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Optimal control deals with the problem of finding a control law and the corresponding state 
trajectory for a given system such that a certain optimality criterion is achieved. For control of 
spacecrafts, optimal control plays an important role and is often used in designing their trajectories.   
There is a method called a generating function approach to solve optimal control problems which 
derives a family of optimal trajectories as a function of the boundary values of the states [1]. The 
authors have contributed to its extensions such as coping with nonlinear systems [2], discrete-time 
systems, and proposing a new method called a double generating functions method using a pair of 
generating functions to obtain accurate solutions with low computational cost. 
 
Many practical optimal control problems require solutions to satisfy prescribed state/input 
constraints. For instance, the maneuvering devices of spaccrafts such as thrusters and reaction 
wheels have input and state constraints. So far no results took the constraints into account in the 
generating function approach. This paper proposes to use a class of penalty functions to obtain 
optimal solutions satisfying given state/input constraints. A sufficient condition for the penalty 
function is clarified by which the existence of the corresponding generating function and optimal 
trajectory are ensured. Then applying the authors’ former result on nonlinear single/double 
generating function method [2] to control the spacecraft, the objective task is achieved.  
 
We apply the constrained optimal control method explained above to a spacecraft rendezvous 
problem as depicted in Fig.1. Constraints are added to the velocity of the spacecraft so that we can 
let it stay in a prescribed safe region. Since we need to approximate the penalty function through 
Taylor series expansion for calculation, the effect of the approximation error is evaluated in this 
paper. Numerical simulations will demonstrate how the proposed method works with this control 
task. Fig.2 shows the trajectory of the velocity of the aircraft which indicates that the proposed 
method let the velocity stay in the desired constrained region successfully. 
 

                        
                            

 
   Fig.2. Trajectory of the velocity 
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Figure 3.: Local Vertical Local Horizontal Frame.

4.1 Hill–Clohessy–Wiltshire Equations

The relative orbit between spacecrafts can be described by the famous HCW equations [25]. In this
model, a so-called reference spacecraft is considered that orbits the Earth in a circular trajectory
(see Figure 3), where the orbit rate ω = (µe/R3

0)
1/2, µe = GMe the gravitational parameter of the

Earth, G the universal gravitational constant, Me the mass of the Earth, and R0 the orbital radius
of the reference spacecraft (much larger than the relative distance between the spacecrafts). The
motion of the follower spacecraft is studied from a reference frame (x, y, z) fixed at the center of
the reference spacecraft, where x, y, and z are the radial, along-track, and cross-track directions,
respectively. This set of coordinate axes is called the Local Vertical Local Horizontal Frame. The
relative motion in this frame is given by

ẍ =2ωẏ + ω2(R0 + x)−
µ

R3
(R0 + x) + ux

ÿ =− 2ωẋ+ ω2y −
µ

R3
y + uy

z̈ =−
µ

R3
z + uz

where R = ((R0+x)2+y2+z2)1/2. After nondimensionalization with reference length R0 and time
1/ω, and linearization about (x, y, z) = (0, 0, 0), we have the HCW equations

ẍ =2ẏ + 3x+ ux
ÿ =− 2ẋ+ uy
z̈ =− z + uz.

For the sake of simplicity, we only consider the first two in-plane motions (independent of the third
out-plane motion)
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where [x1, x2, x3, x4]T = [x, y, ẋ, ẏ]T = [x, y, vx, vy]T and [u1, u2]T = [ux, uy]T.

4.2 Optimal Constrained Rendezvous

Consider the follower spacecraft satisfies the dynamics (34) with the specified initial state BCs, and
transits to the origin (reference) in fixed amount of time [t0, tf ]. Our objective is to find optimal
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input to minimize the energy considered cost function

J =
1

2

∫ tf

t0

uTudt.

This is the optimal rendezvous problem. More generally, we should consider the obstacle avoidance
problem for the spacecraft, and also the velocity limit during transitions. All these cases can be
treated as the state constraints.
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(a) Constrained position trajectories
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(b) Unconstrained position trajectories
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(c) Constrained velocity trajectories
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(d) Unconstrained velocity trajectories

Figure 4.: Comparison between optimal constrained trajectories (by the developed approach) and
unconstrained trajectories (from [4]).

We set the example from [4]: the follower spacecraft starts from the initial positions locating
along the radius 0.15 and velocities identically zero (specifically [0.15 cos θ, 0.15 sin θ, 0, 0]T with θ
varying from 0 to 2π by the step π/8), transits to the origin [0, 0, 0, 0]T in one unit time. Addition-
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Fig.1.  Himegin Hall. 


