
PARTICLE SWARM OPTIMIZATION OF TWO-MANEUVER, IMPULSIVE

TRANSFERS FROM LEO TO LAGRANGE POINT ORBITS VIA SHOOTING

Andrew J. Abraham(1), David B. Spencer(2), and Terry J. Hart(3)
(1)Lehigh University, 19 Memorial Dr. W., Bethlehem, PA, 18015, 484-860-2786,

aja208@lehigh.edu. (2)Penn State University, 229 Hammond Building, University Park, PA,
16802, 814-865-4537, dbs9@psu.edu. (3)Lehigh University, 19 Memorial Dr. W., Bethlehem, PA,

18015, 610-758-4173 , teh305@lehigh.edu.

Abstract: A two-maneuver, impulsive transfer from Low Earth Orbit (LEO) to a Lagrange Point
Orbit (LPO) is optimized using Particle Swarm Optimization (PSO) and single shooting. The first
maneuver departs LEO while the second enters the invariant stable manifold of the target LPO.
Optimization with respect to total ∆V as well as LEO inclination is studied. It was discovered that
the optimal manifold insertion location for slow transfers represents an apogee condition along
the manifold. Fast transfers are also investigated and have been shown to require a lower ∆V than
slow transfers for the candidate LPO used in this study.
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1 Introduction

The study of Lagrange Point Orbits (LPO) in the Earth-Moon system is gaining popularity within
the astrodynamics community. Farquahr [7, 9] noted that halo orbits could be used for communica-
tion relays as early as the late 1960’s while Heppenhiemier [10] envisioned early space colonization
of Lagrange points in 1978. Recent studies have focused on human operations [11, 8], observation
and surveillance [6], and telerobotics. The ARTEMIS mission even orbited the Earth-Moon L1 and
L2 Lagrange points to study Earth’s magnetotail in great detail [4, 16]. Despite the interest in utiliz-
ing LPO’s only a modest amount of research exists in optimizing transfers from geocentric orbits
to LPO’s. These transfers come in two varieties: low-thrust and high-thrust. Unfortunately, the
global optimization of LPO transfers is extremely challenging due to the complexity of three body
dynamics. Nevertheless, attempts of global optimization (which was assumed, but not proven)
have been made for the low-thrust case by Abraham et al. [1, 2] utilizing manifold theory and
evolutionary algorithms.

This present work is intended to extend Abraham’s prior work to the realm of high-thrust trans-
fers. Specifically, this study focuses on the optimization of two-maneuver transfers from Low Earth
Orbit (LEO) to a desired LPO via an evolutionary algorithm known as Particle Swarm Optimization
(PSO). This study will outline a method to merge direct shooting with PSO in a manner that can
quickly sample the global search space and identify near optimal transfer conditions. This hybrid
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PSO/Shooting approach attempts to utilize the strength of each parent technique and minimize
their respective weaknesses. This is accomplished by optimizing individual “manifold insertion
points” using the gradient-based, single shooting technique which is very fast and accurate. In
addition to the gradient-based algorithm, an evolutionary PSO algorithm was used to identify the
best “manifold insertion point” based on an objective function that uses the results of the shooting
algorithm as its input. The PSO method does not require gradient information and is very adept
at working with non-convex objective functions with a large number of extrema; especially the
“local” PSO version. Furthermore, the PSO algorithm does not require a priori knowledge of the
shape of the objective function. This is highly advantageous when an analytic expression of the
objective function is unknown and sapling the function requires intense computational resources.

2 Problem Statement

The spacecraft begins in a LEO parking orbit that is roughly 400 km in altitude. From this orbit,
a departure burn is preformed that places the spacecraft on a cislunar trajectory that will either
directly cross paths with the LPO or will cross the path of the LPO’s invariant stable manifold.
A second burn is performed to insert the spacecraft onto the LPO or stable manifold. In the
case of manifold insertion, the spacecraft will ballistically coast along this manifold until it is
automatically delivered to the target LPO.

To optimize this transfer one must first define a search space for a given LPO. In this study the
search space is defined as the set of all states that comprise the invariant stable manifold of the tar-
get LPO. If an arbitrary state, Xs.m. on this manifold is selected one may use the technique of single
shooting to compute a feasible, two-maneuver trajectory between the LEO and Xs.m.. Indeed, this
shooting algorithm represents the first stage of optimization but is insufficient to globally optimize
the problem. The result of this shooting is fed into a “fitness function” which characterizes the per-
formance of the point Xs.m.. The process can then be repeated numerous times for other values of
Xs.m. with the hope that after a number of points have been evaluated, the optimal point, X∗s.m., can
be identified. Of course, the method used to select values of Xs.m. from an infinite set of possibili-
ties is of paramount importance. While it is possible to randomly select a state from the manifold,
this technique represents a very crude optimization approach. Instead the method of PSO is used
to inject an element of intelligence into an otherwise random process. Swarm intelligence has
been successfully applied to spacecraft trajectory optimization problems in the past [2, 1, 5] and
has proven to be very effective when optimizing non-convex fitness functions. The following sub-
sections describe each element of the two-maneuver, impulsive optimization algorithm in greater
detail.

2.1 System Dynamics

In this study the Circular Restricted Three Body Problem (CR3BP) is used to model the motion of
the spacecraft under the simultaneous gravitational acceleration of two massive primaries. Refer-
ring to Figure 1, which uses a synodic reference frame with its origin located at the barycenter of
the two primaries, the equations of motion can be expressed as

ẍ−2ẏ = Ωx,
ÿ+2ẋ = Ωy,

z̈ = Ωz

(1)
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with the subscripts of the pseudopotential

Ω(x,y,z) =
1
2
(
x2 + y2)+ 1−µ

r1
+

µ

r2
(2)

indicating partial derivatives with respect to the sub-scripted variable. The distances r1 =√
(x+µ)2 + y2 + z2 and r2 =

√
(x− (1−µ))2 + y2 + z2 represent the normalized distance be-

tween the spacecraft and the smaller primary (Moon) and larger primary (Earth), respectively.
Note that Eqs. 1 are written in dimensionless units, that is to say that: the angular velocity of
the larger and smaller primary (ω), the sum of the masses of each primary, and the distance be-
tween each primary are all intentionally set to unity. The unit of distance, [du], is the distance
from the larger primary to the smaller primary, while the unit of time, [tu], is equal to the synodic
period of the primaries divided by 2π . In the Earth-Moon system 1 [du] = 3.844× 105 [km] and
1 [tu] = 4.348377 [days]. The velocity unit, [vu], is simply equal to [du]/[tu]. The mass parameter is
defined as

µ =
m2

m1 +m2
(3)

which represents the ratio of the mass of the smaller primary divided by the total mass of the
system. In the case of the Earth-Moon system, this mass parameter is µ = 0.0121506683.

Under ballistic conditions, exactly one constant of motion can be defined [17] for Eq. 1

C (x,y,z, ẋ, ẏ, ż) = 2Ω(x,y,z)−
(
ẋ2 + ẏ2 + ż2)= constant, (4)

and is known as the Jacobi constant. For a given spacecraft state, X = [x,y,z, ẋ, ẏ, ż]T , there exists
exactly one Jacobi constant in the CR3BP. It is also possible for the spacecraft to locate itself at an
equilibrium point of Eq. 1. Five equilibrium points, known as Lagrange points, exist; with three
collinear points (L1, L2, and L3) and two triangular points (L4 and L5) . It is possible to define
complex, periodic trajectories in the vicinity of each collinear Lagrange point. These periodic
trajectories are known as two-dimensional Lyapunov orbits, three-dimensional halo orbits, and
quasi-periodic Lissajous trajectories.

Figure 1: Coordinate System of CR3BP
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2.2 Invariant Stable Manifolds

A Lagrange point orbit can be identified either via tabulated values [17] or a numeric computation
that solves a two-point boundary value problem [12, 5]. The Lagrange point orbit is then defined
by an arbitrary state vector (anywhere along the orbit), Xorbit, and the period of the orbit, P. Under
CR3BP dynamics, the state vector for the spacecraft is expressed in terms of position and velocity
as

X =


x
y
z
ẋ
ẏ
ż

 (5)

with the controlled CR3BP expressed in terms of a first-order differential equation as

Ẋ =


ẋ
ẏ
ż
ẍ
ÿ
z̈

=


vx
vy
vz

2vy +Ωx
−2vx +Ωy

Ωz

 . (6)

According to Dynamical Systems Theory (DST) [13], numeric integration of Eq. 1 as well as the
State Transition Matrix (STM) Φ(t,t0) =

∂X(X0, t)
∂Xo , for one period, P, with the initial condition X0 =

Xorbit enables the calculation of the monodromy matrix, M = Φ(t=P, t0) =
∂X(X0,t=P)

∂Xo associated
with the initial state, Xorbit. The stable eigenvector, ν , of the monodromy matrix is multiplied by a
very small number, ε , where ε = 10−10 in this study. A perturbed initial state, Xpert = Xorbit±εν ,
is then integrated backward in time using Eq. 1. As in Abraham et al., [1, 2] the integration is
terminated when the spacecraft crosses the yz-plane, from the negative x-direction. This defines
a trajectory that is a member of the stable manifold of the nominal Lagrange point orbit. The
nominal Lagrange point orbit can be discretized into N states defined as X(k)

orbit with k ∈ [1, N]. The

process is then repeated for other values of X(k)
orbit which, in turn, constructs a stable manifold of N

trajectories. If a spacecraft’s state lies along a trajectory within this manifold then the ballistic flow
forward in time will take it to the state X(k)

orbit and the spacecraft will be automatically inserted into
the nominal Lagrange point orbit. In this way, any state within the manifold, Xs.m. (τ01, k), can be
expressed via two parameters:

1. An integer k ∈ [1, N] that corresponds to a state on the nominal orbit X(k)
orbit with N being the

total number of states that represent a discretization of the orbit.

2. A time parameter τ that represents the time remaining for a ballistic flow of Eq. 1 to reach
the state X(k)

orbit.

2.3 Single Shooting a Two-Manuver, Impulsive Transfer

For a given point on the manifold a variable time, single shooting algorithm was used to compute
the magnitude and direction of two burns: one to exit the LEO and a second to enter the manifold
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(or LPO). The shooting was conducted in the following manner. The free variable vector

Y =

 Vx
Vy
Vz

 (7)

is defined as the pre-burn velocity components of the insertion point into the manifold/LPO. The
magnitude of the velocity discontinuity between Y and the velocity components of Xs.m. yield
∆vLPO, or the amount of ∆v required to insert the spacecraft into the manifold/LPO. Note that the
units of Y are [vu] but can easily be converted to [km/s]. The constraint vector is defined as

F =

[
‖r− rd‖

r ·V

]
(8)

where r is the magnitude of the altitude of the spacecraft, rd = 400 [km] is the desired altitude of the
spacecraft, and V is the spacecraft’s post-burn velocity relative to the center of the Earth. All values
of F are geocentric and expressed in [km] and [km/s]. When ‖r− rd‖ = 0 the spacecraft is located
at the desired altitude corresponding to the target LEO. When r ·V = 0 the spacecraft’s position
and velocity vectors are perpendicular to each other. This is the case during apogee, perigee,
or a circular orbit if only considering the two-body dynamics that dominate LEO. Since a circular
parking LEO is desired, it is easy to calculate the necessary ∆V required to match V. The two-body

expression for the speed of a circular orbit is given as VLEO =
√

GM
r where GM is the gravitational

parameter of the Earth and r is the known distance from the center of the Earth during the first
burn. Since the spacecraft’s orbital energy is maximized when the burn is performed perpendicular
to the velocity vector a simple subtraction of ‖V‖−VLEO = ∆VLEO gives the ∆V necessary to exit
the LEO and head towards the manifold insertion point. Other characteristics of the LEO can
be verified from the state XLEO = [r, V LEO]

T such as the Keplarian orbital elements; especially
eccentricity and inclination.

Given a point on the manifold and the value of Y, one can integrate the spacecraft’s path,
backward in time, using Eq. 1. This integration will terminate at the perigee of the trajectory and
yield the values that define F at the end of the trajectory. Of course the value of F is unlikely to be
equal to the null vector even if a reasonable guess of Y is applied. An iterative process (Newton’s
method) is applied here to guide the single shooting algorithm to the correct value of Y that results
in F = 0. To use this method the Jacobian matrix must be defined

DF =

[
∂

∂Vx
‖r− rd‖ , ∂

∂Vy
‖r− rd‖ , ∂

∂Vz
‖r− rd‖

∂

∂Vx
r ·V , ∂

∂Vy
r ·V , ∂

∂Vz
r ·V

]
. (9)

This matrix can then be used with Newton’s method to iteratively solve

Y new = Y−DFT (DFDFT)−1 F (10)

and will terminate when ‖F‖ ≤ ε where ε = 10−10 in this study (or any sufficiently small num-
ber). Typically, ten iterations or less are needed to converge on the appropriate solution however
a maximum of 50 iterations are attempted before the algorithm gives up and is unable to converge
during single shooting.
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In order for this shooting algorithm to converge, an appropriate initial guess solution must be
provided. A two phase approach to providing initial guess solutions was used. The first guess is
simply a velocity that is identical to the velocity found on the manifold/LPO insertion point itself.
This represents a zero ∆V for the LPO insertion and is the best case scenario for any insertion burn.
From this guess the shooting algorithm generally increases the necessary ∆V and converges on a
feasible solution that joins the LEO to the LPO via a transfer arc. Unfortunately, however, an opti-
mal transfer solution is not guaranteed (where “optimal” is defined in terms of ∆V ). Occasionally,
for a given manifold state, the single shooting algorithm will converge to a feasible solution with a
slightly higher ∆V than necessary. To compensate for this shortcoming, a recursive algorithm was
written for improving the guess solution. The algorithm begins with the output

(
Y(1)

)
of the first

run of the single shooting algorithm. This output is used in Eq. 11

Y(k+1) =

(
1− 1

4k

)(
Y(k)−VLPO

)
+VLPO (11)

to compute the initial guess
(

Y(k+1)
)

that is used in the next iteration of the same shooting al-
gorithm defined above. Eq. 11 serves to decrease the initial guess of the magnitude of the LPO
insertion ∆V

(
∆V (k)

LPO =
∥∥∥Y(k)−VLPO

∥∥∥). Each successive iteration (with k ∈
[

1, 10
]
) will de-

crease the scaling factor of the guess ∆V . Initially, when k = 1, the scaling factor is 0.75 but that
quickly increases to a factor of 0.975 when k = 10.

The shooting method and recursion method discussed above may not guarantee the minimum
∆V transfer is found between a LEO and the manifold/LPO insertion point but it performs very well
the majority of the time. Indeed this single recursive single shooting method is easy to program
and relatively quick in operation, requiring a handful of seconds to optimize the transfer to a
single manifold/LPO insertion point. This technique, combined with PSO, proves to be a low-cost,
reliable, and quick method of optimizing impulsive transfers to LPO’s.

3 PSO Algorithm

3.1 Fitness Function

Once a insertion point has been evaluated using single shooting the results of that algorithm can be
used to assign a “cost” to that point via an objective function known as the fitness function. The
fitness function used in this study can be expressed as:

J (Xs.m.) = c1∆V (Xs.m.)+ c2 ‖i(Xs.m.)− idesired‖ (12)

where i is the two-body orbital inclination of the LEO, ∆V = ∆VLEO + ∆VLPO is the total ∆V
required to transfer from LEO to the manifold/LPO insertion point, and c1 and c2 are weighting
constants chosen by the researcher. Note that the eccentricity of the LEO was not included in the
fitness function, as it had been in Abraham et al. [2, 1], because a zero eccentricity orbit was
guaranteed by default if the single shooting algorithm converged. In this study, typical values of
the weighting constants are c1 = 1 and c2 = 1 or c2 = 0, depending on the importance of inclination
to the researcher. When inclination was used, the value of idesired = 28o with respect to the Moon’s
orbital plane. If deemed important, the longitude of the ascending node and the true anomaly could
also be added to Eq. 12.
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3.2 Parametrization of the Search Space

The Particle Swarm Optimization (PSO) algorithm requires the a priori definition of a “search
space” where it is permitted to search for an optimal solution. In this study, the search space is
defined as all states within the invariant stable manifold, Xs.m. (τ01, k) ∈W s and within certain
bounds. Each state is uniquely defined by exactly two parameters: k and τ . The parameter k
represents an individual trajectory member of the stable manifold (k ∈W s) which is generated
via the method outlined in the “Invariant Stable Manifolds” section of this paper. The parameter
τ01 is the second parameter that defines Xs.m. and is defined relative to τ via a simple mapping
function. The time of flight, τ , represents the amount of time required to get from an initial state to
a state on the nominal Lagrange point orbit, as defined in the “Invariant Stable Manifolds” section.
Unfortunately, it is impossible to define the entire stable manifold as a search space because it is
infinite in nature, and a search space (by definition) must be finite. The bounds of τ , therefore, are
carefully chosen such that a wide swath of relevant manifold states are captured within the search
space and irrelevant manifold states are excluded.

In this study, the bounds of τ are τL.B. ≤ τs.m. ≤ τU.B. with each bound being defined in one of
two ways:

Fast Transfer Search Space

• τL.B. being the time that trajectory k crosses the yz-plane located at x = L1

• τU.B. being the time that trajectory k crosses first leaves the LPO (i.e. τ = 0).

Slow Transfer Search Space

• τL.B. being the time that trajectory k crosses the yz-plane from the positive x direction

• τU.B. being the time that trajectory k crosses the yz-plane located at x = L1.

The first search space allows the PSO algorithm to focus on the highly localized manifold that
exists very near the LPO. While it is true that a spacecraft inserted into this portion of the manifold
may spend a considerable amount of time in the manifold before reaching the destination LPO,
this is not a problem. The majority of mission goals (aside from rendezvous) can be achieved in
an LPO that is very near the target LPO, but not necessarily on it. Since the majority of Search
Space 1 circles around the target LPO, a spacecraft placed into this portion of the manifold can be
considered to be in a Lissajous orbit (of approximate size and shape as the target LPO) that flows
into the target LPO as time progresses forward. The exploration of this search space is particularly
attractive to missions that require short time of flight transfers such as manned missions to LPO’s.

The second search space allows the PSO algorithm to focus on the remainder of the stable
manifold. Note that any spacecraft inserted into this portion of the manifold will have to spend an
appreciable amount of time coasting to the vicinity of the target LPO. The bound, τL.B. was chosen
as a matter of convenience and practicality. While it is true that the trajectories of W s continue to
flow for an infinite amount of time, one needs to cut off this flow after a finite amount of time due
to the limitations of computing power [1, 2]. Since the run times of the PSO method can become
quite large, a smaller search space is needed to adequately converge on an optimal solution.
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The values of τ are mapped to τ01 using the simple relationship that τL.B. = 1 and τU.B. = 0.
Therefore, the values of τ for a given value of k are mapped to a normalized range of 0≤ τ01 ≤ 1.
This mapping ensures that values of τ between τL.B. and τU.B.are treated equally, regardless of
the value of k and the time of flight between the nominal Lagrange point orbit and the yz-plane
located at x = L1. In a similar fashion, the values of k are mapped between 1 ≤ k ≤ N via a
modulus function. In this study, k = kdesired mod (N). This means, for example, that if kdesired =
N + x then k = x assuming 0 ≤ x ≤ N. Using this technique, no value of kdesired is ever excluded
from the search space but is instead looped back onto itself in k-space. In summary, any value of
Xs.m. (τ01, k) can be uniquely parametrized, in kτ-space, in terms of τ01 and k with the boundaries
of these parameters being real numbers, 0≤ τ01 ≤ 1 and positive integers, 1≤ k ≤ N.

3.3 Particle Swarm Optimization

The PSO algorithm is simple yet powerful. It consists of Np particles which are, initially (i.e. j = 1),
randomly distributed throughout the search space with a position, χ = [τ01, k]T , and velocity,
ω =

[
Vτ , Vk

]T . Note that the position maps to the state vector in the following manner:

χ = [τ01, k]T ⇒
Xs.m. (τ01, k) =

[
xs.m., ys.m., zs.m., ẋs.m., ẏs.m., żs.m.

]T
.

(13)

Both the velocity and position of each particle in the search space is calculated by Equation 14 and
15, respectively:

ω
( j+1)
i =

CI (1+R1 (i, j))ω
( j)
i +CCR2 (i, j)

(
ψ

( j)
i −χ

( j)
i

)
+CSR3 (i, j)

(
Z( j)−χ

( j)
i

) (14)

χ
( j+1)
i = χ

( j)
i +ω

( j+1)
i (15)

with the superscripts representing the j th iteration (1≤ j ≤ jmax) of the PSO algorithm and the
subscripts representing the i th particle (1≤ i≤ Np) . Note that R1,2,3 (i, j) represents a random
number 0 ≤ R1,2,3 (i, j) ≤ 1 following a uniform distribution, and the constants CI, CC, CS, rep-
resent the “Inertial,” “Cognitive,” and “Social” weighting coefficients, respectively. The fitness
function, Eq. 12, is evaluated for each particle and ψ

( j)
i and Z( j) are recorded. The “personal best”

value, ψ
( j)
i =

[
τ
(best)
i , k(best)

i

]
, represents the best known value of the fitness function recorded

by particle i from iteration 1 to j. The “global best” value, Z( j) =
[

τ(best), k(best)
]
, represents

the best known value of the fitness function, recorded by any particle in the swarm, from iteration
1 to j. In this way, the position and velocity of each particle can be calculated for iteration j+ 1
based on the information contained in iteration j using Equations 14 and 15.

The inertial coefficient directs the particle’s motion according to Newtonian mechanics (i.e.
motion directed along the current velocity vector). The cognitive coefficient allows each particle
to “remember” the best location it has visited and acts as an attractor to that location. Finally, the
social coefficient allows each particle to “communicate” with the others in the swarm and attracts
particle i to that location. The values of the coefficients used in this study have been inspired by the
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work of Pontani and Conway [14] and were only modestly modified, via trial and error [1, 2], by
the authors to achieve reasonable convergence while still identifying obvious local minima. They
are summarized as follows:

CI = 0.15
CC = 1.00
CS = 1.00

.

3.4 Local PSO

The method outlined above is excellent for identifying local minima when only a few minima are
present. Unfortunately, if a large number of local minima exist then the global PSO algorithm
displays a tendency to converge on a non-optimal local minima instead of the best local minima
discoverable. This algorithmic shortcoming exists because the global best solution, Z( j), draws
other particles away from what is oftentimes the vicinity of a better local minimum. This is es-
pecially true when the depth of multiple local minima are very similar. To avoid this problem a
“local” version of the PSO algorithm has been developed by Abraham et al. [2] and utilized in this
study. This is accomplished by limiting the ability of the particles’ to communicate over distances
grater than some cutoff distance, rlocal . This mirrors conditions found in nature where collaborat-
ing swarms of animals have an inability (or a retarded ability) to communicate over vast distances,
thus allowing more time to explore nearby local minima. In this study, Z( j) is modified to Z( j)

local(i)
by utilizing the best value of a local swarm defined as all particles within radius, rlocal , of particle
i. If particle i can not “see” a distant particle then that distant particle has no influence over the
value of Z( j)

local(i). Typically, rlocal =
[ 1

20 ,
1
16N

]T in this study.
As the PSO algorithm evolves over j iterations, the particles in the swarm begin to collect

around various local minima. It becomes possible to define a convergence metric, γ , for the entire
system. This metric is defined by

γ
( j) =

N( j)
C

Np
(16)

where N( j)
C represents the number of particles that have converged to the vicinity of Z( j)

local(i). The

vicinity of Z( j)
local(i) is defined to be a circular area of kτ-space, centered on Z( j)

local(i), with a radius
that is roughly 14% the size of rlocal and an area that is roughly 2% the area of a circle of radius
rlocal . Using this definition of convergence it becomes possible to track the convergence of the
PSO algorithm as a function of j and even terminate the algorithm early if a sufficient value of γ

is reached.

Search Space Boundary Conditions

Occasionally, a particle attempts to exit the permissible search space to which it must be bound.
In such a case, a series of rules is followed to gently guide the particle back into the search space
and continue its search for the best local minima discoverable. One reason why a particle may
attempt to exit the search space is because its velocity is too large. In this case, a saturation limit
is imposed on the velocity vector such that ω ≤ ωmax =

[
±τmax, ±kmax

]T
=
[
±1

2 , ±
1
2N

]T .
In general, this velocity saturation limit is very high and only acts upon extremely unreasonable
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velocity values. As a consequence, some values of χ still fall outside the search space. If this is
the case then the τ01 component of position is bounded by the saturation limits

τ01 =

{
τmax = 1
τmin = 0

f or τ01 > τmax

f or τ01 < τmin

and the k component is bounded by the modulus function k = krequested mod (N). The velocity of
this particle is also reset to ω = 0 to prevent the particle from exiting the search space during the
subsequent iteration.

4 Data and Results

In this paper, ballistic trajectories were integrated according to Eq. 1. All numeric integration was
performed using MATLAB’s ODE113 solver; a variable order Adams-Bashforth-Moulton PECE
solver with a relative and absolute tolerance of 10−13. This method was chosen because it is
relatively efficient when using stringent tolerances as well as being efficient with computationally
intensive functions. The computer utilized 2 parallel cores on a 3GHz Intel Core 2 Duo processor.
The optimization of the search space typically required 15 to 20 hours using 300 particles and 30
iterations of the PSO algorithm.

4.1 Destination Orbit and its Associated Manifold

All data in this study has been generated using an Earth-Moon, L1, northern halo orbit as the
nominal destination orbit. This orbit has a period of P = 2.31339[tu] (63 days) and an initial state
of

X0 =


0.866224052875085
0.011670195668094
0.186912185139037
0.013870554690931
0.245270168936540
0.021792775971957


expressed in [du] and [vu]. The orbit is displayed in Figure 2 with the states being discretized into
kmax = N = 791 points, with each point corresponding to a particular trajectory, k, on the invariant
stable manifold.

This orbit was arbitrarily chosen as an example of how the PSO technique can optimize a transfer
trajectory to a complicated and highly three dimensional LPO. According to Dynamical Systems
Theory (DST) the invariant stable manifold of this northern halo orbit may be generated by the
following procedure:

1. Select a point on the orbit and integrate the State Transition Matrix (STM) forward in time
for one period.

2. Calculate the eigenvectors associated with the direction of the stable manifold at this point.

3. Multiply this eigenvector by a small number, ε , and add/subtract this small perturbation to
the initial point.
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Figure 2: The nominal Earth-Moon L1 northern halo orbit. The orbit is broken into N = 791 points
with every 10 th point displayed in this figure.

4. Propagate this state vector backward in time until it crosses the x-axis from the −x
direction.

This procedure can be repeated numerous times; once for each point on the nominal orbit. All
trajectories generated by points on the nominal orbit comprise the invariant stable manifold, W s,
of the nominal orbit. Figure 3 illustrates the invariant stable manifold of the Earth-moon, L1,
northern halo orbit.

4.2 Fast Transfer

The PSO method was used to optimize the “Fast Transfer” search space described above. This
was accomplished by setting c1 = 1 and c2 = 0 (in the fitness function, Eq. 12) for the case of
optimization with respect to any inclination, and c1 = 1 and c2 = 1 for the case of a 28o desired
LEO inclination. In both cases, the optimal trajectory is shown in Figure 4. Notice how the
spacecraft immediately enters a Lissajous orbit that would be useful for the majority of Earth-Moon
L1 applications such as communications relay, Earth/Moon observation, and mission staging areas.
As noted in Table 1, the Lissajous orbit will deliver the spacecraft into the target LPO over a period
of 60− 90 days where it can rendezvous with another spacecraft that is on the exact same orbit.
Alternatively, to speed up a desired rendezvous, the spacecraft could execute a small maneuver to
decrease a rendezvous time using a modest amount of ∆V .

4.3 Slow Transfer

The PSO method was also used to optimize the “Slow Transfer” search space described above.
As before, this was accomplished by setting c1 = 1 and c2 = 0 for the case of optimization with
respect to any inclination, and c1 = 1 and c2 = 1 for the case of a 28o desired LEO inclination. In
both cases, the optimal trajectory is shown in Figure 5. Notice how much longer it takes for the
spacecraft to reach the vicinity of L1. Adding the values of the “TOF to Insertion” and “TOF in
pre-L1 Manifold” columns of Table 2 together it is possible to calculate the time of flight required
to reach the vicinity of L1 and directly compare it to that of a fast transfer. Disregarding LEO

11



Figure 3: Invariant stable manifold of the nominal, L1 northern halo orbit (green-blue trajectories).
Note that the manifold never approaches the vicinity of Low Earth orbit.

Table 1: Summary of Fast Transfer

J
∆VLEO
[km/s]

∆Vhalo
[km/s]

Total
∆V

[km/s]

TOF to
Insertion

[days]

TOF in
Mani-
fold

[days]

TOF
Total
[days]

Fast Transfer,
Any

Inclination

3.443 3.070 0.373 3.443 4.98 90.00 94.98

Fast Transfer,
28o

Inclination

3.585 3.069 0.444 3.513 4.89 60.94 65.83

inclination, an optimized slow transfer requires a 154.73 day flight compared with a 94.98 day
flight as seen in Table 1. This means that a fast transfer could move a spacecraft to the vicinity of
L1 with approximately 100 [m/s] less ∆V and much less transfer time. Similar results exist for the
28o inclination mission. In this case the fast transfer requires 160 [m/s] less ∆V .

It is interesting to note that Alessi et al. [3] found that the optimal manifold insertion point was
manifold apogee; that is the point on the manifold that is the maximum distance away from the
Earth. In this study, all optimal manifold insertion points discovered using the slow transfer search
space were very near apogee. For example, the optimal insertion point found by PSO for the “Slow
Transfer, Any Inclination” case was only 30,000 km away from the manifold apogee. This is only
five Earth radii in size away from the apogee condition (which is relatively small when the search
space is nearly ±60 Earth radii in diameter). Even better, was the optimal insertion point for the
“Slow Transfer, 28o Inclination” case at 3,000 km from manifold apogee. This is less than half an
Earth radius and is about as close as one could hope for when matching the results from Alessi et
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al. Strong agreement with previously published work [3, 15] corroborates the efficacy of the PSO
method as applied here.

Table 2: Summary of Slow Transfer

J
∆VLEO
[km/s]

∆Vhalo
[km/s]

Total
∆V

[km/s]

TOF
to

Inser-
tion

[days]

TOF in
pre-L1
Mani-
fold

[days]

TOF in
post-L1
Mani-
fold

[days]

TOF
Total
[days]

Slow
Transfer,

Any
Inclination

3.548 3.040 0.507 3.548 3.89 19.04 131.80 154.73

Slow
Transfer, 28o

Inclination

3.691 3.047 0.629 3.676 3.76 11.51 121.87 137.14
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Figure 4: Fast transfer from a 400 km altitude LEO (red) to the target LPO (red) via a cislunar coast
(blue) following a cislunar injection burn and a stable manifold coast (green) following a manifold
injection burn. Top: Optimized for any inclination. Bottom: Optimized for 28o inclination.
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Figure 5: Slow transfer from a 400 km altitude LEO (red) to the target LPO (red) via a cislunar
coast (blue) following a cislunar injection burn and a stable manifold coast (green) following a
manifold injection burn. Top: Optimized for any inclination. Bottom: Optimized for 28o inclina-
tion.
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5 Summary and Conclusions

In this study, an evolutionary algorithm, called Particle Swarm Optimization, was used in conjunc-
tion with a traditional, gradient-based optimization method called Single Shooting. The fusion
of a gradient-based technique with an evolutionary algorithm attempts to blend the strengths of
both methods while minimizing their weaknesses. While the PSO method may be much slower
than gradient-based algorithms, its robust global optimization capability when used to optimize
a non-convex objective function far exceeds that of gradient-based methods; especially when the
objective function is non-differentiable or nearly so. On the other hand, using a shooting method
to optimize a single manifold insertion point is relatively fast (a few seconds) and can determine a
very efficient two-burn transfer trajectory. While shooting does not guarantee the optimal transfer
solution is found for a given insertion point, the method of iterative shooting does reduce the like-
lihood of a non-optimal result. The PSO/Shooting method, described above, is relatively simple
to program and requires a modest amount of resources to run. Typical run-times for a desktop
computer are on the order of 10−20 hours but could be significantly reduced (by a few orders of
magnitude) by utilizing a parallel computing cluster. Due to the ease of programming and reason-
able run-time, the PSO/Shooting method is useful in preliminary optimization of space mission
design or for trajectory pruning applications.

The optimization of the sample problem given in this study is also noteworthy. In agreement
with Alessi et al., the PSO/Shooting method identified the optimal manifold insertion point as
apogee when considering the slow-transfer search space. This result adds creditability to the
PSO/Shooting method since Alessi et al. used an entirely different method to gather their data,
yet provide similar results. In light of this published work, however, it is a bit surprising to note
that the fast transfer was superior to the slow transfer in terms of both ∆V and time of flight. It
is currently unknown weather this result is characteristic of all LPO or unique to the one chosen
for this study. Given enough computational power it may be useful to investigate the influence of
the choice in LPO over the optimization results. For example, LPO’s in different systems should
be studied (Earth-Moon, Sun-Earth, Sun-Mars, etc.), LPO’s about the L1, L2, L3, and L4,5 points
could be studied, and even various shapes and families of LPO’s should be studied to see if there
are any commonalities between them. Optimal manifold insertion points at apogee may be a com-
mon characteristic of most LPO’s but not all. It may be useful to future mission designers to know
what characteristics of a LPO lend themselves to optimal fast transfers rather than slow transfers.
This is especially true for human spaceflight to LPO’s.
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