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The work performed at CNES regarding the trajectory desigthé vicinity of Phobos for a MMX-like mission is
presented in this paper. The analysis concentrates on ffevetit topics. Firstly, the design of the so-called QSO
orbits, which are relative motions with respect to Phobag trave been identified as suitable trajectories for the
observation of the moon during proximity phase operatid@secial emphasis is put on the generation of 3D QSO,
the ones including excursions out of the plane of the equat&®hobos. Secondly, we address the computation of
the substitutes of the libration point orbits in the &nd L, regions of the Mars-Phobos system. If the operational
feasibility of a scenario including libration point mot®mwas proved, these orbits could be used for very low altitude
observations or as an alternative to more classical appesdor descent operation. The main objective of the authors
was to develop robust and flexible tools for mission desigiseld on dynamical systems theory, that can support the
generation of operational scenarios for a Phobos exptoratnd sample return mission. We believe that this work
represents a significant step towards the comprehensiountgéimdtion of sophisticated operational trajectorieshie
unique dynamical environment provided by Mars and its moons
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Nomenclature included in any trajectory computation in the vicinity of
ccse By Centre oy s SR A
CRTBP : Circular Restricted Three Body Problem y

ERTBP : Elliptic Restricted Three Body Problem gravitational field can be neglected when computing rep-
' resentative motions in this environment. In the frame of

GH . Gravity Harmonics . ; . .
ICRS . International Celestial Reference System three quy_dyngmms, akind of or_blts cglled Quasi Satel

. lite Orbits, inspired by the formation flying of two satel-
MMX . Mars Moon eXplorer . . -

: . . : : lites around a central body, have been identified as pos-
LPO . Libration Point Orbit : . . .

) . . - . sible observation orbits at distances of several tenths of
ODE :  Ordinary Differential Equation . :

: ) . : km from the surface of Phobos ([4]). Besides, a simple
QSO . Quasi Satellite Orbit S . . .

) computation in the CR3BP shows that libration points L
S/C . spacecraft

and Ly are only a few km above the surface of the moon.
Thus, orbits in these regions would be suitable for very
close proximity observations and their associated invari-

The design of trajectories for the exploration of the Ma"ri—nt manifolds could be used for descent operations.

tian moon Phobos has raised the interest of several spac

agencies and researchers in the past few years ([1], LQ ﬁ1e present paper, the work performed at CNES con-

[3]). Phobos is a tidally locked moon, whose equatorig tning the trajectory design in the vicinity of Phobos for
' L L L a MMX-like mission will be presented. An introduction

plane roughly coincides with its orbital plane, and also . . .

with the equatorial plane of Mars. Any mission analyé@dumng the dynamical models that have been used is

working in the Phobos environment has to deal with ugl\{:\?a:': ts(,)ecQtléJg i}bﬂhgege;hgfoiysfnﬁ ds?)nmseeczteizﬁlg
usual problems, derived from the mass-ratio and leng 9 P '

. ! . rthermore, the discussion on how to find libration point
scale of this unique couple. To start with, the sphere of .. .
. . . rbits in the Mars-Phobos system, as well as some pre-
influence of Phobos is so close to its surface that the Ke-

. . . : . liminary results are contained in section 4. The tools de-
plerian motion of a S/C around this moon is not posabl&. loned for this work are mainly aimed at mission desian
Therefore, the gravitational attraction of Mars has to & °P L y . 9

purposes and preliminary orbit selection, from a dynam-

1. Introduction



ical systems theory point of view. Consequently, partishould be used instead of the point mass approximation.
ular effort has been put on making them robust, flexible the present paper, a spherical harmonics expansion of
and computationally efficient. Nonetheless, the final gdahobos gravity field up to order 4 based on Chao Rubin-
of the authors is to generate a complete operational scem model has been used (see [6]). The GH model of
nario for a Phobos exploration mission. This is why odthobos is only used as an estimate, allowing us to real-
work should not be regarded exclusively as a theoretiéz¢ in which way and up to which extent the three body

exercise, but also as a practical approach to real missinations are impacted by this kind of irregular field. Nev-

design. ertheless, any mission spending a significant amount of
time in the vicinity of Phobos is bound to produce scien-
2. Dynamical modelsused tific data which will allow for a better determination of

its gravity field. The trajectory designer should bear this
As already mentioned, pure keplerian motion around Pho-mind, as the assessment of gravity differences between
bos is not possible, as this moon has a collapsing sphre model used for the computations and the actual accel-
of influence. Therefore, if one wants to study the dynararations observed around Phobos might be among the cri-
ics at the vicinity of Phobos, a three body problem takirtgria for orbit selection (i.e. try to produce motions where
into account the gravity of Mars and Phobos has to bee gravity field effect can be quantified). Furthermore,
considered. The simplest model describing the motiontbe design tools should be flexible enough to allow for
a particle under the three body dynamics is the CR3BPdates of the gravity model at any time, as surface op-

Q). erations must take into account the most accurate model
>.<.— 2¥ = % available.
y — 09 Note that the GH expansions for the gravity of a rotating
9z body allow us to compute its gravitational acceleration in
H

a frame centered at the body and whose axes rotate with
it (BCBF). Given that Phobos is a tidally locked moon, it

= \/m andr, — \/xt L2+ y2 1 2. is straightforward to prove that the synodic 3 body frame
of the CR3BP can be transformed into Phobos BCBF by

Equations (1) are expressed in the barycentric synoéiéimple translation of the origin. _Nevertheles_s, the time
frame, rotating with Mars and Phobos, with normalizedfPendence of the true anomaly in the pulsating ER3BP

mass, distance and time units (the interested reader tflifferent from the angular rotation velocity of Phobos
refer for instance to [5] for further details). around its own axis. Therefore, we would need differ-

ent time-dependent scaling of the GH of each degree,

However, even if the eccentricity of Phobos orbit arourd +€c0sv)". There is another solution, however, which
Mars is not particularly high (e=0.0156), its effect is sigS t© introduce a new set of dynamical equations, describ-
nificant on the motions of satellites flying in this environ"d the dynamics of the ER3BP with the mean anomaly

ment. Therefore, the first step towards the computatig® ndependent variable. Equations (3) provide the full
of realistic trajectories is the use of an elliptic three podiMe-invariant ODEs of the Mars-Phobos ER3BP-GH in

model, whose ODEs can be found in the equations beldW!0P0S BCBF frame, with the fixed physical units of the
CR3BF-. The termsUg; stand for the gravitational ac-

whereQ(x,y, z)=% +LHy

r

_,

2

X—2y = ‘%E celeration due to bodj/, which for the case of Phobos
YH2X = % (2) includes the GH acceleration (see [7]).
5 39 YA
z = %7 -2y = Z%?”
> B yrox = Su
whereQg (x,y, z):leeilcosv(X “’22”2 + 1r—1“ +4). The true 5 "%7{/! (3
anomaly of Phobos around Marg, is the independent ) 0z

variable of the dynamical equations (2), known as pulsat- Vo= @(v)

ing elliptic restricted three body problem. The mass unithere,

is normalized as for the CR3BP. Note that the fact of us-

ing the true anomaly as independent variable I'eads t@@: Ue1(0 - T 1007) + Ug @) - (18525,3)4 (szq O (Hleciv)z*)'
time dependent normalized distance (actual orbital radius

of Phobos for each value o and time units (the angulard = *¥%2- «(
velocity is not constant on an elliptic orbit). W2(v)

2
v) = HESR 0,047, W) = w(v)A, PY) =

) o 1The introduction ofv as a new state variable, with OD%allows
Moreover, a complex gravity characterization of Phobasto treat the non-autonomous systems as if it was autonomous



3. Quasi-Satellite Orbits osculating elements.

x=a(1+ecosv)cogV + @) + &
y=—a(2+ecosv)sin(v + @) + &
z=ycogV+ ) (5)

Since Keplerian bounded motions around Phobos do not
exist, another type of motions has to be computed in or-
der_ to explore this_ moon. It is pos_sibledx_jait Phqbos in X= —a(sin(v+ @) +esin(2v + ¢))

a kln_d of trajectories called Quasi Satellite Orbits. These Y= —a(2cogv + @) + ecog2v + )

relative motions with respect to Phobos are retrograde or- 7= —ysin(v+ )

bits, similar to the quasi-synchronous relative motion of

two satellites in formation flying (chief and deputy). TheNote that in the expressions in (5, and y represent
difference between the QSO motions and the formatigfte amplitudes of the motion in the in-plane and out-of-
flying quasi-synchronous orbits comes from the fact thiglene directions, whilep andy play the role of injection

the mass of our chief satellite (Phobos) is not negligthases. Besides, non-zero valuesXf §) resultin a dis-

ble, especially at distances of the order of tenths of kptacement of the center of the motion in the orbital plane
from the surface of the moon. This results in a varie8f Phobos ((0,0) being the center of mass of the moon).
of apparent motions of different relative periods, thatttedience, the parameters in C can be seen as intuitive de-
to the quasi-synchronous formation flying epicycle whesign parameters of the solutions of the Tschauner-Hempel
distances between the S/C and Phobos are of the ordeg@fations. Consider now the equations of the ER3BP (2)
100 km or more. For the sake of complete surface mapith two additional hypothesis: a) The mass of the second
ping and precise gravity estimation, it may be interestifigimary is much smaller than the mass of the figsk(1)

to make the S/C move in QSOs with non-zero relative iand b) the S/C is in the close vicinity region of the second
clination with respect to Phobos equator, in order to fifimary (. < 1). The second order terms iy, z, as well
over high latitude zones. This is why the methodologds the terms that are multiplied iy and not divided by
implemented at CNES is not limited to planar motion& can then be neglected because they are much smaller
but can be extended to three dimensional QSO motidhgn the remaining terms, giving as a result the following
with free size and relative inclination as chosen by ttééfferential equations:

user (within the limitations that result from the naturat dy

namics of the system, obviously). Finally, we would like X—2y— 1+e3():(osv - _1+e}:osv bx
to note here that the search for Reriodic motions has 2
not been performed in this work: the 3 dimensional orbits Vi+ 2% _m By (6)
that we compute are quasi-periodic motions. Periodicity 2
of the out-of-plane oscillations is a fragile feature, boun b4z = 1 Hz

" Tt+ecosv

=
N W

to disappear in realistic dynamics, and therefore not of es-
sential interest for the purposes of operational trajgct

. %he method of variation of constants can then be applied
design.

to the solutions of the Tauschner-Hempel equations (5), in
order to transform them into solutions of the equations (6).
This is how a set of ODEs of the osculating elements with

The work presented in this section is based on [8]. If V&gspect to time are obtairdBy solving the differential

. ) . : : et@uations of the osculating elements and using the rela-
are interested in relative motions of the S/C with respec S . .
to Phobos, we can start by studying the unperturbed Hi(:ﬁl(s)nShIIOS in (5), one can easily compute the cartesian state
' vector of the S/C at each step of the integration. In this

equations of relative motion for the elliptic case, assum—ay we get a preliminary approximation to the QSO mo-
ing that the attraction of the second primary is negligib ?8n, which is not yet a solution of the full ER3BP because

(u=0). The corresponding equations of motion are calle . . .
Tschauner-Hempel equations (4), and correspond to some additional hypothesis have been used (see previous

well known Clohessy-Wiltshire equations for relative mdrgaragraph).
tion when e£0.

3.1. Osculating elements

A multiple shooting method is applied to the preliminary
QSO solution of equations (6) in order to transform it into

X—2y— Hg’% =0 a solution of the complete ER3BP. Finally, if we also want
Yj- % =0 (4) to include the effect of the irregular gravity of Phobos,
z+z = 0 a numerical continuation method is started on the QSO

h | f f th luti f th h 2These differential equations are not included here. Therésted
The general form of the solutions of the Tsc aungk,der should refer to [8]. Note however that some discreparexist

Hempel equations can be written as a functior_l of 6 Pstween equations 3.66 of Cabral’s document and the eqeatiived
rameters, CH, @, &, J, ¥, ¥] € R, that we will call by the authors.



solutions of the ER3BP. The continuation paramete
from O to 1 is multiplied toUg » in equations (3), witt
the objective of controlling the percentage of high or
terms of the gravity field of Phobos that are taken i
account. Thus, at each step of the computation the di
ential equations governing the dynamics are slightly
ferent, and we jump from one approximation to the r
one by using a multiple shooting method.

Period (hours)

This methodology presents several advantages foi
mission analyst. First of all, it provides full control
the design parameters of the QSO (amplitudes, pt
and displacement of the center). And secondly, the
no qualitative difference between applying it to the pla
problem and applying it to the 6 dimensional space of R E EEEEEREEEEE.
3D case (no dramatic increase in computational time) e tm

) _ ) Fig. 1. Period of the 2D-QSO orbits (hours) as a function of its
3.2. Two dimensional QSO orbits minimum distance to Phobos surface.

When a QSO is contained in the orbital plane of Pho
bos around Marsz(= z = 0) we call it 2 dimensional. s
In terms of the osculating elements, this means that tr o]
out-of-plane amplitudg is set to 0. Periodic motions can  *1
be found in Phobos BCBF frame by choosing a Poiacar -
section (for instanc& = 0) and looking for initial condi- £ |
tions (0,y, 0,,y,0) which come back to the starting point ]
(0,y,0) with exactly the same initial velocity. In figure 1, =
the relative period of the motion around Phobos of thi |
planar QSOs is presented, as a function of their minimur T -7 774 7 = A e
distance to the surface. Moreover, some examples of tl._ e X

2D QSOs that can be computed are shown in figure :

as well as table 1. Note that when the S/C is far enoug K
from Phobos ¢ 80 km) the gravity of this moon becomes |
negligible and the relative motion of the S/C tendsto a ke .|
plerian epicycléwith period equal to the orbital period of - 0
Phobos and ag-amplitude which is twice the amplitude £ °| ‘> "]
in x (in three body coordinates; coordinate along the |
axis going from Phobos to Marg, axis perpendicularto ]
x-axis, in Phobos orbital plane; parallel to the angular -«

X (km)

Y (km)

s

momentum of Phobos around Mars). B R
X (km) X (km)
Tablel. Examples of low altitude 2D QSO. Fig. 2. Examples of 2D QSO orbits with different periods (spherical
Size (km) Brin Pimax Period Phobos of radius 12 km, plotted to give an idea of the relatzeaf the
Ay, Ay (km)  (km) (hours) orbits). In the first row: 2D QSO with period 3.83 hours [1:3grant

orbit, orbit 2 in table 1] and in the second row: 2D QSO withipe5.7

1 14x16 1.5 5 2.64 hours [3:4 resonant QSO, orbit 4 in table 1]. On the left, tHwte are

2 19x25 6.6 14.45 3.83 plotted in the equatorial plane of Phobos in BCBF rotatirzgrfe, while

3 24x35 10.8 26.9 4.75 on the right the XY projection in Phobos centered ICRS franshavn.

4 30x48 175 36.6 5.74

5 35x60 231 51 5.99

6 42x75 295 654 6.5 3.3. Threedimensional QSO orbits

7 48.5x90 36.1 81 6.92

8 515x100 392 882 7.1 For scientific purposes such as detailed imaging of the sur-

face or gravity model characterization, the computation of
3The epicycle is the typical formation flying relative motionhen 3 dimensional motions around PhOt_)OS.'S reqwred. The
the chief S/C has no gravity effect on the deputy closer to the surface and the more inclined with respect




Table2. Examples of 3D QSO.

Size (km) hin  hmax  Latitude
Ay, Ay, A; (km) (km)  max (deg)
1 22x30x3 9.5 20 8.7
2 25x40x8 125 32 18.7
3 28x45x10 155 355 22.8
4 30x50x18 17.8 423 33.7 Z (km)
5 ©565x110x45 44 107.8 42.3
6 75x145x60 72.7 1535 426

to Phobos equator that the S/C can fly the better, becau
in this way areas at high latitudes are accessible with
higher resolution. The problem of trying to decrease the
altitude while increasing the apparent orbital inclinatio

is that QSO motions quickly become unstable. It is be-
yond the scope of the present paper to perform mathemat-
ical stability analysis of the QSOs. Our goal is to use the
methodology that has been explained in the previous sec-
tions for generating 3 dimensional QSOs that allow both
the fulfillment of the scientific requirements and the oper-
ational stability of the associated scenarios (practical n
tion of stability, meaning survival without ground control
for several days if needed).

X (km)

Y (km)

The only difference of the 3D case with respect to the 2D
QSO generation of section 3.2. is that now the method-
ology has to be applied with an out-of-plane amplitude 2
y # 0. We know from the literature that any QSO with
y > 0.9a will quickly become highly unstable and we
have experienced it in our simulations. Bearing this in-
equality in mind, we have successfully computed 3D
QSOs for several couples gfand o respecting thista-
bility condition, while trying to maximize the reachable
latitude above Phobos equator for each orbital size (see ) ) v )
table 2 for a summary of the characteristics of several ~

QSO computed in this way).

7 (km)
°
:

When we allow the distance to Phobos surface to incre
it is obviously easier to reach high latitudes of the s
face while respecting the stability relation between

plane and out-of-plane amplitudes. Nevertheless, dis
orbits may be unusable for particular scientific objectiv
as large distances to the target imply low resolution of
observations. On the contrary, if either planar QSOs or
QSO with small out-of-plane amplitude are used arot
Phobos, the minimum distance to the surface can be c
tically reduced down to only a few km. The drawba
is that for the low altitude QSOs the observation of hi
latitude regions becomes difficult and it may require la SR Pat s ser e S s S S S A S e A
depointing angles, which can seriously harm the qua Longitude (deg)

of the images. This is why motions like examples 3 aikig. 3. Example of 3D QSO [orbit 4 in table 2]. 14 days integration un-
4 of table 2 are interesting, because they exhibit a go(éﬂﬂthe dynamics of ERTBP-GH. From top to bottom: Phobos cedter

. . rajectory in ICRS frame, YX and YZ projection in Phobos BCERm{,
tra(:e_Off( betv}’.een rg)aChable latitude and distances to nd-track of the S/C on Phobos surface with altitudermfadion
surface (see tigure 3).

(red: 35 to 42 km, yellow: 25 to 35 km, green: 17 to 25 km).

Latitude (deg)




3.4. QSO orbitsin realistic dynamical models

Full model
ERTBP+GH

In the previous sections, a methodology for the computz
tion of QSO trajectories in the ERTBP including the grav-
ity harmonics of Phobos has been presented. We consic
this methodology to be satisfactory for preliminary mis-
sion design purposes, as it allows for an assessment of t
types of QSO orbits, their sizes and orbital velocity, the
ground-track path on the surface of Phabas Further-
more, the tools that have been developed are fast (cor
putational time of the order of 1 minute for obtaining a
14 days integration of a 3D QSO orbit in the ER3BP-GI
model, with an Intel core i3 at 2.40 GHz) and flexible (as
the design parameters can be chosen by the user, and R e S S S S S
simulations can be easily run with different orbital param- Time (days)

eters of Phobos around Mars or with a different spherica
harmonics model for the complex gravity of the moon).
Despite all these assets, our tools would be useless if th w
provided as a final output an artificial 3D trajectory that
only made sense when integrated under simplified dynar
ical equations. In other words, we need to check that w
are able to easily turn our preliminary approximations tc
QSOs into operational trajectories, through a procedul
that implies as few changes in significant orbital charac
teristics as possible.

X (km)
:

Full model
ERTBP+GH

Z (km)

Together with our colleagues at the GRGS, we have pe
formed the first step towards the transformation of ou
QSO trajectories for use in a real mission, using a re
alistic dynamical model which takes into account the T
real ephemeris of Mars and Phobos, the complex gra e (G2l

ity model of this moon, theaJattraction of Mars, Mars
tidal effects, the effect of the Sun as third body and th
solar radiation pressure, in addition to some almost ne(
ligible relativistic accelerations. The procedure thas ha
been used is the following:

a) Select an interval of time of several hours in the
ephemeris file obtained using the methodology ex
plained above under the ERTBP-GH equations,

b) Apply a least squares method to adjust the state ve
tor at the initial date in such a way that the numerica
integration of the orbit under the realistic dynamics
fits the preliminary QSO in the best possible way,
during the interval selected at step a),

c) Integrate the modified state vector from the previou
step under the realistic equations of motion for one
week.

If the final integrated trajectory of step ¢) maintains the
characteristics of the original QSO in the ERTBP-GH for
several days, we consider that our method fulfills the &xig. 4. Integration of a 30 x 50 x 18 km QSO using realistic dynamics.
pectations of preliminary mission design and that our a?pm top to bottom:_Com_panson of the X poordlnate in ICRS Pisobo
imations to this kind of motion are usable for th entered frame vs time, idem for Z coordinate and XYZ view of the
proxima Bvo trajectories (red=ER3BP-GH, blue=full model) for a tatdegra-

estimation of interesting parameters for Phobos expl@n time of 7 days.



ration such as the distances to the surface, orbital vglocigentricity of the moon (ER3BP-GH). Impressive advances
eclipse duration. ... This is the case for large and middtethis direction have been done in [7], and this PhD. dis-
size QSO orbits (from x amplitudes starting at 30 km3gertation has inspired most of the work explained in the
which match the preliminary estimation of the trajectorfpllowing paragraphs.

for around 2 to 3 days almost perfectly, and whose devia-

tions from it in a week are not dramatic and do not implyhe methodology we plan to apply to fulfill the objec-
gualitative changes in the aforementioned parameters. tMe of computing the dynamical substitutes of LPOs in
example of these results is shown in figure 4. On the cdhe Mars-Phobos environment can be summarized in the
trary, for low altitude QSOs<15 km from the surface), following steps:

large deviations from the original QSO estimation werel. Computation of a LPO with the desired design pa-
detected at very early stages (just after day 1) when trying rameters (size, period) or an associated manifold
to adjust the motion to make it follow a realistic model of  in the CR3BP, using the methods found in the litera-
the dynamics. If the propagation was continued, for some ture (like the Lindstedt-Poincamprocedures [10]).

low altitude cases collisions or escape from Phobos vicin2. Computation of the dynamical substitute of the ob-
ity occurred before the end of the first week. We expectto ject computed in step 1) in a model taking into ac-
improve these results in the near future, simply by using count the GH of Phobos, by means of a humerical
a more sophisticated adjustment of the initial conditions. continuation method. The continuation parameter
Nonetheless, the use of a spherical harmonics expansions varying from 0 to 1 allows for a progressive inclusion
is probably not the best approach for low altitude orbit  of the acceleration caused by the GH of Phobos.
computations. These results confirm the obvious fact thad. Assessment of the effect of the eccentricity of Pho-
the operations of the S/C in low altitude QSOs can entail bos and obtention of the corresponding object in the
risks and that the fuel budget and frequency of the maneu- ER3BP-GH (equations (3)), by using the eccentricity
vers can be significantly high, especially if the modeling as continuation parameter (from 0 to €=0.0156).

of the gravity of Phobos is not accurate enough or is not

taken into account in the appropriate way when generatifige final trajectories after step 3) are not fully realistic o

preliminary approximations to these orbits. bits yet. Nevertheless we believe they are a good starting
point for the estimation of representative quantities such
4. Libration Point Orbits as the size and orientation of the LPOs, their periods and

station keeping costs, as well as for the assessment of the
The so-called libration points of a three body system deasibility of the use of the associated invariant mangold
equilibrium points of the dynamical equations in (1). Ifor operational issues such as the transfer from low alti-
particular, Ly and Ly stand for the libration points at bothtude QSO to the LPO region, or for descent and ascent
sides of the small primary of the system. The dynamioperations in the sample return phase. Unfortunately, the
around these points in the CR3BP has been exhaustivddyelopment of our analysis tools is still on-going at the
studied in the past (see for instance the series of bookement of writing this paper and therefore, concluding
[9]). Periodic and quasi-periodic bounded orbits aroumesults cannot be presented by the authors yet. However,
L; and Lp, belonging to the so-called center manifoldt will be shown in what follows that the characteristics
can be computed by using numerical procedures. Morg#-the LPOs in the Mars-Phobos environment change in
over, the hyperbolic character of these equilibrium poingsqualitatively significant way when computed in models
yields the existence of asymptotic manifolds associatediat are not the plain CR3BP, contrarily to what happens
the LPOs, which can be exploited for mission design pun-other systems, classicaly modeled by using the CR3BP
poses. For the Mars-Phobos system, libration points &ech as the Sun-Earth). Therefore, we strongly recom-
found only a few km above the surface of Phobos (roughtyend discarding the use of this simplified model for the
2to 3km). This means that the irregularities of the moorssudy of LPOs in the environment of the Martian moons.
gravity field will have a significant effect on the libration
point orbits and their manifolds. Consequently, any mod&ll. Periodic orbitsin the CR3BP-GH
considering Phobos only as a point mass is not valid for
assessing the feasibility of the use of LPOs for PhobBer the sake of simplicity and as a first application of
proximity operations. Furthermore, the eccentricity @& ttthe methodology, only periodic orbits around the libra-
orbit of Phobos around Mars also has an effect on the ntion points Ly and L, have been taken as initial orbits
tion of the S/C. The final goal of the work presented iim the CR3BP and transformed into periodic motions in
this section is to compute the dynamical substitutes of tthee CR3BP-GH. Planar Lyapunov orbits have been com-
libration point orbits in a three body model taking intputed in the Mars-Phobos CR3BP, with sizes going from
account the irregular gravity of Phobos and the orbital exfew hundreds of meters to several kms (in the direction



of the axis joining Mars and Phobos). Moreover, 3D haldready been able to observe some features of the behav-
orbits have also been computed, with Y amplitudes that of the dynamical substitutes of LPOs in the ER3BP-
can reach several km. The inclusion of Phobos sphdgH. Contrarily to what happened when we introduced the
cal harmonics expansion in the equations of motion hasféect of the GH, switching on the eccentricity does not
qualitative effect on these families of periodic orbitseyh result in a significant modification of the qualitative char-
are progressively tilted and their shapes and periods eareristics of the LPOs. The orbits keep their size and
be affected. An example of a planar Lyapunov orbit witfelative tilting or inclination with respect to the axes of
initial amplitude of 500 m in the x direction is presentethe Mars-Phobos synodic frame (see figure 6). However,
here (see figure 5). For this example, the gravity harmome have not been able to find periodic motions similar
ics have been introduced thanks to a 10 step continuatitimthe original LPOs in the ER3BP-GH yet. This can be
The objective at each step was to find a periodic orbilye to an implicit problem of the methodology that is ap-
with a period as close as possible to the initial one. piied, which may not be able to catch the libration effects
the future, we plan to introduce more elaborated continderived from the eccentricity by simple numerical contin-
ation methods, such as the energetic approach explaination. We want to investigate this issue in the near future,
in section 4.2 of [7]. Moreover, other ways of expresdefore moving on in terms of stability assessment, station
ing the irregularities of Phobos gravity field will have t&keeping and navigation issues and the computation of the
be explored, in order to assess its impact on the evolutimanifolds associated to the new objects in the ER3BP in-
of the periodic orbit families. For instance, the use of@uding the irregular gravity of Phobos.

gravity model derived from a high fidelity shape model of
the moon (assuming constant density) can cast some li
on the effects of the non-sphericity of the moon for ver
low altitude operations around features such as the Sti
ney cratet. We acknowledge that these effects cannot |
observed when using spherical harmonics expansions.
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Fig. 6. Evolution of an example LPO, from CR3BP to ER3BP-GH.
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5. Conclusions
Fig. 5. Continuation of planar Lyapunov orbit, CR3BP to CR3BP-GHIn this paper, the work performed at CNES devoted to the

o trajectory design for the proximity operations of a Phobos
4.2. Effect of Phobos eccentricity exploration mission has been presented.

Additional simulations have been done using the final @i the one hand, for Phobos observation at altitudes of
bits computed in the previous section (i.e the dynamicgdyeral tenths of km from the surface, we have developed
substitutes of the LPOs resulting from the inclusion iRtool for QSO computation which uses a robust trajectory
the equations of motion of the CR3BP of the acceleratiggneration method, with application oriented resultsl- It a
computed by the spherical harmonics expansions of PRgys for a fast generation of preliminary QSO trajectories
bos gravity field) and using a continuation method on thging intuitive design parameters known as osculating el-
value of the eccentricity to transform them into solutionsments. The characteristics of this method, using several
of the ER3BP-GH. These analyses are still not f'”'3h69namical systems methods for preliminary approxima-
at the moment of writing the paper. However, we haygyn to QSOs, as well as multiple shooting and numerical
_ continuation techniques for dynamical equatiapgrade,

_“The polyhedron gravity model has been used by the authorbéor o osant 4 remarkable improvement with respect to the
mission analysis of other space probes ([11], [12]) but ités tp be b f ical h uti . h
implemented for Phobos, even though its use would probably thel rute-torce numerical search for SO.Ut'OnS- Itis wort .n0t
design of the descent and sample return operations ing that our methodology uses a single representation of




both the planar and the 3D QSOs, with similar computgs]
tional effort despite the difference in the phase space di-
mension of these two cases. Furthermore, the trajectories
that are obtained are suitable for preliminary assessmédft

of mission design parameters, as it has been proved that

they can be easily converted into realistic motions. F!L-O]
nally, our methodology has provided notable results for
the generation of QSO trajectories that are particularly de
manding in terms of the trade-off between altitude fropmy)
the surface and relative inclination with respect to Phobos
equator. This type of QSOs may be the most interesting
for scientific purposes, such as the global mapping of the
surface of Phobos or the measurements aimed at imp
ing the current knowledge of this moon’s gravity field.

On the other hand, we have also developed tools for the
computation of dynamical substitutes of libration point or
bits using the specific dynamics of the Mars-Phobos sys-
tem. As an example, the dynamical substitute of a planar
Lyapunov orbit around the {Lpoint has been presented.
The goal of our on-going studies is the improvement of
the numerical methods used for the computation of LPOs
in the ER3BP taking into account Phobos irregular gravity
field, in addition to the computation of invariant manifolds
associated to the dynamical substitutes of these LPOs. We
have good reasons to believe that even if the aforemen-
tioned orbits and manifolds may not completely solve the
problem of descending to the surface for sample recollec-
tion, they can provide an alternative scenario for observa-
tions at very low altitude, as well as help solving trans-
fer problems from the QSO to the surface and backwards
(see [7], [3])- In the near future, we plan to use our find-
ings in this topic to propose an operational scenario using
the LPOs for an MMX-like mission.

6. References

[1] Kawakatsu, Y. “Martian Moons eXplorer mission overviewda
current status.” Misasa VI: Frontiers in Earth and planetaate-
rials research, origin, evolution and dynamics, 2016.

Cacciatore, F. and Mdrt, J. “Mission analysis and trajectory GNC
for Phobos proximity phase of Phootprint mission.” Advances i
the Astronautical Sciences, Vol. 153, Second IAA DyCos$20

Wallace, M., Parker, J., Strange, N., and Grebow, D. i@ttOp-
erations for Phobos and Deimos Exploration.” AIAA/AAS As-
trodynamics Specialist Conference, Minneapolis, Minresdét
Propulsion Laboratory, Pasadena, 2012.

Gil, P. and Schwartz, J. “Simulations of Quasi-Satell@ebits
Around Phobos.” Journal of Guidance, Control and Dynamics,
Vol. 33, No. 3, pp. 901-914, 2010.

Moulton, F. Anintroduction to celestial mechanics. Dowedn.,
1970.

Chao, B. and Rubincam, D. “The gravitational field of Phebo
Geophysical research letters, Vol. 16, No. 8, pp. 859-88291

Zamaro, M. “Natural and artificial orbits around the Martimoon
Phobos.” Department of Mechanical and Aerospace Engirgerin
University of Strathclyde, 2014-2015.

(2]

(3]

(4]

(5]
(6]
(7]

Cabral, F. and Gil, P. “On the Stability of Quasi-SatellDrbits in
the Elliptic Restricted Three-Body Problem.” Master Thesithe
Universidade €cnica de Lisboa, 2011.

Gomez, G., Llibre, J., Mamez, R., Sind, C., Masdemont, J., and
Jorba, A. Dynamics and mission design near libration poirnitsrb
\Vol. Volumes 1-3. World Scientific, 2 edn., 2000.

Masdemont, J. “High-order expansions of invariant maldi of
libration point orbits with applications to mission desigbynam-
ical systems, an International Journal, Vol. 20, pp. 59—2085.

Lorda, L., Canalias, E., Martin, T., Garmier, R., and IBjeJ.
“Mascot: Analyses of the Descent and Bouncing Trajectaiges
Support the Landing Site Selection.” 26th Internationab&p
Symposium in Flight Dynamics, Matsuyama, Japan, 2017.

| Jurado, E., Martin, T., Canalias, E., Blazquez, A., Giar, R.,

Ceolin, T., Gaudon, P., Delmas, C., Biele, J., Ulamec, S., Reme-
tean, E., Torres, A., Laurent-Varin, J., Dolives, B., HeggA.,
Rogez, Y., Kofman, W., Jorda, L., Zakharov, V., Crifo, J.dnd
Rodionov, A. “Rosetta lander Philae: Flight Dynamics anedys
for landing site selection and post-landing operationsctafAs-
tronautica, Vol. 125, pp. 65-79, 2016.



	ISTSProgramNumber: 
	0: 
	8436925666530112: ISTS-2017-d-006／ISSFD-2017-006




