCB by considering the
long-term effects of a chosen target γ . Such rules may also be able to take advantage of situations
that allow for more γ drift than passively safe control boxes would allow.
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