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This paper presents a method to design robust deep space trajectories with the capability to change the target celestial body in case
of failures of low-thrust engines. Increasing number of deep space spacecraft targeting various celestial bodies using low thrust engines
have been developed and launched. As such low thrust engines should operate for a long time during cruise phase, it is probable that
some of the implemented engines may fail. Conventional trajectory design methods have pursued fuel minimum solution to reach the
main target celestial body, and it would usually be very difficult to change the target to the second candidate even in the case of failure
of engines. As a result, when a failure occurs in the engines, the spacecraft cannot reach any celestial bodies at all. In order to avoid
such situation, it would be desirable if the spacecraft can easily change the targets in case of engine failures. This paper proposes
a design method of low thrust trajectory which allows target change more easily at a cost of less optimized trajectory to the main
target. In this research, the objective function is defined as weighted sum of probability to reach the main and backup targets, which
is optimized in a stochastic way. By utilizing sampling-based algorithm and Bellman equation, the proposed method can efficiently
extend trees so that an approximately optimal solution can be found with small computational time. Finally, the numerical simulation
is shown, which demonstrates that a proposed algorithm improves the mission success probability to reach either of main or backup
targets.
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Nomenclature

x : discrete-time state vector
r : discrete-time position vector
u : discrete-time velocity vector
u : discrete-time control input vector
π : optimal control policy
w : exploration worth
J : objective function
V : value function
n : the number of normal thrusters
m : the number of target candidates
Φ : State Transition Matrix (STM)
P : transition probability on the number of

normal thrusters
∧ : Logical AND (conjunction)
∨ : Logical OR (disjunction)

Subscripts
k : decision stage
N : the number of decision stages

Superscript
j : label of celestial body

Introduction

Low-thrust propulsion systems have received considerable
attention for space missions since we can efficiently achieve
large delta-V by adopting them. Because of low reliability of
low-thrust engines, however, most of the space probes with the
engines have experienced engine failures. Since thrusters fail-
ures are likely to result in mission failure, it is significant to
be sensitive to the risk of engine failures. Based on this back-

ground, this research aims to realize fault-tolerance by intelli-
gently designing a trajectory. In order to accomplish this pur-
pose, we consider the probability of the engine permanent fail-
ure and then introduce the flexibility that backup trajectories can
be chosen as additional decision variables. This paper presents
the robust trajectory design method by choosing backup trajec-
tories when the permanent failure of low-thrust engines occurs.

Backup policy is a quite familiar concept in our daily lives.
When pilots of aircraft are in the trouble of engine failures, they
often choose a backup policy for the safety e.g. safe emergency
landing or precautionary landing. Strict manuals have been pre-
pared considering possible troubles, and pilots take measures
suited to the occasion. Since the situation becomes exacerbated
in the case of engine failures, pilots cannot but give up persist-
ing in the primary objective. For example, a pilot, leaving from
Paris, must make a decision to emergently target at London in-
stead of New York in the case of trouble. In this example, New
York is the primary target, and a pilot adopts a backup policy to-
wards London due to the trouble of engine failure. Aircraft are
designed to work for more than ten years with the higher relia-
bility than spacecraft, space engineers should be more sensitive
to engine failures and considerate of backup policy.

As to space engineering which is highly conservative to im-
prove reliability, previous works have maintained the robustness
by intelligently building redundant systems. A great deal of past
work1)2)3) realized robustness or survivability against unfavor-
able probabilistic events in terms of system design. Our re-
search is based on the similar concept in the sense that we also
focus on the failure possibility, but our method maintains it in
terms of trajectory design. Recently, there has been an increas-
ing number of work on the typical problems of the low-thrust
trajectory design. The issues especially addressed in recent



Fig. 1. Concept of this study.

years are possible underperformance of the engines or missed
thrust.4)5) A great deal of past work has addressed the issue
of temporal failure such as missed thrust, but we also should
keep sensitive against the risk of permanent failure of low-
thrust propulsion systems. Most of the trajectory design method
including low-thrust trajectory design has solved optimization
problem defining the objective function as fuel consumption or
orbit transfer time6)7). Also, previous work solved the multi-
objective optimization problem, focusing on both of the final
spacecraft mass and time-of-flight.8)9) However, it is not es-
sential objective for space missions to minimize fuel consump-
tion or orbit transfer time. On the other hand, especially in the
field of robotics, the objective function directly expressing the
mission accomplishment is defined and optimized. The previ-
ous research defined the cost function coming from a weighted
sum of threat and path length.10) Also, an algorithm named
Stochastic Motion Roadmap (SMRM) is proposed to generate
the path maximizing the probability of avoiding collisions and
successfully reaching the goal.11) Furthermore, optimal control
problems with stochastic constraint, Chance-Constrained Opti-
mal Control (CCOC) problems, have been well studied.12) In
this control theory, path planning or motion planning can be
conducted with considering the possibility of risk or failure.

Although the trajectory design community has tackled a
problem on the risk or failure, most of the previous work takes
into account only short-term failure, missed-thrust of low-thrust
propulsion systems. On the other hand, this research considers
permanent failures of electrically powered spacecraft propul-
sion system. In order to maintain the robustness against the
failure of low thrust engines, we define the objective function
as the weighted sum of possibility to reach, which can directly
optimize the essential objective for space missions. This ob-
jective function allows us to take into account more than one
target celestial bodies and include the idea of backup trajec-
tories. Figure 1 describes the concept of this research. This
figure indicates a real trajectory on B plane of the deep space
probe PROCYON.13) The origin of B-plane is the Earth, and
blue dots are positions of asteroids on B-plane. Conventional

methods (green dashed line) is a trajectory adopted in PRO-
CYON project, which has pursued fuel minimum solution to the
primary candidate. However, proposed trajectory (magenta) are
more likely to enable the space probe to accomplish the worth-
while missions by changing the target celestial object even if
engine failure occurs. The author’s previous work14) showed
preliminary results and underlies this paper. The previous pa-
per proposed a method of trajectory design with multiple target
celestial bodies, but theoretical discussion on the optimality or
connection with the conventional method is immature. In this
paper, the object function is defined as expected worth of mis-
sion accomplishment. Theoretical analysis proves that this ob-
jective function is so compatible that it can include conventional
one. Optimal trajectory is searched by our proposed method,
a novel sampling method which gains efficiency by applying
the Bellman equation. This proposed method is found to have
some favorable property of probabilistic completeness by the-
oretical study, Finally, the numerical simulation demonstrated
that a proposed method improved the mission achievement.

1. Problem Statement

This paper considers the problem of finite-horizon optimal
control of dynamic systems, with state and control constraints.
We assume a discrete-time, continuous-state dynamics model.
Let X be the state space. The state vector xk ∈ X consists of the
position and velocity written as

xk := [ r⊤k , u
⊤
k ]⊤,

where r ∈ R3 is the position vector, and u ∈ R3 is the velocity
vector. The subscript k (= 1, 2, · · · ,N−1) indicates the decision
stage i.e. time. The state of the system xk is fully observable
at all times. Let uk ∈ Uk(xk) ⊂ U denote the control input
by thrusters, whereUk(xk) is the state-dependent control space,
and U is the control space. Consider the time-variant system
and next state vector xk+1 is given by the following equation:

xk+1 = fk(xk,uk), ∀k ∈ [1,N − 1],



where f : [1 N−1] × R3 × R3 → R3 is a given function.
The objective function to maximize in this problem is de-

pendent on the number of normal engines as well as the state
vector. When a engine is not failed or broken, it is called nor-
mal engine, hereafter. Let nk ∈ Z denote the number of normal
engines, which is also fully observable at all times. The number
of engines is assumed to be a positive integer. In other words,
indecisive or temporary failures are not considered in this paper.
No engine is assumed to fail at stage 1, and then n1 means the
number of mounted engines nmax ∈ Z. The objective function
to maximize in this research is defined as

Jk(xk, nk,uk:N−1) :=
m∑

j=1

w j Pr
[
rN = r j | xk, nk

]
, (1)

where uk:N−1 is a sequence of control and defined as

uk:N−1 := {uk(xk, nk), · · · uN−1(xN−1, nN−1)}.

w j ∈ R is the exploration worth of j-th candidate. r j ∈ R3 is the
position of j-th candidate at terminal time. Pr[rN = r j | xk, nk] is
the possibility that the space probe can arrive at j-th candidate
under the condition of state xk and the number of normal en-
gines nk. m ∈ Z is the number of candidates to consider in this
problem. We call the first candidate (i.e. w1>w j, j = 2, · · · ,m)
Primary Candidate (P.C.). Therefore, the optimal control pol-
icy

πk(xk, nk) := {u∗k(xk, nk), · · · , u∗N−1(xN−1, nN−1)}

to maximize the objective function Jk(xk, nk,uk:N−1) should be
searched such that

πk(xk, nk) := arg max
uk:N−1∈ Uk:N−1(xk ,nk)

Jk(xk, nk,uk:N−1), (2)

where Uk:N−1(xk, nk) is the admissible state dependent control
set from stage k to stage N − 1. Independent variables of ad-
missible control set must be defined as the number of normal
engines nk as well as xk; That is, the admissible control set is
denoted as Uk:N−1(xk, nk) instead of Uk:N−1(xk). The finite-
horizon optimal control problem for the spacecraft at stage k is
formally stated as follows.

max : Jk(xk, nk,uk:N−1) =
m∑

j=1

w j Pr
[
rN = r j | xk, nk

]
find : πk(xk, nk) = {u∗k(xk, nk), · · · ,u∗N−1(xN−1, nN−1)}

s.t. : xi+1 = fi(xi,ui) ∀i ∈ [k,N−1]

ui(xi, ni) ∈ Ui(xi, ni) ⊆ Ui(xi, nmax) ⊆ U

2. Markov Decision Processes (MDPs)

It is almost impossible to derive the (approximately) optimal
policy without any assumption. Due to the high-dimensional
and continuous state space, it is almost intractable to solve this
optimal control problem in a reasonable computational time.
Therefore, we assume first-order Markov property and model
this problem as Markov Decision Processes (MDPs). For an
introduction to MDPs, we refer the reader to Sutton & Barto

(1998)15) or Bertsekas & Tsitsiklis (1996).16) Low-thrust en-
gines are assumed to fail depending on the norm of control input
i.e. ∥uk∥ at each segment. Assuming first-order Markov prop-
erty, the transition probability on the number of normal engines
can be defined as P(nk+1 | uk, nk).

A MDP can be defined as tuple < X,N ,A, f (x,u), P >. X
is a set of states x,N is a set of the number of normal engines n,
A is a set of actions u, f (x,u) is a deterministic state transition,
and P : N × A × N → R is the transition probability on the
number of normal engines. The objective function at stage k,
Jk(xk, nk) satisfies the following recurrence relation.

Jk(xk, nk,uk:N−1)

=

∫
Z

P(nk+1 | uk, nk) · Jk+1(xk+1, nk+1,uk+1:N−1) dnk+1.

When only permanent engine failures are considered, we can
use summation instead of intergral, and the following equation
holds:

Jk(xk, nk, uk:N−1) =
nmax∑
i=0

P(i | uk, nk) · Jk+1(xk+1, i, uk+1:N−1).

If the situation that failed engines get fixed, is not considered,
transition probability should be defined as:

P( j | uk, nk) = 0, ∀ j ∈ [nk + 1, nmax].

In case of stage N, the objective function is defined as

JN(xN , nN) =

w j if (rN = r j) ∧ (nN ≥ 1)
0 otherwise

∀ j ∈ [1,m].

By employing Bellman’s principle of optimality,17)18) the fol-
lowing recurrence relation on the value function is satisfied:

Vk(xk, nk)

= max
uk

∫
Z

P(nk+1| uk, nk) · Vk+1(xk+1, nk+1) dnk+1,
(3)

where Vk(xk, nk) is the value function and expressed as

Vk(xk, nk) := max
uk:N−1

Jk(xk, nk,uk:N−1).

If the possibility that failed engines get fixed is taken into ac-
count, Equation 3 is described as

Vk(xk, nk) =
nmax∑
i=0

P(i | uk, nk) · Vk+1(xk+1, i).

Also, if the situation that failed engines get fixed is not consid-
ered, Equation 3 is described as

Vk(xk, nk) =
nk∑

i=0

P(i | uk, nk) · Vk+1(xk+1, i).

Value function for stage N is defined as

VN(xN , nN) =

w j if (rN = r j) ∧ (nN ≥ 1)
0 otherwise

∀ j ∈ [1,m].

Equations 3 has a recursive form on the value function func-
tion, which is generally called Bellman equation.



3. Theoretical Study on Problem Formulation

A great deal of previous studies have worked on the trajec-
tory design problem with only one target celestial body. On the
other hand, this paper deals with the trajectory design which
takes into account more than one thrusters and target celestial
bodies. Our objective function is defined as the weighted sum
of possibility to reach each celestial body, which seems to be
conflicting with the conventional one e.g. fuel minimum con-
sumption. However, the problem statement is compatible with
the conventional, and then fuel minimum solution can be ob-
tained by optimizing the objective function. That is, our pro-
posed method can include the conventional one. In this section,
we show that fuel minimum solution is optimal in case that only
one normal engine is normal or one celestial body is targeted.
Theorem 1. When a spacecraft targets at only one celestial
body, optimal policy is to choose the fuel minimum solution to-
wards the celestial body.

Proof. When only one celestial body is considered, the object
function is defined as

Jk(xk, nk) = w1 · Pr[rN = r1 | xk, nk].

Possibility to reach corresponds to the probability that not all
engines have failed until stage N, so

Pr[rN = r1 | xk, nk] = 1 −
nk∏

l=1

P(0 |ul
k:N−1, 1)

= 1 −
nk∏

l=1

(1 −
N−1∏
i=k

P(1 |ul
i, 1))

= 1 −
nk∏

l=1

(1 −
N−1∏
i=k

(1 − p)
∥ul

i∥
ū )

= 1 −
nk∏

l=1

(1 − (1 − p)
1
ū
∑N−1

i=k ∥ul
i∥),

where ul
k:N−1 is the control set of l-th engine from stage k to

stage N − 1. In addition, ui is admissible control to arrive at
the candidate. Let q ∈ R and Ul

k:N−1 denote q = (1 − p)
1
ū and

Ul
k:N−1 =

∑N−1
i=k ∥ul

i∥. Probability to reach and the object func-
tion is simply expressed as

Pr[rN = r1 | xk, nk] = 1 −
nk∏

l=1

(1 − qUl
k:N−1 ).

Consider a solution whose fuel consumption is more than the
fuel minimum solution. Let the increment of fuel consumption
denote ε ∈ R, ε ≥ 0. Describe the fuel minimum consumption
of l-th engine from stage k to stage N − 1 as Ũl

k:N−1 When the
increase of the fuel consumption, ε is forced to l̂-th engine, the
object function is presented as

Pr[rN = r1 | xk, nk] = 1−
{ nk∏
l=1, l,l̂

(1 − qŨl
k:N−1 )
}
· (1 − qŨl̂

k:N−1+ε)

= 1−
{ nk∏
l=1, l,l̂

(1 − qŨl
k:N−1 )
}
· (1 − qŨl̂

k:N−1 ·qε)

≤ 1 −
nk∏

l=1

(1 − qŨl
k:N−1 ).

We can also derive the same theoretical result as to a situation
that increase of the fuel consumption ε is forced to more than
one engines.

In the end, it is proved that optimal policy is to choose the
fuel minimum solution when a space probe targets at only one
celestial body. □

Theorem 2. When a spacecraft has only one normal engine,
optimal policy is to choose the fuel minimum solution towards
the celestial body which has the maximum expected value of
exploration. That is, when only one engine is normal, value
function is easily denoted as following equation.　

Vk(xk, nk=1) = max(w1Pr∗[rN = r1 | xk, nk = 1],
· · · ,
wmPr∗[rN = rm | xk, nk = 1]),

where Pr∗[rN = r j] is the probability that space probe can reach
at j-th candidate when it chooses the fuel minimum solution.
Also, careful attention should be paid to oprator max(·), be-
cause it is an operator to find the maximum value of argument
unlike other operator max to find the maximum value of the
function.

Proof. When only one engine is normal at stage k, possibility
to reach j-th candidate is expressed as

Pr[rN = r j | xk, nk] =
N−1∏
i=k

P(1 |ui, 1)

=

N−1∏
i=k

(1 − p)∥ui∥/ū

= (1 − p)
1
ū
∑N−1

i=k ∥ui∥,

p ∈ R is the failure possibility when the norm of control input
ū ∈ R is conducted. In addition, ui is admissible control to
arrive at j-th candidate.

Since failure possibility p satisfies 0 < p < 1, possibility
to reach is maximized when the fuel consumption

∑N−1
i=k ∥ui∥ is

minimized. Hereafter, we express the probability to reach when
a space probe select the fuel minimum solution as

Pr∗[rN = r j | xk, nk], ∀ j = 1, · · · ,m. (4)

Consider multiple celestial bodies, it is reasonable to select
the fuel minimum solution towards each candidate in case that
only one engine is normal. Hence, it is optimal to choose a ce-
lestial body which has the maximum expected value of mission
accomplishment. That is, the value function when only one en-
gine is normal, is defined as

Vk(xk, nk=1) = max(w1Pr∗[rN = r1 | xk, nk = 1],
· · · ,
wmPr∗[rN = rm | xk, nk = 1]).

□



Algorithm 1 Proposed Sampling-based DP Algorithm
Require: Number of random nodes at k-th stage Mk, control

input uk, number of normal engines nk, transition probabil-
ity on the number of normal engines P(nk+1 | uk, nk)

Ensure: Approximately optimal control policy while guaran-
teeing probabilistic completeness

1: Generate initial reference trajectories.
2: repeat
3: Place MN−1 nodes within reachable set from the node on

reference trajectory at stage N−2 and space where the
node at N-th stage (i.e. each candidate) is reachable.

4: Connect MN−1 new nodes with the node at N-th stage
5: for nN−1 = 0 to nmax do
6: Calculate JN−1(xN−1, nN−1) for MN−1 nodes
7: end for
8: for k = N−2 to 2 do
9: Randomly place Mk nodes within both of space reach-

able from the node on reference trajectory at stage k−1
and the space where that at stage k + 1 is reachable.

10: Temporally connect Mk nodes with all the nodes at
stage k+1 and derive uk for each transition

11: for nk = 0 to nmax do
12: Calculate P(nk+1 | uk, nk) and Jk(xk, nk)
13: Choose the node at stage k + 1 which realizes the

maximum Jk(xk, nk), and actually connect
14: end for
15: end for
16: Connect one node at stage 1 with M2 nodes at stage 2
17: Calculate J1(x1, n1 = nmax) for M2 nodes and update

with the trajectory which realize the maximum value of
J1(x1, n1 = nmax)

18: until J1(x1, n1 = nmax) converges

4. Proposed Method

Bellman equation can be numerically solved by various kinds
of algorithms. Dynamic Programming (DP) such as policy it-
eration or value iteration19) has received considerable attention
since the introduction of the Bellman equation. Another main-
stream is a Reinforcement Learning (RL) approach15) such as
Q-Leaning or TD-Learning. Both of the two mainstreams are
based on the strong theoretical background and has been ap-
plied to many real problems. However, they cannot work well
for the real problem with high dimensionality, which is known
as Chaos of Dimensionality.

In the field of robotics, sampling based method has been fre-
quently used in order to solve the optimal control problems. In
particular, Rapidly-exploring Random Tree (RRT) algorithm20)

has been applied to many real problems such as path planning of
automobiles.21) RRT-based algorithms have been well studied
in the robotics community, and various modification has been
conducted such as Chance Constrained-RRT (CC-RRT).22) Al-
though original RRT algorithm is theoretically immature, Kara-
man & Frazzoli (2011) proposed RRT* algorithm23) which has
a property of asymptotic optimality in addition to probabilis-
tic complete. Recently, sampling based algorithms with strong
theoretical background, have been proposed, and most of them
has relatively lighter computational complexity than general al-

Fig. 2. Resulting trajectory branches according to the number of normal
engines.

gorithms of DP or RL.
Our proposed algorithm is a sampling-based algorithm de-

veloped to intelligently identify and refine the probabilistically
optimal trajectory with backups considering possible faults of
engines. By applying Bellman’s principle of optimality to RRT,
this algorithm can search optimal solution by efficient computa-
tion. In addition, only solutions satisfying the boundary condi-
tions can be remained through iterations because this algorithm
extends trees considering the reachable sets.

In summary, our sampling-based DP method generates a se-
quence of controls. At each iteration, the following main steps
must be performed. First, an admissible policy is found and de-
fined as reference trajectory. Then, the admissible policy from
stage k that increases the object function is searched around the
reference trajectory by solving a maximization subproblem in a
backward sweep. After conducting this procedure until stage 1,
the reference trajectory is updated to the trajectory whose ob-
ject function is maximum. The sequence above is iterated until
convergence.

The following subsections provide more details on our
sampling-based DP algorithm. The line number in subsection
heading corresponds to that of Algorithm 1.

4.1. Generation of Initial Reference Trajectory: line 1
Initial reference trajectory is required for our proposed

method. Because the optimal policy is changeable according
to the number of normal engines, the reference trajectory is
branching. In addition, the trajectory can also branch off at ev-
ery stage according to the target celestial body. Therefore, the
reference trajectory consists of at most (m × nmax)N branches.
In general, this number is so large that we have to efficiently
sample new nodes.
4.2. Node Sampling: line 2, 9

Due to the high-dimensional and continuous state space, it is
significant to efficiently sample and refine the new state. Our
proposed method realizes its efficiency by introducing the con-
cept of reachable set. This method generates new nodes at stage
k within both the area where the node at stage k+1 on reference
trajectory is reachable and reachable set from the node at stage
k−1. That is, such control inputs uk−1(xk−1, nk−1) and uk(xk, nk)
satisfy the following inequality.

uLB(nk−1) ≤ uk−1(xk−1, nk−1) ≤ uUB(nk−1),

uLB(nk) ≤ uk(xk, nk) ≤ uUB(nk)



By sampling new nodes within the area, only the nodes which
can satisfy the boundary conditions can be chosen. This prop-
erty enables the space probe to prevent from continuing to con-
sider the solutions which cannot satisfy boundary conditions of
boundary value problems.
4.3. Tree Extension: line 4, 10-13

New nodes at stage k are temporally connected to all nodes
at stage k + 1. Because state vector xk and xk+1 must satisfy the
state equation, the control input uk to transfer from xk to xk+1

can be calculated. The failure possibility of low-thrust propul-
sion systems is a function of the norm of the control input uk.
The transition probability P(nk+1 | uk, nk) is known, so one node
at stage k+1 realizing the maximum value of object function can
be determined. In the end, a new node at stage k is actually con-
nected with the node at stage k+1 which realizes the maximum
value of object function. Nodes at stage k+1 which do not con-
nect with any node at stage k are removed.
4.4. Update of Reference Trajectory: line 17

Node sampling (Subsection B) and tree extension (Subsec-
tion C) are conducted from stage N to stage 1. The trajectory re-
alizing the maximum value of object function J1(x1, n1 = nmax)
is defined as a reference trajectory. At this time, optimal pol-
icy according to the number of normal engines for every stage
can be obtained (see Figure 2). Our algorithm conducts node
sampling and tree extension based on the updated reference tra-
jectory until J1(x1, n1 = nmax) converges.

5. Theoretical Analysis

In this section, theoretical analysis on a proposed method is
provided. In the sampling-based motion/path planning commu-
nity, it does matter whether the algorithm has two significant
properties or not: probabilistic complete and asymptotic op-
timality. For more detail of sampling based motion planning
algorithm, see Karaman & Frazzoli (2011)23) Our proposed
method possesses the property probabilistic complete, but not
asymptotic optimality. In this section, the theoretical analysis
on probabilistic complete is described.

Definition 1. (Probabilistic completeness). Let Vn and En de-
note vertex set and edge set after n iteration, respectively. Also,
Graph Gn can be denoted as Gn = (Vn, En), where V ⊂ Xfree,
card(V) ≤ n + 1, and E ∈ V × V. An algorithm is probabilistic
complete, if, for any robustly feasible trajectory/path planning
problem (X,Xinit,Xgoal),

lim
n→∞

inf Pr(∃xgoal ∈ Vn ∪ Xgoal

such that xinit is connected to xgoal in Gn) = 1

If an algorithm is probabilistically complete, and the path or
trajectory planning problem is robustly feasible, the limit

lim
n→∞

Pr(∃xgoal ∈ Vn ∪ Xgoal

such that xinit is connected to xgoal in Gn)

exists and is equal to one.

Theorem 3. Our proposed method has the property of proba-
bilistic complete.

Proof. At stage k, proposed randomly places the next node
within the reachable set from the reference node k − 1. That
is, the follows hold:

Pr(∃xinit ∈ Vn ∪ Xinit

such that xgoal is connected to xinit in Gn) = 1,

where our proposed method method relies on backward sweep,
so xinit and xgoal have been swapped comparing with the defini-
tion of probabilistic complete. The above equation is equivalent
with the definition written as

Pr(∃xgoal ∈ Vn ∪ Xgoal

such that xinit is connected to xgoal in Gn) = 1

□

Our proposed method does not possess the property of
asymptotic optimality; that is, the algorithm does not guaran-
tee to derive the exactly optimal solution. However, our algo-
rithm is guaranteed to continue to derive solutions satisfying
the boundary conditions. Furthermore, because of procedure to
update the reference trajectory (subsection 4.4), the value will
also be guaranteed to increase monotonically.

6. Experiment

6.1. Problem Settings
The new method for trajectory design was implemented and

tested using a real deep space probe trajectory design scenario.
This section shows the key results from this test. We conducted
the simulation supposing that a deep space probe with two ion
thrusters explores an asteroid by employing Earth Gravity As-
sist (EGA) one year after launched. Reference trajectory of rel-
ative vectors is assumed to be the trajectory of Earth. Simula-
tion condition is defined as Table 1 and Table 2. All the vectors
in this table are relative to the trajectory of Earth. Consider the
linear time-variant system. The state equation is denoted as[

rk+1
uk+1

]
=

[
Φ11(tk, tk+1) Φ12(tk, tk+1)
Φ21(tk, tk+1) Φ22(tk, tk+1)

] [
rk
uk

]
+

[
Φ12(tk, tk+1)
Φ22(tk, tk+1)

]
uk, (5)

where Φi j(tk, tk+1) ∈ R3×3, i, j = 1, 2 is the State Transition Ma-
trix (STM) from stage k to stage k + 1. rk ∈ R3, uk ∈ R3 are the
position and velocity relative to Earth, respectively. uk ∈ R3 is
the velocity increment by ion engines. Because of Equation 5,
the relative position vector at stage N can be described as

rN = Φ11(t1; tN)r1 + Φ12(t1; tN)u1 +
N−1∑
i=1

Φ12(ti; tN)ui. (6)

Deviation of Equation 6 is shown in Appendix. In this simu-
lation, simultaneous operation of more than one engines is not
allowed. Hence, transition probability of normal engines is ex-
pressed as

P(nk+1 |uk, nk) =


(1 − p)

∥uk∥
ū if nk+1 = nk

p
∥uk∥

ū if nk+1 = nk − 1

0 otherwise,

where p ∈ R is the possibility of failure when ū ∈ R velocity
increment is conducted.



Fig. 3. Resulting trajectory of the simulation with 2% failure possibility. Observe that blue trajectory bends towards secondary candidates. Blue line and
red dotted line mean the optimal trajectory in case of 2% failure possibility and 3% failure possibility, respectively.

Table 1. Simulation Condition
Mass of spacecraft [kg] 65.0

Thrust [µN] 350
Number of thrusters 2
Initial position [km] (x, y, z) = (0, 0, 0)

Initial velocity [km/s] (u, v, w) = (−0.015, 3.6, 2.8)
Terminal velocity [km/s] (u, v, w) = (Free,Free,Free)
Orbit transfer time [day] 365

Number of segment 73
Primary Candidate: 1.0

Exploration worth Secondary Candidate 1: 0.8
Secondary Candidate 2: 0.8

Table 2. Position of each candidate on B plane

Candidate Position on B plane [km]
Primary Candidate (3.57 × 105,−4.05 × 104)

Secondary Candidate 1 (6.55 × 105, 3.70 × 104)
Secondary Candidate 1 (9.55 × 105, 3.60 × 104)

Table 3. Value function at stage 1

Failure possibility
2% 3%

Fuel minimum solution
0.7784 0.6153

to P.C. targeting only P.C.
Fuel minimum solution

0.7961 0.6289
to P.C. targeting all candidates

Optimal solution
0.8544 0.7530

in this simulation

6.2. Results
Figure 3 shows the optimal trajectory planned by our pro-

posed method, which means the trajectory on B plane. While
fuel minimum trajectories to each candidate (green lines) are
almost straight on B plane, the optimal trajectories in this re-
search (blue line and red dotted line) bend towards secondary
candidates. Blue line and red dotted line mean the optimal tra-
jectories in the case of 2% and 3% possibility, respectively. Ta-
ble 3 compares the value function at stage 1, V1(x1, n1 = 2)
with the value of the objective function realized by fuel mini-
mum solution to the primary candidate. The value of the ob-
ject function by the optimal solution is approximately 10% and
15% improved compared with that by the conventional solution
in simulations with 2% and 3% failure possibility, where con-
ventional solution means the fuel minimum solution to primary
candidate aiming at only primary candidate.
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Fig. 4. Relation between the number of iteration and the maximum value
of the objectiveive function, J1(x1, n1 = 2).

Fig. 5. Possibility to reach each candidate when defining the failure pos-
sibility as 2%. ”A” indicates the fuel minimum solution to primary candi-
date aiming at only primary candidate, which is conventional method. ”B”
indicates the fuel minimum solution to primary candidate considering sec-
ondary candidates. ”C” indicates that optimal solution in this simulation.

Fig. 6. Possibility to reach each candidate when defining the failure pos-
sibility as 3%. The meaning of capital letters A, B, and C is described in
the caption of Figure 5.



Figure 4 indicates the relation between the number of itera-
tion and the objective function. Observe that the value of the
objective function converges after almost 100 - 170 iterations.
Our proposed method does not possess the property of asymp-
totic optimality, but it can be estimated that the obtained solu-
tion is favorable.

Figure 5 shows the arrival possibility to each candidate when
assuming failure possibility to be 2%. Arrival possibility to pri-
mary candidate realized by the optimal solution in this research
is 5.96% lower than that by conventional solution. However, the
probability that a space probe cannot reach any asteroid can be
reduced by 10.7%. Figure 6 shows the arrival possibility to each
candidate with 3% failure possibility. Arrival possibility to pri-
mary candidate realized by the optimal solution in this research
is 6.71% lower than that by fuel minimum solution aiming at
only primary candidate. However, the probability that a space
probe cannot reach any asteroid can be reduced by 18.89%. The
trend is marked comparing with the simulation result with 2%
failure possibility.

7. Conclusion and Future Work

In this paper, we proposed a method to design trajectories
robust to the possible permanent failure of low thrust engines.
We formulated the finite-horizon optimal control problem with
state and control constraint, which maximizes the expected sci-
entific gain. The objective function is defined as the weight sum
of probability to reach each target celestial body. This objective
appears to be incompatible with conventional approach such as
fuel minimum solution, but theoretical analysis proves that fuel
minimum solution can be obtained as the optimal solution for
the specified problem of our formulation. In order to solve this
problem with a reasonable computational time, we presented a
sampling based dynamic programming algorithm, specifically
developed for a space probe with multiple engines considering
backup trajectories. Theoretical analysis proves that this algo-
rithm possesses a property of probabilistic completeness, which
is one of the significant property for sampling based algorithm.
We demonstrated the efficiency of our algorithm using real tra-
jectory design scenario.

Future work will focus on the reduction of computational
complexity of proposed method and device for coming up with
an algorithm with the property of asymptotic optimality. It will
be important to implement a proposed method in a path plan-
ning scenario for Mars rover or a trajectory design scenario for
the spacecraft with more than two thrusters.
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Appendix 1 (Proof of Equation 6)

In this appendix, the following equation (Equation 6) is
proved.

rN = Φ11(t1; tN)r1 + Φ12(t1; tN)u1 +
N−1∑
i=1

Φ12(ti; tN)ui.

Proof. In Equation 6, reference of the trajectory is assumed
to be Earth. Hereafter, we denote the State Transition Matrix
(STM) from time tk to tl as

Φl,k(tk; tl) =
 Φl,k

11 Φ
l,k
12

Φ
l,k
21 Φ

l,k
22

 .



By using STM, the following relation between state vector at
time tk and that at time tl is satisfied.[

r(tl)
u(tl)

]
= Φ(tk; tl)

[
r(tk)
u(tk)

]
,

where r(tk)) and u(tk) are relative vector against reference tra-
jectory. Let tN denote the terminal time: The following relation
between time tN and tN−1 is satisfied.[

r(tN)
u(tN)

]
= Φ(tN−1; tN)

[
r(tN−1)
u(tN−1)

]
. (7)

u(tN−1) can be divided into the ballistic velocity and velocity
increment at time tN−1 and written as

u(tN−1) = uB(tN−1) + ∆v(tN−1).

Therefore, Equation 7 can be transformed as follows:[
r(tN)
u(tN)

]
= Φ(tN−1; tN)

[
r(tN−1)
uB(tN−1)

]
+ Φ(tN−1; tN)

[
0

∆v(tN−1)

]
The same relation as Equation 7 is satisfied between time tN−1

and time tN−1, so the follows holds:[
r(tN−1)
uB(tN−1)

]
= Φ(tN−2; tN−1)

[
r(tN−2)
u(tN−2)

]
By employing the above equation, state vector at time N,
[r(tN), uB(tN)]⊤ can be expressed as:[

r(tN)
u(tN)

]
= Φ(tN−1; tN)Φ(tN−2; tN−1)

[
r(tN−2)
u(tN−2)

]
+ Φ(tN−1; tN)

[
0

∆v(tN−1)

] (8)

Because STM has a property of

Φ(tN−1; tN)Φ(tN−2; tN−1) = Φ(tN−2; tN),

Equation 8 can be simply denoted as:[
r(tN)
u(tN)

]
= Φ(tN−2; tN)

[
r(tN−2)
u(tN−2)

]
+ Φ(tN−1; tN)

[
0

∆v(tN−1)

]
By repeating this procedure down to time t1, we can obtain

the following equation:[
r(tN)
u(tN)

]
= Φ(t1; tN)

[
r(t1)
uB(t1)

]
+

N−1∑
i=1

Φ(ti; tN)
[

0
∆v(ti)

]
In the end, we can finally obtain Equation 6, which orbit

equation used in the experiment:

r(tN)=Φ11(t1; tN)r(t1)+Φ12(t1; tN)uB(t1)+
N−1∑
i=1

Φ12(ti; tN)∆v(ti)

rN = Φ11(t1; tN)r1 + Φ12(t1; tN)u1 +
N−1∑
i=1

Φ12(ti; tN)ui.

Transformation from first line to second is derived by the prob-
lem setting that ui is equivalent with ∆v(ti). □


