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Due to the large number of resident space objects (RSOs) and the limited number of sensors 
available to track them, space surveillance is subject to large observation gaps. In addition, the large 
propagation intervals coupled with nonlinear RSO dynamics results in highly non-Gaussian 
probability distribution of the orbital state. Therefore, only filters which can handle both non-linear 
and non-Gaussian (NLNG) problem are suitable for orbit determination (OD) for these RSOs. 
Particle Filters (PFs) are useful for state estimation for NLNG systems. In the generic PF algorithm, 
however, the transformation probability density function (PDF) is usually given empirically. A 
simple assumption of Gaussian PDF always fails for RSO OD, which leads to deterioration of both 
the orbital state estimation performance and the uncertainty propagation. Also, due to the sequential 
Monte Carlo Simulation (MCS) essence, PFs generally need highly computational costs. 
For these reasons, the main idea of this paper is to combine the generalised polynomial chaos (gPC) 
with PFs in a hybrid scheme, in order to achieve accurate OD but also increase efficiency. The gPC 
theory is proposed to account for the effects of arbitrary, time-invariant uncertainties associated with 
model parameters and initial conditions. It has been proved to be more efficient than MCS method 
for uncertainty propagation. In this work, gPC is used to propagate the orbital state with 
uncertainties through the non-linear dynamics. With coefficients of gPC, the moments (e.g., mean, 
covariance, skewness and etc.) of the orbital state can be calculated, which are used for 
approximating the transformation PDF based on the maximum entropy principle (MEP). Then a 
generic PF scheme is implemented for the posterior orbital state and PDF estimation. The basis 
polynomials of gPC need to be regenerated based on the posterior PDF for the next iteration. Finally, 
numerical simulations are given for testing the OD performance by the proposed gPC-PF algorithm 
with ground-based observations. Its performance is compared with extended Kalman filter (EKF) 
and generic PF, in terms of uncertainty analysis, state estimation and computational efficiency. 
Preliminary OD results are shown in Figure 1 and statistic values of OD errors are given in Table 
1. It is clearly shown that OD performance by PFs outperforms than that by KF. gPC-PF gives 
similar position estimate and better velocity estimate in terms of 3D RMS (Root Mean Squares) 
errors with respect to the traditional PF. More OD scenarios will be conducted before solid and 
convincing conclusions are drawn.

 
 
 
Table 1 Maximum values of each component  

and 3D RMS errors (km, 1.0-3km/s) 
 

 PR PI PC P3D 
KF 6.319 7.608 32.675 12.696 
PF 13.163 9.336 9.521 6.255 
gPC-PF 5.566 12.412 11.628 6.456 
 VR VI VC V3D 
KF 1.440 0.167 1.416 0.282 
PF 1.072 0.498 0.342 0.172 
gPC-PF 0.551 0.308 1.016 0.156 

 

Figure 1 RSO position & velocity errors in 
RIC coordinate system 
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