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Unscented optimal control is based on combining the concept of the unscented
transform with standard optimal control to produce a new approach to directly manage
navigational and other uncertainties in an open-loop framework. The sigma points of
the unscented transform are treated as controllable particles that are all driven by
the same open-loop controller. A system-of-systems dynamical model is constructed
where each system is a copy of the other. Pseudospectral optimal control techniques
are applied to this system-of-systems to produce a computationally viable approach for
solving the large-scale optimal control problem. The problem of slewing the Hubble
Space Telescope (HST) is used as a running theme to illustrate the ideas. This problem
is prescient because of the possibility of failure of all of the gyros on board HST. If the
gyros fail, the HST mission will be over despite its science instruments functioning
flawlessly. The unscented optimal control approach demonstrates that there is a way
out to perform a zero-gyro operation. This zero-gyro mode is flight implementable
and can be used to perform uninterrupted science should all gyros fail.

I. Introduction

A typical space mission consists of several trajectory segments: from launch to orbit, to
orbital transfers and possible reentry. The guidance and control problems for the end-to-end
mission can be framed as a hybrid optimal control problem;1 i.e., a graph-theoretic optimal
control problem that involves real and categorial (integer) variables. Even when the end-
to-end problem is segmented into simpler phases as a means to manage the technical and
operational complexity, each phase may still involve a multi-point optimal control problem.1

The sequence of optimal control problems is dictated by mission requirements and many other
practical constraints. For instance, in its typical operation, the Hubble Space Telescope
(HST) slews from one point to another point of interest. Each slew is part of a larger
planning and scheduling operation that involves opportunities, priorities, science returns,
capacity limits and various other constraints.2 The gyros onboard HST provide the necessary
feedback signals for slewing while the fine guidance sensors (FGS) provide the required
accuracy for precision pointing.3 Prior to 2001, normal operations required four functioning
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gyros that allowed autonomous operations of the HST in case of a single gyro failure.4,5 In
its long history, the gyros have failed and have been replaced by servicing missions. With
the cancelation of these servicing missions, multiple gyro failures could doom the entire
operations of the HST even though the science instruments may be working flawlessly.

Starting in 2001, the HST project began operations in a three-gyro mode.5 While this
has no effect on performance, gyro anomalies result in a temporary halt to science and hence
its mission.5 In anticipation of additional gyro failures, the HST project has developed a
two-gyro science (TGS) mode.5 In TGS mode, the rate information formerly provided by
the third gyro is provided by other sensors: magnetometers, star trackers and the FGS.
Because of their widely different sensor characteristics, three submodes have been defined
within the TGS. Although there is no degradation in image quality in the TGS mode, there
is a reduction in science productivity due to difficulty in target scheduling and constraints
imposed by the star trackers.5 A single-gyro science mode is also theoretically possible but
this will have a detrimental impact on HST’s science return.6

In this paper, we show the viability of using unscented optimal control theory to design
Hubble’s slews without the aid of any gyros; i.e. a true zero-gyro mode. The ideas we present
in this paper are applicable to a broad range of problems beyond HST slews; for example,
in [7] we apply the same concepts to solve a Zermelo problem in an uncertain environment.
In principle, unscented optimal control concepts can be applied to any controllable process
with uncertain parameters.

II. Introduction to Unscented Optimal Control

Julier and Uhlmann8 introduced the unscented transform as a means to design nonlinear
filters without linearization. Their concept was based on the premise that it is better to
approximate a probability distribution function (PDF) than linearize a generic nonlinear
function. Unscented optimal control is based on combining the unscented transform with
standard optimal control to produce a new approach to directly manage navigational and
other uncertainties in an open-loop framework.

Let x0 ∈ RNx be the initial random state of a nonlinear controlled dynamical system with
mean, µx0 , and covariance, Σx0 . Then, it is straightforward8,9 to determine the sigma points,
χ0

1,χ
0
2, . . . ,χ

0
Nσ

, at t = t0. For simplicity of exposition, we assume a Gaussian probability
distribution function (PDF) for x0 while noting that the concept of the unscented transform,
and hence unscented optimal control, holds for non-Gaussian PDFs as well. We assume the
dynamics of the nonlinear dynamical system to be given by,

ẋ = f(x,u, t) (1)

where u ∈ U ⊆ RNu is the control variable, and f : (x,u, t) $→ RNx is differentiable with
respect to x ∈ X ⊆ RNx . Then, the dynamics of each sigma point, χi, i = 1, . . . , Nσ is given
by χ̇i = f(χi,u, t). Let X be an NσNx-dimensional vector given by,

X :=

⎡

⎢⎢⎢⎣

χ1

χ2
...

χNσ

⎤

⎥⎥⎥⎦
∈ RNσNx
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Then, the dynamics of X are given by Nσ copies of f given by,

Ẋ =

⎡

⎢⎢⎢⎣

f(χ1,u, t)

f(χ2,u, t)
...

f(χNσ
,u, t)

⎤

⎥⎥⎥⎦
:= F(X,u, t)

In unscented optimal control, we consider the controlled dynamical system Ẋ = F(X,u, t),
whose initial state is given by the sigma points,

X(t0) = X0 :=

⎡

⎢⎢⎢⎣

χ0
1

χ0
2
...

χ0
Nσ

⎤

⎥⎥⎥⎦

The objective is to find a control trajectory, t $→ u, that that drives X0 to a target state
while minimizing a cost functional. Thus, the purpose of unscented optimal control is to use
the concept of the unscented transform to control the statistics of the propagation.

A fundamental unscented optimal control problem can be stated in a standard format10

as,

X ∈ XNσ ⊆ RNσNx , u ∈ U ⊆ RNu

(U)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Minimize J [X(·),u(·), tf ] := E(X(tf ), tf )

Subject to Ẋ(t) = F(X(t),u(t), t)

(X(t0), t0) = (X0, t0)

e(X(tf ), tf ) ≤ 0

h(X(t), t) ≤ 0

(2)

where E : XNσ × R → R is an endpoint cost function, e : XNσ × R → RNe is an endpoint
constraint function that defines an endpoint set, and h : XNσ ×R → RNh is a path function
that constrains the entire collection of sigma-point trajectories to an allowable region. The
cost function, the endpoint set, and the allowable region may all be chosen by the designer
to achieve various objectives.

The first major challenge in unscented optimal control theory is a problem formulation
for which a solution exists. It is well-established11,12,13 that guaranteeing the existence of
a solution to a standard optimal control problem is one of the most difficult mathematical
tasks. In engineering practice, the existence problem to a standard optimal control problem
is not a serious hurdle to designing algorithms and producing viable solutions because the
physics of the problem can be used as an intuitive guidance tool.13,14 Because unscented
optimal control is able to manage uncertainty without the use of feedback, it defies intu-
ition; hence, significant care must be exercised in its problem formulation so that the lack
of success in finding a solution from an algorithm can be attributed to the algorithm and
not the existence of a solution. For these reasons, it is critical to adopt optimal control
methods that offer some guarantees of a computable solution under existence hypotheses. In
addition, the chosen method must be capable of handling large dimensions (Nσ × Nx) and
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producing flight implementable controllers. All of these requirements lead to the natural use
of pseudospectral (PS) optimal control theory.15 PS optimal control overcomes the curse
of sensitivity by “algebraizing” the differential equations16,17 while curbing the curse of di-
mensionality through spectral methods.18,19,20 Among the large family of spectral methods,
the “big two” techniques, namely, the Legendre and Chebyhsev PS methods, are the most
relevant for optimal control applications.21,22,23, 24 This is because these two methods avoid
the possibility of producing false positives25,26 or divergence under mild conditions.27 See
[15] for a comprehensive review and survey of PS optimal control theory. Taking all these
requirements into account, we follow the path of these big two PS methods that have mathe-
matically provable convergence properties19,28 under existence assumptions. These methods
are implemented in DIDO c⃝ – the MATLAB! toola for solving optimal control problems.29

The DIDO optimal control toolbox has also a long history of flight successes in the aerospace
industry.15,30,31,32 In the rest of the sections to follow, we use DIDO for generating both the
standard open-loop, as well as the unscented optimal control trajectory. In using DIDO, we
also follow the pre-flight work-flow model15 that has been used within30,32 and outside15,31

NASA since 2006 when PS optimal control debuted flight.33

III. Quantifying the Effects of Uncertainty

In its normal mode, the HST performs a standard eigenaxis slew between two points
of interest using its gyros for feedback.34 Solar-exclusion zones are managed using dog-leg
maneuvers, and as will be apparent shortly, such constraints are easily handled through the
use of optimal control techniques. Four reaction wheel assemblies generate the commanded
control torques; see Fig. 1. Along any axis, it is possible to command a maximum torque of

command
generator PID

RGA

Figure 1: Block diagram of HST’s pointing control system (simplified from Refs. [3]
and [34]).

0.95N.m with some margin left for managing uncertainties. Because this torque is generated
by a momentum exchange between the reaction wheel assemblies and the main body, the
maximum angular velocity of the HST is limited by 0.15 deg/s. The nominal principal
moments of inertia for the HST are given by,35 (I1, I2, I3) = (3.6, 8.7, 9.4) × 104 Kg.m2. At
its initial time, Hubble’s attitude is estimated by the FGS to an accuracy of 90 arcsec.
Thus, the main unknowns for the slew are not the initial quaternions. Despite this precision
in initial knowledge, in the absence of feedback from the gyros, the HST will not be able

ahttp://www.mathworks.com/products/connections/product_detail/product_61633.html
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to follow the commands produced by the command generator; see Fig. 1. This is because
the command generator produces signals that are not dynamically feasible10,14 even under
perfect knowledge.

In recent years, the shortest-time-maneuver36,37,38 (STM) has emerged as a flight im-
plementable methodb that solves a number of these challenges through the application of
optimal control techniques. Unlike the HST’s command generator, the STM command is
dynamically feasible and can execute an HST slew in a zero gyro mode with perfect knowl-
edge of the initial states, inertia tensor and zero disturbance. Although the initial states are
known to a very high precision, a pure STM command is not a viable option for slewing
because the unknowns for the HST are the inertia tensor, the gravity gradient and the at-
mospheric torques. Hence, the first step in applying unscented optimal control is to quantify
the effects of these unknowns. To this end, we first simulate an STM.

Let the state of the HST be represented by,

x =

[
q

ω

]
∈ R7 (3)

where q and ω are the familiar quaternions and body rates. Then, the nonlinear dynamics,
ẋ = f(x,u), are given by the well-known equations,39

q̇1 =
1

2
[ω1q4 − ω2q3 + ω3q2]

q̇2 =
1

2
[ω1q3 + ω2q4 − ω3q1]

q̇3 =
1

2
[−ω1q2 + ω2q1 + ω3q4]

q̇4 =
1

2
[−ω1q1 − ω2q2 − ω3q3] (4)

ω̇1 =
u1

I1
−

(
I3 − I2

I1

)
ω2ω3

ω̇2 =
u2

I2
−

(
I1 − I3

I2

)
ω1ω3

ω̇3 =
u3

I3
−

(
I1 − I2

I3

)
ω1ω2

The state and control spaces for a viable HST slew are given by,

X := {x ∈ R7 : ∥q∥2 = 1, ∥ω∥2 ≤ ωmax} (5)

U := {u ∈ R3 : ∥u∥2 ≤ umax} (6)

The standard STM problem is to find the state-control function pair, t → (x,u) ∈ X × U,
that drives the spacecraft from its initial position, x(t0) = x0 to its target position given by
x(tf ) = xf while minimizing the cost functional,

J [x (·) ,u (·) , tf ] := tf − t0 (7)

bhttp://www.nasa.gov/mission_pages/sunearth/news/trace-slew.html
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For the purposes of representative analysis, we consider the boundary conditions correspond-
ing to a large-angle-maneuver given by,

x0 = [0, 0, 0, 1, 0, 0, 0]T (8)

xf = [−0.27060, 0.27060, 0.65328, 0.65328, 0, 0, 0]T

These numbers corresponds to a yaw of ψ = 90 degrees, a pitch of θ = 45 degrees and zero
roll (φ).

For flight implementation, it is necessary to consider the impact of all of the unknowns. In
pre-flight analysis, it is necessary to consider the impact of each of the unknowns separately.
For this reason, we assess the impact of a 3.3%, 1σ Gaussian uncertainty in the principal
moments of inertia.

Fig. 2 shows the errors in the targeted angular position and velocity generated from 1000
Monte Carlo simulations around an STM produced by DIDO. Standard pre-flight verification
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Figure 2: Monte Carlo simulations of target error distributions produced by an STM
implementation for the HST in a zero-gyro mode.

and validation tests were performed on the STM; see [15,30] for additional details. From the
statistics of the errors provided in Table 1, the mean angular velocity is off of its targeted
value by about 0.2 arcsec/s while the mean angular position is off by a whopping 741 arc-
sec. Obviously, the HST will not be able to perform its mission in an open-loop zero-gyro
framework. Thus, a possible first step in developing a zero-gyro framework is to explore the
possibility of targeting zero mean.

6 of 12



Target Parameter Error Mean Standard Deviation

ω1(arcsec/s) -0.197 6.26

ω2(arcsec/s) -0.356 9.18

ω3(arcsec/s) -0.063 2.43

ψ (arcsec) 666.0 14,616

θ (arcsec) -158.0 1519

φ (arcsec) 284.0 4644

Table 1: Quantification of the errors in the targeted values of angular position and
velocity computed from 1000 Monte Carlo simulations

IV. Initial Unscented Problem Formulation: Targeting Zero
Mean

As noted before, we assume no uncertainty in the initial states, x := (q,ω), as a re-
sult of the availability of the FGS; hence, the HST dynamical model is parameterized by
uncertainties in the three principal moments of inertia,

ẋ = f(x,u; I1, I2, I3)

From Julier’s second order minimal simplex method,40 we have Nσ = 5. Hence, the state
space for the unscented HST optimal control problem is X5 = R35, and the state variable,
X, comprises five copies of (q,ω). Each of these five copies of the state vector starts at the
same initial point, χj(t0) = x0, j = 1, . . . , 5, with the same dynamical law but with five
different velocities,

χ̇j = f(χj,u; I
j
1 , I

j
2 , I

j
3) j = 1, . . . , 5

where Ij1 , I
j
2 , I

j
3 , j = 1, . . . , 5 are the values of the principal moments of inertia that corre-

spond to the five sigma points. Each evolution of the state trajectory, t $→ χj, must satisfy
the state-space constraints,

{
χj(t) = (qj(t),ωj(t)) : ∥qj(t)∥2 = 1, ∥ωj(t)∥2 ≤ ωmax

}
∀ j = 1, . . . , 5

We now pose the constructive question: is it possible to drive the evolutions of the state
trajectories such that the final value of the mean sigma-point vector, µχ(tf ), is equal to the
target value given by xf? Using the unscented optimal control framework, we explore this
question by stipulating that the final-time conditions satisfy the equality constraint,

e(X(tf )) := µχ(tf )− xf = 0

Care must be taken in computing µχ in ensuring that the norm constraint ∥q∥2 = 1 is
satisfied. A minimum time unscented optimal control problem can be posed as finding the
open-loop control trajectory, t $→ u, that minimizes the endpoint cost functional,

E(X(tf ), tf ) := tf − t0

while satisfying all the constraints. As this is now a standard optimal control problem, albeit
a high-dimensional one, it can be solved. In fact, because of its high dimension, it makes
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Figure 3: Unscented optimal control for targeting a zero mean error.

one of the strongest cases for the use of the big two PS methods15 implemented in DIDO.
The unscented optimal control generated by DIDO is shown in Fig. 3. The corresponding
sigma point state trajectories are shown in Fig. 4.
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Figure 4: Sigma point state trajectories for the HST that target a zero mean error.

It is apparent from these figures that the state-space constraints (see Eqs. 5 and 6) are met
by all of the sigma point trajectories. From the statistics of the endpoint values, provided in
Table 2, it is clear that the mean is near zero — a far better proposition than the standard
open-loop statistics of Table 1. Note, in particular, the error mean in the target angles is
about 1 milli-arc seconds.

It is apparent that the unscented optimal control solution is implementable (see Fig. 3)
as a zero-gyro solution for the HST; however, it can be reasonably argued that the approach
may still be risky because the covariances in Table 2 are about the same order of magnitude
as those of Table 1. This perspective is amplified in Fig. 5 where two illustrative covariance
ellipses are plotted as a means to clarify this point: the means are within milli-arc seconds of
the target but but the spread is in the neighborhood of about a degree. Hence, we now seek
to determine a lower risk solution by exploring the possibility of controlling the variances at
the target point.
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Target Parameter Error Mean Standard Deviation

ω1(arcsec/s) -2.44E-15 4.10

ω2(arcsec/s) 2.10 E-14 9.47

ω3(arcsec/s) -2.55E-15 1.26

ψ (arcsec) 1.20E-07 14,112

θ (arcsec) -2.72E-08 1476

φ (arcsec) 8.89E-08 5760

Table 2: Error statistics from an unscented optimal control that targets a zero mean.
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Figure 5: Two illustrative covariance ellipses for one instantiation of an unscented
optimal control compared against that of a standard open-loop controller; the

cross-hairs denote the relevant means.

V. Risk-Reduced Unscented Problem Formulation

We propose to reduce the risk associated in the open-loop control of the previous section
by controlling the spread of the final values of the sigma points. One measure of this spread
is the variance; hence, we propose an additional set of terminal conditions given by,

diag
[
Σy(χ)(tf )

]
≤ [σ2

ψ, σ
2
θ ,φ

2
φ, σ

2
ω1
, σ2

ω2
, σ2

ω3
]T

where σ2
(·) are user-specified values of the respective variances and y represents the trans-

formation from the quaternion space to the space of Euler angles. Thus, the new set of
endpoint conditions for this problem are given by,

e1(X(tf )) := µχ(tf )− xf = 0 (9)

e2(X(tf )) := diag
[
Σy(χ)(tf )

]
≤ [σ2

ψ, σ
2
θ ,φ

2
φ, σ

2
ω1
, σ2

ω2
, σ2

ω3
]T (10)

Following the same process as before, the statistics resulting from this solution are given
in Table 3. Comparing the last column of Table 3 with that of Table 2, it is clear that
this problem formulation has achieved a ten-fold reduction in risk. This point is further
elaborated in Fig. 6 where two illustrative covariances of both instantiations of unscented
optimal control techniques are plotted.
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Target Parameter Error Mean Standard Deviation

ω1(arcsec/s) 3.60E-02 0.341

ω2(arcsec/s) -6.77E-12 .932

ω3(arcsec/s) 6.77E-13 .130

ψ (arcsec) 1.24E-06 1,436

θ (arcsec) -1.16E-06 153

φ (arcsec) 1.19E-06 619

Table 3: Error statistics from an unscented optimal control that targets a zero mean
and a given value of risk.
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Figure 6: Demonstration of a ten-fold reduction in the covariances of the target
values of sample state variables.

VI. Conclusions

Since the 2006 flight implementation of Bedrossian’s zero propellant maneuver on board
the International Space Station, optimal control techniques have become routine over a large
segment of the aerospace industry. The routine use of these techniques has opened up new
challenges in guidance and control where the objectives are higher performance at reduced
costs with demands for graceful degradation in the event of failures, unforseen uncertainties
and other unknowns. The traditional means to manage these uncertainties is feedback;
however, in the absence of feedback there is no room for graceful degradation. Furthermore,
a management of uncertainties through the use of feedback principles alone is no longer
the discriminating concept for inexpensive control systems. An unscented control offers an
inexpensive and simple means to manage uncertainties in the absence of feedback. In the
case of the Hubble Space Telescope, given that servicing missions are no longer viable, the
entire science project will come to a standstill if all of the gyros fail. The unscented optimal
control solution offers a simple and viable approach to perform continued science.
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