
AMORE – AN ACCREDITED MODEL REPOSITORY TOWARDS THE REUSE ON
AOCS PROJECT

Leandro T. Hoffmann(1), Carlos J. A. Moreira(2), Igor M. Lopes(3), Marco Hidalgo(4), and
Roberto V. F. Lopes(5)

(1)(5)Brazilian Institute for Space Research (INPE), Av. dos Astronautas, 1758, 122270-010, São
José dos Campos-SP, Brazil, +55 (12) 3208-6000, {leandro.hoffmann, roberto.lopes}@inpe.br

(2)cjamoreira@gmail.com
(3)rogimainenti@gmail.com

(4)marco.hidalgo@rocketmail.com

Abstract: In this work, we present a methodology for creating an accredited model repository to
increase the level of software reuse in the development of Spacecraft Dynamics Simulators (SDS).
After a brief introduction of the state-of-the-art on spacecraft simulators and their role in space
engineering activities, the paper describes our process for selecting, converting and building a
catalogue of models for future reference and reuse. This is demonstrated using a set of models
developed for the Attitude and Orbit Control Subsystem (AOCS) of Amaznia-1, the first mission that
will be based on the Brazilian Multi-Mission Platform. The developed models are implemented in
MATLAB R© and C++ and the latter are executed by a flexible simulation infrastructure that defines
standard interfaces for allowing the rapid reconfiguration of scenario and model interchange. Next,
the paper describes case studies of simulations built from models available in the repository, in
which the benefits of the repository creation can be valued. The assessed level of software reuse
encourages the adoption of the methodology for future projects of SDS.

Keywords: Spacecraft dynamics simulator, AOCS verification and validation, model repository,
electrical ground support equipment.

1. Introduction

Simulation plays an important role in the AOCS design, construction, testing, verification and
validation and hence, a reliable infrastructure is crucial to achieve a successful result. Typically, the
AOCS projects involve the interaction of several teams and, often, each team employs specialised
tools in their activities, with little interoperability and lacking on reuse. As the demands for
embedded software increases, additional verification and validations tools are required, bringing the
opportunity to rationalize their use and the overall engineering process.

Nowadays, a common approach for building space systems is to adopt a model-based system
engineering process, where the activities are conducted by the elaboration of domain models, which
can be interchanged among teams. Such a process is often supported by simulators that execute the
models in certain scenario conditions and anticipate the verification of the product. In the case of
AOCS, for instance, the control engineering team designs the control law (typically using tools like
MATLAB/Simulink R©) and in the next phase the computing team verifies and validates the on-board
software, after the control algorithm has been automatically generated to a programming language
for embedded systems (.e.g. Assembly, C, ADA). In both cases, the test harness is composed by
infrastructures that simulate all environmental conditions to evaluate interfaces, functionalities and
performance of the controller software.

1



Figure 1: Amazonia-1 and Multi-Mission Platform concepts. Source: MMP Project’s Image
Repository.

In this context, a Spacecraft Dynamics Simulator (SDS) is being developed at Brazilian Institute
for Space Research (INPE), envisaging the future Brazilian missions based on the Multi-Mission
Platform (MMP) as well as the formation of specialized human resources to the local space
engineering industry, which will be in charge of the final project. The MMP is designed to
attend the requirements of the next INPE space missions in the scientific, meteorological and
earth observation categories and the general concept of first MMP-based mission, the Amazonia-1
satellite, is illustrated in Figure 1.

The SDS project is composed of three products: functional engineering simulator; software valida-
tion facility; and test control module, which includes the test setup, visualization and recording tools.
In general, the work packets are oriented by simulation models and a high software modularity in
foreseen to allow their reuse to other MMP missions.

Initially, each model is designed in MATLAB and then a real time version is implemented in C++
with Qt Creator environment. Both codes are made independently by at least two members of staff,
based on the same source of documentation. This gives different opportunities of skills improvement
and knowledge sharing, as well as cross verification of the final product.

It is also strongly encouraged that the simulation engineers make use of existing simulation models
and software infrastructure as much as possible. Nevertheless, after a short survey on available
simulation product from other projects at INPE, it is observed that some sort work of rework was
unavoidable. The main challenges for reusing heritage artifacts are the interface heterogeneity of
models and a lack of software flexibility in existing infrastructures. Therefore, the establishment of
guidelines for building a generic environment is required for the SDS design and the implemented
models should comply with the following design goals: (i) all interfaces must be well-defined for
easing its assembly and reconfiguration to different simulation scenarios; (ii) all C++ models must
be executable in a common simulation infrastructure; and (iii) models must be accessed from a
configured repository, in which a clear description of its functionalities, interfaces, constraints and
qualification process is available.

2



To cope with these objectives, in this work a methodology for creating an Accredited Model
Repository (AMoRe) is presented to address the configuration management of models and increase
the level of software reusability in the SDS context.

Our approach consists in guiding the development of models in a component-based way, which
starts with the configuration of MATLAB models built in the earlier phases of algorithms design
and validation activities. The candidate scripts for reuse are identified and a set of metadata is
collected, such as name, description, constraints and limitations, input and output parameters,
external dependences, etc. Before the model can be made available in the repository, its source
code must comply with a standardised naming and coding style and be accompanied by a set of
testing artefacts (harness, data, scripts and reports). This methodology has been applied for the
last three years in a training project in the field of AOCS testing, taking the AOCS of Amazonia-1
satellite as a test bench, which is currently under development at INPE with an Attitude Control
Subsystem provided by Argentine company INVAP. The repository provides artefacts for modelling
typical pieces of equipment (Coarse Solar Sensors, Star Trackers, Magnetometers, Gyroscopes,
Reaction wheels, magnetic torque rods and Thrusters) and space environment (Orbit dynamics,
attitude dynamics, geomagnetic fields, celestial sphere, Earths albedo, Sun position and dynamic
perturbations). The remaining of this document is organised as follows: after a brief introduction
of the state-of-the-art on spacecraft simulators and their role in space engineering activities, in
section 2., the adopted model development process and the basis for defining a model catalogue are
presented in section 3.. The overall features of the repository and the currently available models
are listed in section 4.. The section 5. demonstrates the usage of existing models for conducting
simulation analysis in the scope of MMP missions. Later, the section 6. gives the final conclusions
of this work.

2. Spacecraft Simulation

Traditionally, the strategy of building simulators to support space engineering process has been
adopted since the early days of space race, wherein, for instance, models executed in analogue
computers have been used to assist spacecraft designers from the National Aeronautics and Space
Administration (NASA), in 60’s [1]. All the determination for developing new simulation technology
since then is now reflected in the vast number of engineering fields that make use these tools in their
processes, such as mission analysis, on-board software development, verification and validation
in system and subsystem levels, assembly & integration campaigns, ground teams and astronauts
training, support on mission operations, among others [2, 3, 4, 5, 6, 7, 8, 9, 10].

A spacecraft simulation infrastructure comprises of a facility composed of hardware and soft-
ware elements that executing a simulation model extracts behavioural information or emulates
environmental conditions to test a space system device and validate operational procedures. The
increasing number of simulation applications in engineering fields stimulates the pursuit for better
and cheaper methods for facilities construction, which frequently raises the number of requirements
for flexibility, software reuse, interoperability, high fidelity models, and reliable infrastructures.

Besides the complexity of the spacecraft, the construction of simulators itself demands substantial
amounts of resources. Due to the particular needs of each developing phase, the features of simula-

3



tion infrastructure have to be tailored (e.g. different levels of fidelity, real time constraints). Still,
many software components, modelling efforts and test procedures can be available from one phase
of the project to another. In this sense, it is expected that reusability and automation requirements
increases on quantity and quality on ground software systems, envisaging the optimization the
project’s timeline and resources. This concern is being reflected in the way the spacecraft simulation
architectures are designed and in the process of building simulations as the project evolves.

To achieve such degree of reusability, it is recommended that the facility design takes into account
the adoption of standard interfaces and best practices for generic software development, like generic
programming techniques, meta-modelling methods or component and model-driven architecture
approaches. In this direction, led by the European Space Agency (ESA), significant effort has
also been conducted in European community for harmonising the development and integration of
simulation tools into the engineering activities. As a result, several technical memorandums have
been published in the last years to guide the construction of infrastructures, development tools and
simulation models.

One of these documents is the ECSS-E-TM-10-21A [11], which describes a set of eight types of
simulation facilities that can be used to support space engineering activities performed along the
mission life time:
• System Concept Simulator (SCS): supports the execution of trade-off studies and the defi-

nition of mission concept;
• Mission Performance Simulator (MPS): assesses the system interfaces and end-to-end

design trade-off;
• Functional Engineering Simulator (FES): assists the system requirements consolidation,

supporting the functional design and algorithms validation;
• Functional Validation Testbench (FVT): performs performance analysis and validation of

critical elements for the Preliminary Design Review;
• Software Validation Facility (SVF): provides a test bench for on-board software develop-

ment, test, verification and validation, which can be performed in closed-loop or open-loop
modes and includes a hardware-in-the-loop;
• Spacecraft AIV Simulator (AIV): supports system qualification and acceptance during

assembly, integration and test campaigns with incremental spacecraft verification & validation;
• Ground System Test Simulator (GST): provides a testing environment for the mission

control and ground systems; and
• Training, Operations and Maintenance Simulator (TOM): performs simulation for mis-

sion control team training, validation of operation procedures, such as on-board software
patch upload and anomaly investigations.

These environments have many elements in common, which brings the chance for hardware and
software reusing and designing of a modular architecture. In addition to that, special attention is
given for enhance model reuse along facilities, which can be particularly challenging when different
simulation infrastructures are used and multiple scenario reconfiguration may be required. To
address this point, the Simulation Modelling Platform (SMP2) standard formalizes all the software
interfaces between the component models and the simulation kernel [12]. Moreover, it provides a
platform independent definition language to describe the simulation models, their assemblies and

4



Figure 2: Model development process adopted for comparing output from MATLAB and C++
implementations.

scheduling, and model packages.

By using such standard, independent groups can work in parallel during the model development,
since all simulation components will comply with the same interface. This is especially interesting
for suppliers who can deliver both flight equipment and respective simulation model which will be
later integrated with other models. This approach enhances the reliability of the models and reduces
integration issues, since all models must implement the same communication interface. Aiming the
production of highly flexible infrastructures and envisaging software reuse, development of this
work have been based on concepts presented in this section.

3. Model Development Process

At present, the main applications of the models that are being developed in our projects consist in
building a FES and a SVF. For this reason, MATLAB and C++ are the target languages in which
the models should be available in the repository, since the former provides a rapid prototyping and
the latter is suitable for real-time applications.

The general process is depicted in Figure 2. It starts with the mathematical modelling of devices or
physical phenomena in MATLAB and then both documentation and m-files serves as a reference
for model translation into C++. In this conversion step an automated code generation tool could
be adopted, but usually the generated code lacks on readability or the tool is too expensive for the
scope of our project. Thus, a semi-automated process was adopted, where the MATLAB code is
codified in C++ using a common algebraic library and then wrapped by a standardised interface.

In the first step of C++ implementation, the algebraic library plays an important role for converting
m-files, since it provides a set of matrix, vector and quaternion operations and makes the task less
cumbersome (see subsection 3.1.). Usually the codification results in a single C++ class with few
methods for initialising the model and computing its outputs. For improving the quality in the
implementation, the programmer must also follow a coding standards document with programming
style definitions and patterns for the class structures.

5



Before the C++ model can be made available in the repository, its interface must comply with
standards adopted by the simulation infrastructure. In this step, the simulation engineer designs
the model faade and creates a formal definition in catalogue, thereby a C++ wrapper can be
automatically generated for the model. This process will be further detailed in the subsection 3.3..

In the end of the process, a formal verification and validation procedure is executed to check if the
models are properly implemented or not. The same test cases are applied to the MATLAB and C++
components and then the results are automatically compared to ensure that they are compatible. Due
to particularities of the computational platforms, it is not possible to obtain the very same results
(i.e. bit-to-bit) from both implementations. Still, it is found that to minimize these differences a
worthy strategy is to base all the codification on the same reference of constants. This approach has
contributed to keep the variances in double precision variables smaller than 10−6.

Our approach consists in guiding the development of models in a component-based way, wherein
each simulation model has well-defined services to interface with other models and with simulation
kernel. Once available in a proper catalogue, an ensemble of simulation component can be connected
to run in a common infrastructure and to answer the needs of a given simulation scenario.

In the following subsections, details of the algebraic library and the simulation environment are
presented.

3.1. Algebraic library

The algebraic library is a fundamental set of C++ components to perform operations with matrices,
vectors and quaternions. It provides a common and reliable basis for modelling AOCS elements,
providing more than hundred services for converting MATLAB script, such as multiplication,
addition, subtraction, rotations, length, inversion, dot and cross product of vectors, and representation
conversion (i.e. matrix to quaternion and vice-versa).

By adopting a Standard Template Library design, any size of bi-dimensional matrices and vectors
may be declared. Nevertheless, a specialised inline implementation is provided for matrices and
vectors of size 3, thus optimizing the computational performance in these usual cases.

Thanks to the operator overloading feature available in C++, the conversion of m-files is straightfor-
ward and the readability of the code is kept extremely high. The Table 1 gives a list of implemented
operators, which makes the syntaxes of both codes very similar. An example of equivalent code
written in MATLAB and then converted to C++ can be compared in the Table 2.

3.2. Simulation Environment Context

The construction of Software Validation Facility is based on generic programming and metadata
techniques to ensure highly software flexibility and promote model reuse. It is built on a simulation
framework, named SimuBox, which provides a Simulation Development Kit (SDK) with a set of
C++ libraries, editing tools and simulator kernel to support the design and codification of models
and simulation applications (Figure 3).

6



Table 1: C++ operator overloading converting implemented in the algebraic library.

Op.
Class Operand

Description
M V Q M V Q S

() 3 Read/write access to an element of matrix.
[] 3 3 Read/write access to an element of the vec-

tor or quaternion.
= 3 3 3 3 3 Assignment.
==,! = 3 3 3 3 3 Comparison.
+,+= 3 3 3 3 3 3 3 Addition.
−,−= 3 3 3 3 3 3 3 Subtraction.
− 3 3 Unary subtraction.
∗,∗= 3 3 3 3 3 3 3 Scalar product, matrix multiplication or

dot product.
/,/= 3 3 3 3 Division by scalar.
∧, ∧= 3 3 Cross product.

M=Matrix; V=Vector; Q=Quaternion; S=Scalar.

Table 2: Illustration of code readability when converting MATLAB script to C++ using the operator
overloading functions.

Variables
Matrix < 3,3 > I;
Vector < 3 > w,hm, tw, torq;

C++ w = I.inv()∗ (((I ∗w+hm)∧w)+ tw+ torq);
MATLAB w = inv(I)∗ ((cross((I ∗w+hm),w)+ tw+ torq));

Figure 3: SimuBox’s Simulation Development Kit elements.

7



After the ECSS-E-TM-40-07 publication, the project has been motivated to support SMP2 models,
in order to assess the potentials of the standard and to define a flexible interface between models
and simulation kernel. These interfaces are defined and implemented in the provided Libraries of
the Figure 3.

The Simulator Kernel is delivered as a runtime component compliant with the metadata and model
packages produced with the editor and SDK libraries. During execution time, configuration files are
used to load the binary packages and instantiate the models into the environment.

The editing tools automate the generation of wrapper code for the models and facilitate their
configuration in various simulation scenarios. By designing with a diagrammatical tool, the
simulation engineer describes the types of models, their instantiations, interconnections, and
scheduling for a given application. Later on, the diagrams, which adopt a formal semantic, are
exported to a set of metadata artefacts, in accordance to the SMP2 meta-model scheme (i.e. following
the XML format for the catalogues, assemblies, packages, and schedules). Moreover, for each model
package, corresponding C++ code is produced to enable classes factoring and deployment into
dynamic libraries. After these artefacts and binary packages are made available via the Configuration
database and Model Repository.

3.3. Simulation Editor

The generation of the wrapper code for the C++ models starts with the definition of their SMP2
interfaces in a model catalogue. Since SMP2 adopts concepts from object oriented programming, it
is easy to adapt a Class Diagram from Unified Modeling Language (UML) for defining a catalogue.
This method is used in the construction of the SDK Editor, which defines a set of stereotypes in the
Enterprise Architect modelling tool to allow model definition with a class dialect.

An example of such approach is given in Figure 4-a, in which a Bapta Controller Model is described
with a class diagram. Using customized stereotypes, parameters can be modelled as class attributes,
entry points and operations as methods, and the input and output parameters as ports. Specialization,
aggregation and composition connections can also be used to express model relations. In a similar
strategy, Object Diagram can be adopted for defining the run-time instances of simulation models
and their connections. In this direction, the Figure 4-b shows and example of assembly three models
using field links. Based on these representations, a plugin can be used in the editor to automatically
generate the wrapper code and assembly description files for configuration simulation scenarios.

4. The Accredited Model Repository

Currently, the implementation of this model repository is based on Apache Subversion, a free
system for software versioning and revision control. In order to use this application as an accredited
model repository, special precautions have to be taken when adding new models. In our approach, a
process for quality assurance is defined taking the model bundle as input and generating a certificate
and a unique identifier as output.

The certification is done based on the completion of the bundle and ensures that the documentation

8



(a) Definition of model (b) Assembly of models
Figure 4: Representation of model catalogues and assembly using UML class and object diagrams.

and source code have no discrepancies found and all test cases have been executed. The source code
must comply with the coding standard and both MATLAB and C++ implementation must adopt the
same constant values.

A rigorous control is established to keep track of model versions and when an error is notified a
report describing the bug and possible solutions is attached to the model package.

4.1. Bundle

The model bundle contains all the source code of the model package and additional information for
describing the model:
• Source code: header, implementation or script files and makefiles needed to build the binary

package;
• Configuration files: any data file used to configure the model in execution time;
• Catalogue: a XMI file containing a UML class diagram that describes the SMP2 model;
• Manifest: a formal description of bundle content (see section 4.2.);
• Certificate: a document assuring that the model has been formally verified;
• Design Documentation: a set of documents that describes the mathematical modelling of the

simulation component, requirements, and design.
• Test harness: set of data used to test the model, additional test bench elements for executing

the test suite and related documentation.

In addition, each model bundle is accompanied by a MD5 file, i.e. a hash value used to verify data
integrity of the package.

4.2. Manifest

The manifest is a metadata file describing the contents of the bundle, which should clearly present
the model, its interfaces, dependences and usage context. In the Table 3, a complete list of its fields
is provided.

9



Table 3: Content of bundle manifest.
Field Description

Identification section
Identifier Unique identifier
Name Name of the model. The name have not to be unique, but all models

assembled in a given simulation must be unique.
Purpose A brief description of the model.
Version Implementation version of the model.
Author The author and reference of mathematical model.
Programmer The responsible for the codification.
Date Date of implementation.
License End user agreement, if applicable.

Platform information section
Language Programming language and version.
IDE Name and version of Development Environment used to generate the

model.
Wrapper Type and version of wrapper, e.g. SMP2.

Interface and configuration section
Inputs A list of models inputs, which can be input operation arguments or input

parameters. The limits, units and adopted reference frames must be
specified for each field.

Outputs A list of models outputs, which can be output operation arguments or
output parameters. The limits, units and adopted reference frames must
be specified for each field.

Paramerters A list of models internal parameters. The limits, units and adopted
reference frames must be specified for each field.

External Dep. All configuration data available from external sources, e.g. files or
environmental configurations.

Dependencies section
Libraries External library usage in compilation time (e.g. matrix operations).
Models A list of mandatory models and their identifiers that must be present in

the simulation.
Providers A list of optional models and their identifiers that could be attached

to the input fields of the current model. Differently from the Models
dependencies, an input field can be disconnected on run-time.

Constraints & Limitations section
Constraints Operation limits and validity range of model application.
Bugs Known bugs of the model.

10



Table 4: Sensor Models.
Model Inputs Outputs Parameters
Solar sensor sun vector, albedo vec-

tor
current minimum elevation

mask
Solar sensor
(Amz)

sun vector, albedo vec-
tor, eclipse flag

current shadow masks.

Gyros angular velocity vector,
acceleration vector

angular velocity

noise and sensor posi-
tion matrix

Gyros (Amz) angular velocity vec-
tor, increment angle and
step

increment angle

Accelerometer satellite position vector,
angular velocity vector,
date, step

acceleration vector

Magnetometer satellite position vector,
date

magnetic field vector

Magnetometer
(Amz)

satellite position vector,
date

digital sensor measure

Star Tracker Sen-
sor

magnitude of visible
stars, FOV, noise

attitude matrix

Star Tracker Sen-
sor (Amz)

satellite state vector,
satellite position vector,
sun vector

satellite state vector

4.3. Currently Available Models

Currently, the repository contains models of sensors, actuators, AOCS, environments, orbit, and
attitude dynamics. Generic models and specific ones for the Amaznia-1 satellite are implemented in
MATLAB and C++, as described in Tables 4 and 5.

In addition to models of sensors and actuators described in the above tables, the following models
also have implemented:

1. Atmospheric drag;
2. Gravitational Field;
3. Moon Position;
4. Geomagnetic Field;
5. Sun Position;
6. Eclipse;
7. Solar Radiation Pressure;
8. Simple AOCS model;
9. Albedo model;

10. Date and time conversion models; and
11. Orbit and Attitude dynamics propagation.

11



Table 5: Actuator Models.
Model Inputs Outputs Parameters
Reaction wheel motor paramters and

current
torque vector and angu-
lar moment vector

noise and position ma-
trix

Reaction wheel
(Amz)

desired torque, angular
velocity of motor, time
and step

torque, angular moment
vector, angular velocity
of motor

noise and control param-
eters

Coil Torque tension applied in coil,
satellite position vector
and date

torque noise and position ma-
trix

Coil Torque
(Amz)

current, magnetic field
vector

Thruster force
Thruster (Amz) pressure in tank, open-

ing valves times
torque, impulse noise and position of

thrusters

4.4. Repository Usage

The usage of models is quite simple and requires a few steps to integrate them in an existing
simulation environment.

Before using a model from the repository, the user must register to get access to the Subversion and
make sure that the proper development environment is installed in the target computer. It is also
important to ensure that he/she agrees with the user license.

The integration of MATLAB script does not require further configuration, unless external depen-
dences exists.

The C++ models, even when accompanied by a SMP2 wrapper can be used as a regular class, but
their integration in the infrastructure with a formal assembly is encouraged. By importing the XMI
file containing the catalogue into the UML editor, it will be possible to create new instances of the
model and connecting it to other models in an assembly definition. After the entry points of the
model have been scheduled and the binary package built, the model can be dynamically loaded in a
running simulation.

5. Case Studies

In this section, the flexibility on reconfiguring repository models is demonstrated in various sim-
ulation scenarios. The first set of simulations, in subsection 5.1., is applied to the Amazonia-1
mission to analyse the placement of coarse solar sensor and validate the on-board algorithm for sun
determination. The second subsection 5.2. a study for estimating the propellant consumption in
the SabiaMar spacecraft lifetime, a future mission to be based on MMP. Finally, the subsection 5.3.
describes a study for orbit decay and nadir pointing, based on models from the repository.

12



(a) Definition of shadow mask
(b) 3D scene with CSS6

Figure 5: Definition of Coarse Solar Sensor’s shadow mask caused by satellite structure interference.

5.1. Coarse Solar Sensors of Amazonia-1

In Amazonia-1 mission, one method for determining the Sun direction consist on processing the
data from eight Coarse Solar Sensors (CSS), which are photovoltaic cells that generate an electrical
current accordingly to the light incident upon them. The sensors are carefully placed so at least
two cells receive Sun light, regardless the direction it comes from. Their positions can be roughly
described as the eight vertices of a rectangular parallelepiped formed by two cubes, one representing
the platform structure and other the payload. The boresight axis of each sensor is aligned with the
cube’s diagonal (i.e. the diagonal formed with their opposite vertex).

The CSS model developed in work is very simple and produces an output current based on the angle
of light sources (i.e. Sun or Earth’s Albedo) incident over sensors plane. Moreover, shadows on the
sensors produced by mechanical interference from other structural elements (e.g. antennas or solar
array generators) have been also modelled as masks on the sensors field of view. For the sake of
simplification, these shadow masks are considered to be static and have been pre-computed in a
CAD tool. Thus, the shadows caused by the solar array generators are modelled as the worst case of
their orientation, i.e. as if the interference were done by a cylindrical object. In the Figure 5, for
instance, the shadow mask for the CSS 6 and a corresponding 3D representation are shown

Following the procedure described in section 3., two components of the CSS Model are configured
in the repository. The MATLAB implementation is provided in a single m-file and contains 116
logical Lines of Code (LOC) (i.e. ignoring commented lines and non-executable code). The C++
implementation consists in a composition of three classes of models, as illustrated in the UML
class diagram from the Figure 6. The component interface is handled by the CSSAsb class that is
composed of multiple CSS models, which in their turn can also be composed of several models for
computing shadows. This generic design, in addition to the adoption of algebraic library, led to a
very lean implementation with only 60 logical LOC. In total, the component source code has 389
logical LOC, including the SMP2 wrapper auto generated from the model catalogue.

13



Figure 6: Simulation package modelling for the Coarse Solar Sensor model.

5.1.1. Coverage Analysis of Coarse Solar Sensors

The main goal of the first simulation using the CSS model is provide a coverage mapping of the
sensors with their combined field of view. Due to their geometrical arrangement, four sensors
should always see the Sun at the same time, if there were not shadows produced over them. Hence,
a better study is necessary to understand the impact of the shadow masks on the sky coverage of the
sensors. A secondary objective of this simulation is to provide insights of the sensors output as a
function of the Sun vector input and support the mathematical models validation.

For conducting these analyses, the CSS implementation in MATLAB is reused from the repository
and a new script is written for describing the simulation scenario and executing the simulation. In
addition, the auxiliary script automatically generates a set of Sun vector inputs for stimulating the
CSS models, varying the light direction for the 4πrad. Including plot commands, the total number
of logical LOC in the auxiliary script is 31, which represents about 21% of the simulation code.

The result of the study is summarized in the Figure 7 and shows the number of solar sensors
that receive direct light from the Sun at the same time, considering different direction all around
the spacecraft. It can be observed that in most cases, four sensors receive direct light and most
shadows are caused by the solar array generators (Figure 7-A). The structure of launcher adapter
also produces an important shadow (Figure 7-B) and a smaller region of the sky is affected by
the presence of payloads antenna (Figure 7-C). In the worst case, two sensors are obscured by a
combination of shadows.

14



Figure 7: Coverage mapping of eight Coarse Solar Sensors considering their shadow masks.

5.1.2. Verification of Sun Determination Algorithm

The second use case of CSS Model aims to validate a Sun Determination Algorithm that is embedded
in the on-board computer. In this scenario, the C++ component is reused from the repository and
connected with the flight software. The model assembly is depicted in Figure 8, where in the
configuration parameters for the scenario can be defined for each model instantiation.

A new model named SunDeterminationModel implements the embedded algorithm, which has a
total of 138 logical LOC (from those 84 is the wrapper source code). Using a customized graphical
user interface (Figure 9), the simulation conductor is able then to inject arbitrary Sun vectors to the
CCS model and compare it with the vector computed on-board.

5.1.3. Verification of Sun Determination Algorithm with orbit and attitude dynamics

In this third presented simulation, the behaviour of CSS Model and the Sun Determination Algorithm
is assessed in a more complete scenario, including additional models for the repository for simulating
the spacecraft orbit and attitude dynamics, the Sun position and irradiance, and eclipse (i.e. caused
by Earth blocking the Sun as viewed from spacecraft). In this scenario, the simulation engineer
can guide the spacecraft attitude and orbital position and analyse the effect on sun determination
algorithm. The model instantiation and connection for this scenario is described by the assembly in
the Figure 10, in which 569 new LOC are added from the repository, achieving 87% of reused code.

15



Figure 8: Model assembly specified to connect the Sun Determination Algorithm model with the
eight Coarse Solar Sensors.

Figure 9: Graphical Interface used by the simulation engineer to validate the Sun Determination
algorithm.

16



Figure 10: Model assembly for configuring the verification scenario of Sun Determination algorithm
with orbital and attitude dynamics models.

17



Figure 11: Fuel Budget simulation

5.2. Estimation fo Propellant Consumption for the SabiaMar mission

The simulation of the fuel consumption of the SabiaMar satellite was performed using the parameters
from satellite and environment models of atmospheric drag and solar activity. In total, the simulation
is performed with 119 LOC of MATLAB scripts, from which 41 are reused from the repository.

In this analysis it is possible to verify whether the amount of propellant is sufficient for the lifetime
of the mission. The Figure 11 shows a result example from this simulation.

5.3. Orbital Decay Estimation and Nadir Pointing Analysis

Another activity performed that did reuse models of the repository, was the orbital decay of a
satellite study and the control system with the AOCS pointing to nadir using reaction wheels.

The Figures 12 and 13 show a result example for this simulation, in which all models of environment,
attitude and orbit propagator, reaction wheel actuator and the star tracker sensor was reused from
the repository.

6. Conclusions and Future Works

In this work, an initiative for enhancing the level of software reusability in Spacecraft Dynamics
Simulators has been presented in the context of Amaznia-1 mission. Along with the establishment
of guidelines for building flexible simulation facilities, an Accredited Model Repository (AMoRe)
has been created to configure simulation models and manage their reuse in different use cases.

The assessed level of software reuse encourages the adoption of the methodology for future projects
of SDS at INPE. The case studies has demonstrated the benefits for configuring incremental

18



Figure 12: Attitude error

Figure 13: Apogee Altitude variation

19



simulation scenarios from existing models, wherein the proportion of additional code required
for test harness or customization is minimal in terms of LOC. Further, the model distribution in
standardised packets has facilitated the access to simulation artefacts in a controlled way which may
encourages new users to download models and to contribute with the repositorys growth.

In addition to that, the adoption of SMP2 concept for building the simulation infrastructure has
brought significant flexibility for reusing models and rapidly reconfiguring then for various scenarios.
Regarding the process for building simulation models, the algebraic library has proven to be a
fundamental component for increasing code readability and avoid programming errors. In this step,
the adoption of a unique reference of constants has contributed for reducing output discrepancies
between MATLAB and C++ implementations.

Furthermore, the auto-generation of wrapper code for C++ models has played a crucial role on
alleviating the programming tasks and encouraging the insertion of new models into the repository.
In this direction, the development of additional automating tools will be investigated in future
works to further reduce the implementation effort. A critical point in this process would be the
automatic conversion of MATLAB script to C++ code, taking as example the Model-Oriented
Software Automatic Interface Converter (MOSAIC) utility [13].

Another topic for improvement in future works is the construction of a web interface for browsing
the repository, where the users may search for models in a database. In this system, the usage
feedback could also be registered, based on lessons learned from real missions.

Finally, a key point for the repository realisation is to promote users perception on the reliability
of offed models, increasing the availability of information on model accreditation processes. This
is believed to be one of the most important barriers on model reuse and changing this organiza-
tional culture would definitely be a good opportunity to configure legacy models and improve the
knowledge management in simulation projects.

7. Acknowledgment

The authors gratefully acknowledge the support of this work by Brazilian ”National Council for
Scientific and Technological Development (CNPq), under Grant No. 560116/2010-1.

8. References

[1] John, R. H. S., Moorman, G. J., and Brown, B. W. “Real-Time Simulation for Space Station.”
Proceedings of the IEEE, Vol. 75, No. 3, pp. 383–398, 1987.

[2] Agre, J. R., Clarke, J. A., Atkinson, M. W., and Shahnawaz, I. H. “Computer simulation of
communications on the space station data management system.” pp. 809–818. Conference on
Winter simulation, Atlanta, 1987.

[3] NASA. “Space Station Simulation Computer System (SCS) study for NASA/MSFC: overview
and summary.” Tech. Rep. TRW-SCS-89-T7, Huntsville, 1989. Technical Report.

20



[4] Liceaga, C. A. “SPASIM: A Spacecraft Simulator.” Tech. Rep. NASA–97–isuac–cal, Hampton,
1997. Technical Report.

[5] Betts, B. J., Mundo, R. D., Elcott, S., McIntosh, D., Niehaus, B., Papasin, R., and Mah, R. W.
“A Data Management System for International Space Station Simulation Tools.” pp. 500–504.
IASTED International Conference Applied Simulation and Modeling, Crete, 2002.

[6] Papasin, R., Betts, B. J., Mundo, R. D., Guerrero, M., Mah, R. W., McIntosh, D. M., and
Wilson, E. “Intelligent Virtual Station.” International Symposium on Artificial Intelligence,
Robotics and Automation in Space, 2003.

[7] Freund, E., Rossmann, J., and Tumer, C. “Application of Robotic Mechanisms to Simulation of
the International Space Station.” International Conference on Intelligent Robots and Systems,
2003.

[8] Pisanich, G., Plice, L., Neukom, C., Flückiger, L., and Wagner, M. “Mission Simulation
Facility: Simulation Support for Autonomy Development.” AIAA Aerospace Sciences
Conference, Reno, 2004.

[9] Nesnas, I. “CLARAty: A Collaborative Software for Advancing Robotic Technologies.”
p. 7. NASA Science and Technology Conference, University of Maryland University College,
Adelphi, 2007.

[10] Hammers, S. R. “Virtual Satellite.” NASA Tech Briefs, p. 1, 2008.

[11] ECSS. “Space engineering: System modelling and simulation.” Tech. Rep. ECSS-E-TM-10-
21a, Noordwijk, The Netherlands, April 2010. Technical Memorandum.

[12] ECSS. “Space engineering: Simulation modelling platform - Volume 1.” Tech. Rep. ECSS-E-
TM-40-07, Noordwijk, The Netherlands, January 2011. Technical Memorandum.

[13] Lammen, W., Nelisse, A., and ten Dam, A. “MOSAIC: Automated Model Transfer in
Simulator Development.” Workshop on Simulation for European Space Programmes (SESP),
Noordwijk, 2002.

21


	Introduction
	Spacecraft Simulation
	Model Development Process
	Algebraic library
	Simulation Environment Context
	Simulation Editor

	The Accredited Model Repository
	Bundle
	Manifest
	Currently Available Models
	Repository Usage

	Case Studies
	Coarse Solar Sensors of Amazonia-1
	Coverage Analysis of Coarse Solar Sensors
	Verification of Sun Determination Algorithm
	Verification of Sun Determination Algorithm with orbit and attitude dynamics

	Estimation fo Propellant Consumption for the SabiaMar mission
	Orbital Decay Estimation and Nadir Pointing Analysis

	Conclusions and Future Works
	Acknowledgment
	References

