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Abstract: Reconfiguration maneuvers and maintenance strategies for formation-flying are inves-
tigated in this paper, where femto-spacecraft with high area-to-mass ratio and small length-scale
are considered. Assuming the exact J2 nonlinear relative dynamics, an optimal control problem
is formulated to accomplish the maneuvers. A continuous control acceleration is applied to the
system dynamics via a propellant-free approach, which exploits differential solar radiation pres-
sure by means of electrochromic coating. Different control authorities are considered: femto-
spacecraft with full and limited control capability are investigated. Thanks to the advances in
miniaturised technology, a great number of electromechanical devices can be manufactured and
deployed at low cost with active sensors on-board. A new class of space missions is enabled,
based on swarms of micro-spacecraft with sensing, computing, bi-directional communicating and
micro-power sources.
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1. Introduction

The recent developments in spacecraft design exploiting miniaturised electromechanical systems
with sensing, computing, bi-directional communicating and micro-power functions have enabled
a new class of low-cost, low-weight micro-scale spacecraft suitable for use in swarm applications.
Current concepts for functional devices in space have been designed by exploiting existing capabil-
ity, such as satellite-on-a-chip [1]. Distributed devices for Earth observation and communication,
autonomous on-orbit self-assembly, diagnostic or environmental detection in the proximity of a
large satellite are among the prospective missions that may be enabled. The concept of a swarm of
separated elements cooperating coherently enables, for example, the implementation of extremely
large aperture radio frequency or optical antennae. These elements would be free-flying in space,
either controlled by active or natural forces for each element to stay within a prescribed volume.

The last few decades have seen a growing interest in space missions for remote sensing of the
Earth. Numerous missions carrying active and passive sensors for military and civil applications
have been implemented. Different kinds of sensors are currently available to obtain a complete
set of information useful for a plethora of applications (i.e., atmospheric gas monitoring, landslide
control, polar ice monitoring, harbour monitoring, etc.). However, due to the high overall system
complexity of space missions, the raw data products can only be obtained at a relatively high cost.
This reduces the diffusion and the exploitation of such raw data, especially for civil applications,
where Earth-based solutions often result to be cheaper (i.e., terrestrial monitoring of the environ-
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ment). The aim of this paper is to propose a novel concept for cost effective space missions in
order to make remote sensed data accessible to a broader user community.

Reconfiguration maneuvers for relative motion are investigated in this work, assuming High Area-
to-Masso Ratio (HAMR) femto-spacecraft. Considering the exact J2 nonlinear relative dynamics,
an optimal control problem is formulated to accomplish the maneuvers. A continuous control
acceleration is applied to the system orbital- and attitude- dynamics via a propellant-free approach,
which exploits differential solar radiation pressure by means of electrochromic coating. Thanks
to the advances in miniaturised technology, a great number of electromechanical devices can be
manufactured and deployed at low cost with active sensors on-board.

The exploitation of orbital dynamics at small-length scale and so high area-to-mass ratio requires
entirely new techniques for modelling and relative motion control. Solar radiation pressure and
aerodynamic drag may become dominant with respect to the Earth’s gravity [2]. Assuming the
femto-devices are coated with an electrochromic material, the relative motion within the swarm is
continuously controlled via the modulation of differential solar radiation pressure dcrasrp: the op-
tical properties of the elements change when an electrical current is applied [3]. A propellant-free
control method is developed to design and maintain the relative orbits of the swarm. The dynamics
is initially based on the linearised formulation of the relative motion of - for a sake of clarity - only
two femto-spacecraft flying in close proximity, assuming they are in low, circular orbits around a
spherical Earth. Then the dynamical model is extended to include the perturbation caused by the
Earth’s oblateness [4] and to consider multiple spacecraft; therefore, the exact nonlinear J2 relative
dynamics for for each spacecraft is assumed. Moreover, femto-spacecraft with full and limited
control capability are investigated.

This paper is divided into five main Sections: Linear Dynamics, Nonlinear Dynamics, Controlled
Dynamics, Optimal Control Problem and Test Cases.

In Section Linear Dynamics, the linearized relative dynamics of the high area-to-mass ratio and
small length scale spacecraft is introduced. Then the exact nonlinear dynamics including the Earth
oblateness is discussed in Section Nonlinear Dynamics. This is followed by Section Controlled
Dynamics, where the control capability of the swarm of femto-spacecraft are described. Later on,
in Section Optimal Control Problem, the optimization formalism is introduced, while in Section
Test Cases, the test cases are presented. At the end, in Conclusion, the final remarks are discussed.

2. Linear Dynamics

This section introduces the basics to describe the barycentric motion of multiple micro-spacecraft.
For a sake of clarity in the following formulation, the relative motion dynamics of two femto-
spacecraft in close proximity, named chief and deputy respectively, traveling around a spherical
Earth is considered. It is assumed that the chief flies on a circular low-Earth orbit.

Assuming that the orbital radius of the chief spacecraft is much greater than the relative distance
between the spacecraft and considering the Satellite Coordinate System (RSW), the linearized
relative motion dynamics can be written in the form of the Clohessy-Wiltshire or Hill’s (CWH)
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(a) Projected Circular Orbit (PCO) in the x− y plane
view. The parameter αi stands for the position of the
deputy spacecraft along the periodic orbit, while the pa-
rameter ψi stands for the in-plane Sun-direction with re-
spect to the chief spacecraft reference frame.

(b) Projected Circular Orbit (PCO) in the y− z plane
view. The parameter βi stands for the position of the
deputy spacecraft along the periodic orbit, while the pa-
rameter φ stands for the out-of-plane Sun-direction with
respect to the chief spacecraft reference frame.

Figure 1. Relative motion parameters and Sun-direction geometry.

equations [5]:
ẍ−2ωnẏ−3ω2

n x = ax

ÿ+2ωnẋ = ay

z̈+ω2
n z = az

(1)

The system of equations written above, when the accelerations ax = ay = az = 0, has an analytic
solution of the following form:

x(t) = 4xi +
2ẏi

ωn
+

ẋi

ωn
sin(ωnt)−

(
3xi +

2ẏi

ωn

)
cos(ωnt)

y(t) = yi +
2ẋi

ωn
+

2ẋi

ωn
cos(ωnt)+

(
6xi +

4ẏi

ωn

)
sin(ωnt)− (6ωnxi +3ẏi)t

z(t) = zi cos(ωnt)+
żi

ωn
sin(ωnt)

ẋ(t) =
ẋi

ωn
ωn cos(ωnt)+

(
3xi +

2ẏi

ωn

)
ωn sin(ωnt)

ẏ(t) = 6ωnxi +3ẏi−2ẋi sin(ωnt)+(6ωnxi +4ẏi)cos(ωnt)

ż(t) = −ziωn sin(ωnt)+ żiωn cos(ωnt)

(2)

with given initial conditions (xi,yi,zi,ẋi,ẏi,żi).

Being interested in bounded motion, the initial conditions are assumed such that the secular term
vanishes (i.e., the coefficient multiplying t). Recalling that orbits are circular, the angular rate ωn
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(a) Relative motion configuration, natural dynamics
(General Circular Orbit (GCO)).

(b) Relative coordinates evolution, natural dynamics
(General Circular Orbit (GCO)).

Figure 2. Formation-flying relative CWH dynamics.

is simply the satellite’s mean motion:

ωn =

√
µ

r3
chie f

(3)

where rchie f is the radial distance of the chief spacecraft, assuming an orbital altitude of 775km,
and µ is the Earth’s gravitational constant. The nominal orbital period is therefore Tn = 6020.7s.

The periodic analytic solutions represented by Eqs. 2 can be re-arranged in a compact fashion [6],
and a sample General Circular Orbit (GCO) is presented in Fig. 2:

x(t)

y(t)

z(t)

ẋ(t)

ẏ(t)

ż(t)


=



ai/2 sin(ωnt +αi)

ai cos(ωnt +αi)+ ci

bi sin(ωnt +βi)

ai/2 ωn cos(ωnt +αi)

−ai ωn sin(ωnt +αi)

bi ωn cos(ωnt +βi)


(4)

Depending upon the choice of free-parameters ai, bi, ci, αi and βi, relative orbits of various shapes
and sizes can be obtained:

- Projected Circular Orbit (PCO) in the y− z plane (see Fig. 1(b));
- General Circular Orbit (GCO) in three-dimensions;
- Leader Follower Configuration (LFC);
- Ecliptic Planar Orbit (EPO) in the x− y plane.

The initial parameter ai stands for the in-plane x− y orbit amplitude, bi the initial out-of-plane
z orbit amplitude, while ci describes the initial location of the center of the formation along the
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y axis. Finally, the parameter αi describes the initial position of the deputy spacecraft along the
periodic orbit around the chief in the x− y plane (see Fig. 1(a)), while the parameter βi describes
the initial out of plane position of the deputy spacecraft (see Fig. 1(b)).

3. Nonlinear Dynamics

The purely central force fieldone of the underlying assumptions of Eqs. 1 makes the analytic so-
lution Eqs. 2 unsuitable to simulate more realistic scenarios. The second degree zonal spherical
harmonic of the Earth J2 = 1082× 10−6, produces the primary disturbing potential due to the
Earth’s oblateness.

The J2 generated perturbations include secular, long-periodic, and short-periodic components,
which consequently will disturb the satellite orbits, for instance, precession of ascending node
Ω̇, and drifts in argument of perigee ω̇ and the mean anomaly δṀ.

Therefore, a more accurate dynamical model is assumed in this study, which includes the J2 per-
turbation [4]. Assuming the Earth Centered Inertial (ECI) coordinate frame, the position, velocity
and angular momentum vectors of the chief spacecraft are r, ṙ and h = r× ṙ respectively (with
r = |r| and h = |h|). If the spherical gravity and the J2 gravity of the Earth are considered, the
motion of the chief satellite can be described by the following set of differential equations:

ṙ = vx

v̇x = −µ/r2 +h2/r3− kJ2/r4(1−3s2
i s2

θ
)

ḣ = −(kJ2s2
i s2θ )/r3

θ̇ = h/r2 +(2kJ2c2
i c2

θ
)

i̇ = −(kJ2s2is2θ )/(2hr3)

Ω̇ = −(2kJ2cis2
θ
)/(hr3)

(5)

where, from now onwards, s◦= sin(◦), c◦= cos(◦); finally, kJ2 = 3J2µR2
e/2 and Re = 6378.137km

is the Earth’s equatorial radius.

The RSW reference frame is attached on the chief spacecraft, and its angular velocities can be
expressed as function of the Eulerian angles (Ω, i, θ ):

ω̇x = i̇cθ + Ω̇sθ si

ω̇y = −i̇sθ + Ω̇cθ si = 0

ω̇z = θ̇ + Ω̇ci

(6)

The associated accelerations are

α̇x = −(kJ2s2icθ )/r5 +(3vxkJ2s2isθ )/(r4h)− (8k2
J2

s3
i cis2

θ
cθ )/(r6h2)

α̇z = (2vxh)/r3− (kJ2s2
i s2θ )/r5

(7)
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After some manipulations [4], the exact nonlinear relative dynamics of the deputy spacecraft in the
RSW frame, considering the spherical gravity and the J2 gravity of the Earth, becomes:

ẍ = 2ẏωz− x(η2
d −ω2

z )+ yαz− zωxωz− (ξd−ξ )sisθ − r(η2
d −η2)

ÿ = −2ẋωz +2żωx− xαz− y(η2
d −ω2

z −ω2
x )+ zαx− (ξd−ξ )sicθ

z̈ = −2ẏωx− xωxωz− yαx− z(η2
d −ω2

x )− (ξd−ξ )ci

(8)

The angular velocities (η ,ηd) read:

η2 = µ/r3 + kJ2/r5− (5kJ2s2
i s2

θ
)/r5

η2
d = µ/r3

d + kJ2/r5
d− (5kJ2r2

dZ)/r7
d

(9)

and the accelerations (ξ ,ξd) are:

ξ = (2kJ2sisθ )/r4

ξd = (2kJ2rdZ)/r5
d

(10)

where rd is the geocentric distance of the deputy and rdZ is the projection of rd on the Z axis of the
ECI frame.

As for the Sun-direction ŝ in the RSW frame, it is defined by two angles: ψ , that stands for the in-
plane direction, and φ , that stands for the out-of-plane direction, with respect to the chief spacecraft
reference frame (see Fig. 1). In this analysis, the direction of the Sun is governed by the following
dynamics:

ψ̇ = ω̇z

φ̇ = 0
(11)

4. Controlled Dynamics

In this work an x− y− z spatial configuration has been considered, and differential solar radiation
pressure has been investigated as an active way to control the system. The control accelerations, in
a polar parametrization,are defined as:

ax = +σεdcrasrpcγcδ

ay = −σεdcrasrpsγcδ

az = +σεdcrasrpsδ

(12)

where ε = (ŝ · n̂)2. Moreover, as mentioned previously, ŝ stands for the Sun-direction, while n̂
stands for the femto-spacecraft normal component. The control acceleration is modeled as for a
classic solar sail: the normalized acceleration direction due to the effect of solar radiation pressure
on the sail surface, considering an ideal sail, is aligned with its normal component n̂. Moreover,
there exists a coupling (through ε) between the the control magnitude σ and the control direction
given by γ and δ .

A few constants appear in Eqs. 12, and they are:
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- asrp: solar radiation acceleration, equal to psr · ram;
- psr: solar radiation pressure, equal to W/clight = 4.56×10−6 N/m2 (with W the energy flux

density of the Sun at 1 AU and cligth the speed of light);
- ram: area-to-mass ratio, equal to 101 m2kg-1;
- dcr: differential reflectivity coefficient;
- γ: azimuth control direction;
- δ : elevation control direction;
- σ : control magnitude ∈ [0,1] (full control capability femto-spacecraft) or ∈ [−1,1] (limited

control capability femto-spacecraft).

The nominal formation-flying shape investigated is a GCO (according to the linearized CWH dy-
namics of Eqs. 1, neglecting perturbation [7]), where the relative motion is a circle in the three-
dimensional space x− y− z.

Thanks to the high area-to-mass ratio of the micro-spacecraft taken in consideration, solar radiation
pressure reveals to be useful to control the relative motion within the formation in reasonable time.
It is assumed that it is possible to change the value of the differential reflectivity coefficient dcr
by means of electrochromic control. Considering that the Sun-facing side of the micro-spacecraft
is either completely absorptive (cr = 1) or completely reflective (cr = 2), in this work the chief
is assumed to have a reflectivity coefficient cr = 1.5, while the deputy can change its value from
cr = 1.25 to cr = 1.75 [3]. The differential reflectivity coefficient dcr introduced in Eqs. 12 is
assumed equal to the maximum value +0.25.

5. Optimal Control Problem

This paper deals with the application of the theory of optimal control, based on its fundamen-
tal background in the associated calculus of variations. A brief explanation is presented in the
following: a simple problem with no path but only equality constraints is considered [8].

Assuming a differential system of n first-order equations describing a generic dynamics, that is:

ẏ = f [y(t),u(t), t] , (13)

where y(ti) is given and ti ≤ t ≤ t f . The control function u(t) is chosen to minimize the following
performance index:

J = ϕ
[
y(t f ), t f

]
+

∫ t f

ti
L [y(t),u(t), t] dt, (14)

subject to q-dimensional final boundary conditions:

χ f
[
y(t f ),u(t f ), t f

]
= 0. (15)

It is possible to notice that there are continuous equality constraints (Eqs. 13) as well as discrete
ones (Eqs. 15).

Introducing the q-dimensional vector of Lagrange multipliers ν(t) associated with the final bound-
ary constraints, and the n-dimensional vector of adjoint or costate variables λ (t) for the dynamics,
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the augmented performance is defined as:

Ĵ = ϕ
[
y(t f ), t f

]
+ν

>
χ
[
y(t f ),u(t f ), t f

]
+

+

∫ t f

ti
L [y(t),u(t), t]+λ

>{f [y(t),u(t), t]− ẏ}dt.
(16)

The conditions required for optimality are obtained setting the first derivatives of Ĵ to zero, namely
δ Ĵ = 0, which correspond to the search of its stationary point. In order to present the formulation
in a compact form, it is convenient to define the Hamiltonian of the problem , that is the scalar
function:

H [y(t),u(t),λ (t), t] = L [y(t),u(t), t]+λ
>f [y(t),u(t), t] (17)

and the auxiliary function:
ϑ = ϕ +ν

>
χ. (18)

The necessary conditions referred to as Euler-Lagrange equations in the calculus of variation, that
result from forcing the first variation to zero, and integrating by parts the last term on the right side
of Eq. 17, in addition to Eqs. 14 and Eqs. 15 are:

λ̇ =−
[

∂H
∂y

]>
, (19)

called adjoint equations describing the dynamics of the co-states,

0 =

[
∂H
∂u

]>
, (20)

known as algebraic equations for the control functions, and

λ (t f ) = ϑ |t f , 0 = (ϑt +H)|t f , 0 = λ (ti), (21)

called transversality conditions. The problem, as stated previously, is known as two-point boundary-
value problem, TPBVP [8].

The control Eqs. 20 are an application of the Pontryagin maximum principle. A more general
expression is:

u(t) = arg min H [y(t),u(t),λ (t), t] ,
u ∈U (22)

where U defines the domain of feasible controls. The maximum principle states that the control
variables are chosen to optimize the Hamiltonian at every instant of time. In essence Eq. 22 is
a constrained optimization problem in the variables u(t), for all values of t. The complete set of
necessary conditions consists of a differential-algebraic (DAE) system.

The problem is also subjected to initial conditions:

y(ti) = yi, (23)

and to final conditions:
y(t f ) = y f . (24)
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5.1. Fixed Final Time Problem

The first-order compete controlled dynamic system is:

ṙ = vx

v̇x = −µ/r2 +h2/r3− kJ2/r4(1−3s2
i s2

θ
)

ḣ = −(kJ2s2
i s2θ )/r3

θ̇ = h/r2 +(2kJ2c2
i c2

θ
)

i̇ = −(kJ2s2is2θ )/(2hr3)

Ω̇ = −(2kJ2cis2
θ
)/(hr3)

ẋ = vx

ẏ = vy

ż = vz

v̇z = 2vyωz− x(η2
d −ω2

z )+ yγz− zωxωz− (ξd−ξ )sisθ − r(η2
d −η2)+σεdcrasrpcγcδ

v̇y = −2vxωz +2vzωx− xαz− y(η2
d −ω2

z −ω2
x )+ zαx− (ξd−ξ )sicθ −σεdcrasrpsγcδ

v̇x = −2vyωx− xωxωz− yαx− z(η2
d −ω2

x )− (ξd−ξ )ci +σεdcrasrpsδ

(25)

In a fixed time scenario, assuming that J doesn’t depend on the final states and final time and that
is only a function of the controls (and not the states), i.e.:

J =

∫ t f

ti
L [u(t)] dt, (26)

the Hamiltonian reads:

H = L+λr(vx)+λvx(−µ/r2 +h2/r3− kJ2/r4(1−3s2
i s2

θ ))+λh(−(kJ2s2
i s2θ )/r3)+

+λθ (h/r2 +(2kJ2c2
i c2

θ ))+λi(−(kJ2s2is2θ )/(2hr3))+λΩ(−(2kJ2cis2
θ )/(hr3))+

+λxvx +λyvy +λzvz+

+λvx(+2vyωz− x(η2
d −ω

2
z )+ yαz− zωxωz− (ξd−ξ )sisθ − r(η2

d −η
2)+σεdcrasrpcγcδ )+

+λvy(−2vxωz +2vzωx− xαz− y(η2
d −ω

2
z −ω

2
x )+ zαx− (ξd−ξ )sicθ −σεdcrasrpsγcδ )+

+λvz(−2vyωx− xωxωz− yαx− z(η2
d −ω

2
x )− (ξd−ξ )ci +σεdcrasrpsδ )

(27)

and the dynamics of the co-states follows directly from Eqs. 19.

5.2. Free Final Time Problem

In a free time scenario, the following transversality condition is added to the overall system:

(ϑt +H)|t f = 0. (28)
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Eqs. 25 and Eqs. 19 constitute a set of 24 ordinary differential equations, whose boundary condi-
tions are given by the initial conditions (Eqs. 23) and the final conditions (Eqs. 24). This two-point
boundary value problem is highly non-linear and thus should be numerically solved. To that end,
a Matlab routine, called bvp4c, which is based on collocation methods, is utilized.

Unfortunately, the standard form doesn’t match this type of problem, because the time period is
defined to be fixed: t ∈ [a,b].

Key step is to re-scale time so that τ = t/t f , then t ∈ [0,1]. Implications of this scaling are that the
derivatives must be changed since dτ = dt/t f :

d
dτ

= t f
d
dt
. (29)

Final step is to introduce a dummy state r that corresponds to t f with the trivial dynamics ṙ = 0.
Replacing all instances of t f in the necessary/boundary conditions for state r. The optimizer will
then just pick an appropriate constant for r = t f .

6. Test Cases

Two different applicative scenarios have been investigated in this paper: firstly, a combined recon-
figuration maneuver with the aim of changing the amplitude and of shifting the centre of a GCO
is investigated (according to the linearized CWH dynamics of Eqs. 1, neglecting perturbation).
Secondly, a maneuver to maintain the nominal formation configuration is presented. Both of these
maneuvers have been solved assuming three different performance indexes: L = σ , L = 1

2σ2 and
the minimum time problem.

Moreover, two different control authorities have been considered in this work:
- full control capability: the deputy femto-spacecraft is able to align its normal n̂ in the direc-

tion given by the solution of the optimal control problem; as for a classic solar sail scenario,
the acceleration magnitude is directed along n̂ and is scaled by ε .

- limited control capability: the deputy femto-spacecraft is designed to be passively Sun-
pointing [9]; again, as for a classic solar sail scenario, the acceleration magnitude is directed
along n̂; in this particular case, n̂≡ ŝ, leading to ε = 1.

As far as it concerns the orbital elements for the chief micro-spacecraft, their initial values are
listed below [10]:

- a: semimajor axis, equal to 7153.137km;
- e: eccentricity, equal to 0.05;
- i: inclination, equal to 48.0 deg;
- Ω: longitude of the ascending node, equal to 45.0 deg;
- ω: anomaly of the pericentre, equal to 0.0 deg;
- M: mean anomaly, equal to 90.0 deg.

As for the reconfiguration maneuver scenario, starting from amplitudes ai = 100m and bi =
√

3/2 ·
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100m, the deputy micro-spacecraft is driven to a larger relative orbit, with amplitudes a f = 110m
and b f =

√
3/2 · 110m. The initial and final angular positions of the deputy along the periodic

relative orbit are assumed as αi = α f = π/2 and as βi = β f = −π/2. Initially the Sun-direction,
in the x− y plane, is aligned with the opposite direction of the transverse axis, i.e. along the −y
axis with ψi = π/2, while the out-of-plane Sun-direction angle is φ = 0.5 ·π/2. Moreover, starting
from an initial location of the centre along the y axis, i.e., ci = 0m, the deputy micro-spacecraft is
driven to a relative orbit, with a centre location shifted to c f = +10m. The maneuver time is set
equal to 1 orbital periods.

As far as it concerns the maintenance maneuver scenario, the initial and final amplitudes are ai =
110m, bi =

√
3/2 ·110m, a f = 110m and b f =

√
3/2 ·110m. The initial and final angular positions

of the deputy along the periodic relative orbit are assumed as αi = α f = π/2 and as βi = β f =
−π/2. Initially the Sun-direction, in the x− y plane, is aligned with the opposite direction of the
transverse axis, i.e. along the −y axis with ψi = π/2, while the out-of-plane Sun-direction angle
is φ = 0.5 ·π/2. Moreover, the location of centre along the y axis is kept at ci = 0m and c f = 0m.
The maneuver time is set equal to 1 orbital periods.

The total Hamiltonian H is minimized as a function of (σ , γ, δ ). As far as it concerns ε , a linear
combination is implemented:

ε = (1−qε) · εa +(qε) · εb, rcl (30)

where qε ∈ [0,1] is the parameter introduced to perform a continuation process, εa = 1 and εb =
(ŝ · n̂)2.

For the full control capability femto-spacecraft, the continuation approach starts with qε = 0 and
then the obtained solution is used as the next initial guess for the next run, where qε is increased
till it reaches 1. On the other hand, in case of the limited control capability femto-spacecraft, there
is no need of this continuation process, and a coherent solution is found already with qε = 0.

Therefore, as far as it concerns the angular components of the control vector for the full control
capability femto-spacecraft, the global minimum of the Hamiltonian H is found either at

γ
1∗ =arctan−

(
λvy

λvx

)
δ

1∗ =arctan
(

λvz

λvxcγ∗−λvysγ∗

) (31)

or at {
γ

2∗ = γ
1∗+π

δ
2∗ = δ

1∗ (32)

H is computed at both two solution candidates given by Eq. 31 and Eq. 32; the candidate that
yields the lowest H allows to choose the optimal set of γ∗ and δ ∗. If λvx = λvy = 0 for some t, γ
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is irrelevant and δ = −sign(λvz)π/2. In this case, σ is bounded between [0,1], and the optimal
control angles describe the control direction.

As for the limited control capability femto-spacecraft case, two more continuation processes are
introduced in order to augment the optimal control problem with path constraints on the control
angles:

γ = (1−qγ) · γa +(qγ) · γb

δ = (1−qδ ) ·δa +(qδ ) ·δb
(33)

Both qγ ∈ [0,1] and qδ ∈ [0,1] are the continuation parameters, while γa and δa stand for γ∗ and
δ ∗, respectively. On the other hand, γb and δb correspond to the Sun-direction, i.e. γb = ψ and
δb = φ for each time step. Again, the continuation approaches start with qγ = 0 and qδ = 0; then
the obtained solution is used as the next initial guess for the next run, where qγ and qδ are increased
till they reach 1. In this case, σ is bounded between [−1,1]: a positive value means the relative
control acceleration is aligned with the Sun-direction, a negative one means it is in the opposite
direction.

6.1. Case 1: Minimum σ Problem

As far as it concerns the first test case, the objective function taken into consideration is:

J =

∫ t f

ti
σ dt. (34)

As stated previously, the aim is to minimize the global Hamiltonian as a function of (σ , γ, δ ).
Notice that, for the full control capability femto-spacecraft, even though σ can only be 0 or 1 in this
case, for the optimal control problem statement, it is assumed to belong to σ ∈ [0, 1]. The optimal
solution will set it as 0 or 1. On the other hand, for the limited control capability femto-spacecraft,
even though σ can only be −1 or 1 inthis case, for the optimal control problem statement, it is
assumed to belong to σ ∈ [−1, 1]. The optimal solution will set it as −1 or 1.

Define the switching function Sσ as

Sσ = 1+λvxdcrasrpcγcδ+

−λvydcrasrpsγcδ+

+λvzdcrasrpsδ

(35)

Then,

σ =

{
1, if Sσ < 0,
0, if Sσ ≥ 0

(36)

This two-point boundary value problem is solved numerically via the aforementioned Matlab rou-
tine bvp4c, which is based on collocation methods. However, due to the discontinuous behavior of
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(a) Reconfiguration maneuver, y− z plane view. (b) Control magnitude σ . The dashed line is σ · ε .

Figure 3. Reconfiguration maneuver (Case 1) for full control capability femto-spacecraft: relative
motion and control magnitude.

(a) Reconfiguration maneuver, y− z plane view. (b) Control magnitude σ .

Figure 4. Reconfiguration maneuver (Case 1) for limited control capability femto-spacecraft: rel-
ative motion and control magnitude.

σ , it is not possible to obtain a solution from the numerical solver, as it was designed for contin-
uous dynamical systems. In order to implement the binary control law for σ as smooth function,
amenable for the numerical processing, Eq. 36 is replaced by

σ =−arctan(qσ Sσ )+π/2
π

+1 (37)

where qσ is a parameter utilized to perform a continuation process to numerically solve the two-
point boundary value problem. As qσ tends to infinity, Eq. 37 tends to the corresponding binary
function. The numerical solver bvp4c relies on initial guesses for the whole solution. Hence, to
obtain a good initial guess, it is necessary to start with low values (order of magnitude of 1) of
qσ , and then the obtained solution is used as the next initial guess for the next run, where qσ is
increased by an order of magnitude. The process is iteratively continued until a high enough value
of qσ is reached, such that the obtained thrust profile is bang-off-bang. At orders of magnitude of
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(a) Maintenance maneuver, y− z plane view. (b) Control magnitude σ . The dashed line is σ · ε .

Figure 5. Maintenance maneuver (Case 1) for full control capability femto-spacecraft: relative
motion and control magnitude.

(a) Maintenance maneuver, y− z plane view. (b) Control magnitude σ .

Figure 6. Maintenance maneuver (Case 1) for limited control capability femto-spacecraft: relative
motion and control magnitude.

104, the thrust profile is already perceived as bang-off-bang (see Fig. 3(b), Fig. 4(b), Fig. 5(b) and
Fig. 6(b)).

As for the reconfiguration maneuver scenario, the problem has been solved both with fixed fi-
nal (equal to 1 nominal orbital period, i.e. t f = 6020.7s) time and with free final time, that
the optimization process selects as t f = 6027.1s (full control capability femto-spacecraft) and
as t f = 6028.3s (limited control capability femto-spacecraft). Besides the maneuver time, all the
other reconfiguration parameters are very similar for the two scenarios investigated. For the main-
tenance maneuver scenario, as in the previous case, the problem has been solved both with fixed
final (equal to 1 nominal orbital period, i.e. t f = 6020.7s) time and with free final time, that
the optimization process selects as t f = 6024.3s (full control capability femto-spacecraft) and as
t f = 6025.1s (limited control capability femto-spacecraft). Besides the maneuver time, all the
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(a) Reconfiguration maneuver, y− z plane view. (b) Control magnitude σ . The dashed line is σ · ε .

Figure 7. Reconfiguration maneuver (Case 2) for full control capability femto-spacecraft: relative
motion and control magnitude.

(a) Reconfiguration maneuver, y− z plane view. (b) Control magnitude σ .

Figure 8. Reconfiguration maneuver (Case 2) for limited control capability femto-spacecraft: rel-
ative motion and control magnitude.

other reconfiguration parameters are very similar for the two scenarios investigated. The dashed
lines in Fig. 5(a) and Fig. 6(a) stand for the evolution, under the nonlinear dynamics, of the relative
motion, propagated for 1 day without the maintenance maneuver.

6.2. Case 2: Minimum 1
2σ2 Problem

The objective function investigated in this test case is:

J =

∫ t f

ti

1
2

σ
2 dt. (38)

Aiming at minimizing the global Hamiltonian as a function of (σ , γ, δ ), the global minimum of H
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(a) Maintenance maneuver, y− z plane view. (b) Control magnitude σ . The dashed line is σ · ε .

Figure 9. Maintenance maneuver (Case 2) for full control capability femto-spacecraft: relative
motion and control magnitude.

(a) Maintenance maneuver, y− z plane view. (b) Control magnitude σ .

Figure 10. Maintenance maneuver (Case 2) for limited control capability femto-spacecraft: relative
motion and control magnitude.

is found at (see Fig. 7)

σ = −λvxdcrasrpcγcδ+

+λvydcrasrpsγcδ+

−λvzdcrasrpsδ

(39)

As far as it concerns the reconfiguration maneuver scenario, Fig. 7 and Fig. 8 offer a view the
maneuver: in 1 orbital periods the prescribed final conditions are achieved. This problem has
been solved both with fixed final (equal to 1 nominal orbital period, i.e. t f = 6020.7s) time and
with free final time, that the optimization process selects as t f = 6026.7s (full control capability
femto-spacecraft) and as t f = 6026.1s (limited control capability femto-spacecraft). Besides the
maneuver time, all the other reconfiguration parameters are very similar for the two scenarios
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(a) Reconfiguration maneuver, y− z plane view. (b) Control magnitude σ . The dashed line is σ · ε .

Figure 11. Reconfiguration maneuver (Case 3) for full control capability femto-spacecraft: relative
motion and control magnitude.

(a) Reconfiguration maneuver, y− z plane view. (b) Control magnitude σ .

Figure 12. Reconfiguration maneuver (Case 3) for limited control capability femto-spacecraft:
relative motion and control magnitude.

investigated.

For the maintenance maneuver scenario, Fig. 9 and Fig. 10 offer a view the maneuver: in 1 orbital
periods the prescribed final conditions are achieved. Again, this problem has been solved both
with fixed final (equal to 1 nominal orbital period, i.e. t f = 6020.7s) time and with free final time,
that the optimization process selects as t f = 6024.2s (full control capability femto-spacecraft) and
as t f = 6027.4s (limited control capability femto-spacecraft). Besides the maneuver time, all the
other reconfiguration parameters are very similar for the two scenarios investigated. The dashed
lines in Fig. 9(a) and Fig. 10(a) stand for the evolution, under the nonlinear dynamics, of the
relative motion, propagated for 1 day without the maintenance maneuver.
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(a) Maintenance maneuver, y− z plane view. (b) Control magnitude σ . The dashed line is σ · ε .

Figure 13. Maintenance maneuver (Case 3) for full control capability femto-spacecraft: relative
motion and control magnitude.

(a) Maintenance maneuver, y− z plane view. (b) Control magnitude σ .

Figure 14. Maintenance maneuver (Case 3) for limited control capability femto-spacecraft: relative
motion and control magnitude.

6.3. Case 3: Minimum Time Problem

As final case, the minimum time problem is analyzed. Therefore, the performance index investi-
gated becomes:

J =

∫ t f

ti
1 dt. (40)

Once again, the aim is to find the global minimum of the Hamiltonian. A new switching function

18



(a) Femto-spacecraft inter-distance and control direc-
tions.

(b) Reconfiguration maneuver, y− z plane view.

(c) Control magnitude σ . The dashed line is σ · ε . (d) Differential coating color.

Figure 15. Reconfiguration maneuver (Case 1) for full control capability multiple femto-spacecraft
scenario: relative motion and control magnitude.

Sσ is defined as

Sσ = 0+λvxdcrasrpcγcδ+

−λvydcrasrpsγcδ+

+λvzdcrasrpsδ

(41)

Then,

σ =

{
1, if Sσ < 0,
0, if Sσ ≥ 0

(42)

As the problem is solved numerically, the same observations written previously also hold here (see
Fig. 11, Fig. 12, Fig. 13 and Fig. 14). In the reconfiguration maneuver scenario, the optimiza-
tion process minimizes the final maneuver time, selecting t f = 5882.3s (full control capability
femto-spacecraft) and as t f = 5974.8s (limited control capability femto-spacecraft), while for the
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(a) Femto-spacecraft inter-distance and control direc-
tions.

(b) Reconfiguration maneuver, y− z plane view.

(c) Control magnitude σ . (d) Differential coating color.

Figure 16. Reconfiguration maneuver (Case 1) for limited control capability multiple femto-
spacecraft scenario: relative motion and control magnitude.

maintenance maneuver t f = 5919.8s (full control capability femto-spacecraft) and as t f = 5979.7s
(limited control capability femto-spacecraft). With respect to the previous test cases, the control is
always on duty, for both the reconfiguration and maintenance scenarios (see Fig. 11(b), Fig. 12(b),
Fig. 13(b) and Fig. 14(b)). The dashed lines in Fig. 13(a) and Fig. 14(a) stand for the evolution, un-
der the nonlinear dynamics, of the relative motion, propagated for 1 day without the maintenance
maneuver.

6.4. Multiple Spacecraft

In this section a multiple spacecraft scenario is investigated. Assuming the reconfiguration and
maintenance maneuvers introduced above, formations with 4 deputy spacecraft (uniformly spaced)
have been considered. As for the optimal control problem, the objective function taken into con-
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(a) Femto-spacecraft inter-distance and control direc-
tions.

(b) Reconfiguration maneuver, y− z plane view.

(c) Control magnitude σ . The dashed line is σ · ε . (d) Differential coating color.

Figure 17. Reconfiguration maneuver (Case 1) for full control capability multiple femto-spacecraft
scenario: relative motion and control magnitude.

sideration is:

J =

∫ t f

ti
σ dt. (43)

Moreover, both control authorities described previously have been considered also for the multiple
femto-spacecraft scenario, i.e. spacecraft are assumed with full and limited control capabilities.

7. Conclusion

An optimal control problem formulation has been presented in this paper to investigate reconfigu-
ration and maintenance maneuvers for relative motion. The exact J2 nonlinear relative dynamics
has been considered and a complex scenario has been investigated: change of the orbital relative
amplitude and shift of the formation-flying centre at the same time. Two femto-spacecraft have
been considered for a sake of clarity, but the approach can be easily extended to many more ele-
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(a) Femto-spacecraft inter-distance and control direc-
tions.

(b) Reconfiguration maneuver, y− z plane view.

(c) Control magnitude σ . (d) Differential coating color.

Figure 18. Reconfiguration maneuver (Case 1) for limited control capability multiple femto-
spacecraft scenario: relative motion and control magnitude.

ments. Different control authorities have been considered: femto-spacecraft with full and limited
control capability. The control method reveals to be propellant-free, as it exploits the differential
natural perturbation acting on the system, in detail solar radiation pressure.
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