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The work performed at CNES regarding the trajectory design in the vicinity of Phobos for a MMX-like mission is
presented in this paper. The analysis concentrates on two different topics. Firstly, the design of the so-called QSO
orbits, which are relative motions with respect to Phobos that have been identified as suitable trajectories for the
observation of the moon during proximity phase operations.Special emphasis is put on the generation of 3D QSO,
the ones including excursions out of the plane of the equatorof Phobos. Secondly, we address the computation of
the substitutes of the libration point orbits in the L1 and L2 regions of the Mars-Phobos system. If the operational
feasibility of a scenario including libration point motions was proved, these orbits could be used for very low altitude
observations or as an alternative to more classical approaches for descent operation. The main objective of the authors
was to develop robust and flexible tools for mission design, based on dynamical systems theory, that can support the
generation of operational scenarios for a Phobos exploration and sample return mission. We believe that this work
represents a significant step towards the comprehension andutilization of sophisticated operational trajectories inthe
unique dynamical environment provided by Mars and its moons.
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Nomenclature

BCBF : Body Centered Body Fixed
CRT BP : Circular Restricted Three Body Problem
ERT BP : Elliptic Restricted Three Body Problem
GH : Gravity Harmonics
ICRS : International Celestial Reference System
MMX : Mars Moon eXplorer
LPO : Libration Point Orbit
ODE : Ordinary Differential Equation
QSO : Quasi Satellite Orbit
S/C : spacecraft

1. Introduction

The design of trajectories for the exploration of the Mar-
tian moon Phobos has raised the interest of several space
agencies and researchers in the past few years ([1], [2],
[3]). Phobos is a tidally locked moon, whose equatorial
plane roughly coincides with its orbital plane, and also
with the equatorial plane of Mars. Any mission analyst
working in the Phobos environment has to deal with un-
usual problems, derived from the mass-ratio and length-
scale of this unique couple. To start with, the sphere of
influence of Phobos is so close to its surface that the Ke-
plerian motion of a S/C around this moon is not possible.
Therefore, the gravitational attraction of Mars has to be

included in any trajectory computation in the vicinity of
Phobos. Furthermore, neither the eccentricity of the orbit
of Phobos around Mars nor the non-uniformity of Phobos
gravitational field can be neglected when computing rep-
resentative motions in this environment. In the frame of
three body dynamics, a kind of orbits called Quasi Satel-
lite Orbits, inspired by the formation flying of two satel-
lites around a central body, have been identified as pos-
sible observation orbits at distances of several tenths of
km from the surface of Phobos ([4]). Besides, a simple
computation in the CR3BP shows that libration points L1

and L2 are only a few km above the surface of the moon.
Thus, orbits in these regions would be suitable for very
close proximity observations and their associated invari-
ant manifolds could be used for descent operations.

In the present paper, the work performed at CNES con-
cerning the trajectory design in the vicinity of Phobos for
a MMX-like mission will be presented. An introduction
including the dynamical models that have been used is
given in section 2. The methodology and some results
relevant to QSO orbit design are presented in section 3.
Furthermore, the discussion on how to find libration point
orbits in the Mars-Phobos system, as well as some pre-
liminary results are contained in section 4. The tools de-
veloped for this work are mainly aimed at mission design
purposes and preliminary orbit selection, from a dynam-
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ical systems theory point of view. Consequently, partic-
ular effort has been put on making them robust, flexible
and computationally efficient. Nonetheless, the final goal
of the authors is to generate a complete operational sce-
nario for a Phobos exploration mission. This is why our
work should not be regarded exclusively as a theoretical
exercise, but also as a practical approach to real mission
design.

2. Dynamical models used

As already mentioned, pure keplerian motion around Pho-
bos is not possible, as this moon has a collapsing sphere
of influence. Therefore, if one wants to study the dynam-
ics at the vicinity of Phobos, a three body problem taking
into account the gravity of Mars and Phobos has to be
considered. The simplest model describing the motion of
a particle under the three body dynamics is the CR3BP
(1).

ẍ−2ẏ = ∂Ω
∂x

ÿ+2ẋ = ∂Ω
∂y

z̈ = ∂Ω
∂ z

(1)

whereΩ(x,y,z)= x2+y2+z2

2 + 1−µ
r1

+ µ
r2

,

r1 =
√

(x−µ)2+ y2+ z2 andr2 =
√

(x+1−µ)2+ y2+ z2.

Equations (1) are expressed in the barycentric synodic
frame, rotating with Mars and Phobos, with normalized
mass, distance and time units (the interested reader can
refer for instance to [5] for further details).

However, even if the eccentricity of Phobos orbit around
Mars is not particularly high (e=0.0156), its effect is sig-
nificant on the motions of satellites flying in this environ-
ment. Therefore, the first step towards the computation
of realistic trajectories is the use of an elliptic three body
model, whose ODEs can be found in the equations below.

ẍ−2ẏ = ∂ΩE
∂x

ÿ+2ẋ = ∂ΩE
∂y

z̈ = ∂ΩE
∂ z

(2)

whereΩE(x,y,z)= 1
1+ecosν (

x2+y2+z2

2 + 1−µ
r1

+ µ
r2
). The true

anomaly of Phobos around Mars,ν , is the independent
variable of the dynamical equations (2), known as pulsat-
ing elliptic restricted three body problem. The mass unit
is normalized as for the CR3BP. Note that the fact of us-
ing the true anomaly as independent variable leads to a
time dependent normalized distance (actual orbital radius
of Phobos for each value ofν) and time units (the angular
velocity is not constant on an elliptic orbit).

Moreover, a complex gravity characterization of Phobos

should be used instead of the point mass approximation.
In the present paper, a spherical harmonics expansion of
Phobos gravity field up to order 4 based on Chao Rubin-
cam model has been used (see [6]). The GH model of
Phobos is only used as an estimate, allowing us to real-
ize in which way and up to which extent the three body
motions are impacted by this kind of irregular field. Nev-
ertheless, any mission spending a significant amount of
time in the vicinity of Phobos is bound to produce scien-
tific data which will allow for a better determination of
its gravity field. The trajectory designer should bear this
in mind, as the assessment of gravity differences between
the model used for the computations and the actual accel-
erations observed around Phobos might be among the cri-
teria for orbit selection (i.e. try to produce motions where
the gravity field effect can be quantified). Furthermore,
the design tools should be flexible enough to allow for
updates of the gravity model at any time, as surface op-
erations must take into account the most accurate model
available.

Note that the GH expansions for the gravity of a rotating
body allow us to compute its gravitational acceleration in
a frame centered at the body and whose axes rotate with
it (BCBF). Given that Phobos is a tidally locked moon, it
is straightforward to prove that the synodic 3 body frame
of the CR3BP can be transformed into Phobos BCBF by
a simple translation of the origin. Nevertheless, the time
dependence of the true anomaly in the pulsating ER3BP
is different from the angular rotation velocity of Phobos
around its own axis. Therefore, we would need differ-
ent time-dependent scaling of the GH of each degree,
(1+ ecosν)n. There is another solution, however, which
is to introduce a new set of dynamical equations, describ-
ing the dynamics of the ER3BP with the mean anomaly
as independent variable. Equations (3) provide the full
time-invariant ODEs of the Mars-Phobos ER3BP-GH in
Phobos BCBF frame, with the fixed physical units of the
CR3BP1. The termsUG,i stand for the gravitational ac-
celeration due to bodyi, which for the case of Phobos
includes the GH acceleration (see [7]).

ẍ−2ẏ = ∂ΩM
∂x

ÿ+2ẋ = ∂ΩM
∂y

z̈ = ∂ΩM
∂ z

ν̇ = ωz(ν)

(3)

where,

ΩM = UG,1(q − 1−e2
1+ecosν [1,0,0]T ) + UG,2(q) −

(1+ecosν)4

(1−e2)3

(

qT Pq
2 +(1−µ) 1−e2

(1+ecosν)2
x

)

,

q = (x,y,z), ω(ν) = (1+ecosν)2

(1−e2)3/2 [0,0,1]T , W(ν) = ω(ν)∧, P(ν) =

W2(ν)

1The introduction ofν as a new state variable, with ODE∂ν
∂M allows

us to treat the non-autonomous systems as if it was autonomous
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3. Quasi-Satellite Orbits

Since Keplerian bounded motions around Phobos do not
exist, another type of motions has to be computed in or-
der to explore this moon. It is possible toorbit Phobos in
a kind of trajectories called Quasi Satellite Orbits. These
relative motions with respect to Phobos are retrograde or-
bits, similar to the quasi-synchronous relative motion of
two satellites in formation flying (chief and deputy). The
difference between the QSO motions and the formation
flying quasi-synchronous orbits comes from the fact that
the mass of our chief satellite (Phobos) is not negligi-
ble, especially at distances of the order of tenths of km
from the surface of the moon. This results in a variety
of apparent motions of different relative periods, that tend
to the quasi-synchronous formation flying epicycle when
distances between the S/C and Phobos are of the order of
100 km or more. For the sake of complete surface map-
ping and precise gravity estimation, it may be interesting
to make the S/C move in QSOs with non-zero relative in-
clination with respect to Phobos equator, in order to fly
over high latitude zones. This is why the methodology
implemented at CNES is not limited to planar motions,
but can be extended to three dimensional QSO motions
with free size and relative inclination as chosen by the
user (within the limitations that result from the natural dy-
namics of the system, obviously). Finally, we would like
to note here that the search for 3Dperiodic motions has
not been performed in this work: the 3 dimensional orbits
that we compute are quasi-periodic motions. Periodicity
of the out-of-plane oscillations is a fragile feature, bound
to disappear in realistic dynamics, and therefore not of es-
sential interest for the purposes of operational trajectory
design.

3.1. Osculating elements

The work presented in this section is based on [8]. If we
are interested in relative motions of the S/C with respect
to Phobos, we can start by studying the unperturbed Hill’s
equations of relative motion for the elliptic case, assum-
ing that the attraction of the second primary is negligible
(µ=0). The corresponding equations of motion are called
Tschauner-Hempel equations (4), and correspond to the
well known Clohessy-Wiltshire equations for relative mo-
tion when e6=0.

ẍ−2ẏ− 3x
1+ecosν = 0

ÿ+2ẋ = 0
z̈+ z = 0

(4)

The general form of the solutions of the Tschauner-
Hempel equations can be written as a function of 6 pa-
rameters, C=[α, φ , δx, δy, γ , ψ] ∈ R6, that we will call

osculating elements.

x = α(1+ ecosν)cos(ν +φ)+δx

y =−α(2+ ecosν)sin(ν +φ)+δy

z = γ cos(ν +ψ)
ẋ =−α(sin(ν +φ)+ esin(2ν +φ))
ẏ =−α(2cos(ν +φ)+ ecos(2ν +φ))
ż =−γ sin(ν +ψ)

(5)

Note that in the expressions in (5),α and γ represent
the amplitudes of the motion in the in-plane and out-of-
plane directions, whileφ andψ play the role of injection
phases. Besides, non-zero values of (δx, δy) result in a dis-
placement of the center of the motion in the orbital plane
of Phobos ((0,0) being the center of mass of the moon).
Hence, the parameters in C can be seen as intuitive de-
sign parameters of the solutions of the Tschauner-Hempel
equations. Consider now the equations of the ER3BP (2)
with two additional hypothesis: a) The mass of the second
primary is much smaller than the mass of the first (µ ≪ 1)
and b) the S/C is in the close vicinity region of the second
primary (r2 ≪ 1). The second order terms inx,y,z, as well
as the terms that are multiplied byµ and not divided by
r2 can then be neglected because they are much smaller
than the remaining terms, giving as a result the following
differential equations:

ẍ−2ẏ− 3x
1+ecosν = − 1

1+ecosν

(

µx
r3
2

)

ÿ+2ẋ = − 1
1+ecosν

(

µy
r3
2

)

z̈+ z = − 1
1+ecosν

(

µz
r3
2

)

(6)

The method of variation of constants can then be applied
to the solutions of the Tauschner-Hempel equations (5), in
order to transform them into solutions of the equations (6).
This is how a set of ODEs of the osculating elements with
respect to time are obtained2. By solving the differential
equations of the osculating elements and using the rela-
tionships in (5), one can easily compute the cartesian state
vector of the S/C at each step of the integration. In this
way, we get a preliminary approximation to the QSO mo-
tion, which is not yet a solution of the full ER3BP because
some additional hypothesis have been used (see previous
paragraph).

A multiple shooting method is applied to the preliminary
QSO solution of equations (6) in order to transform it into
a solution of the complete ER3BP. Finally, if we also want
to include the effect of the irregular gravity of Phobos,
a numerical continuation method is started on the QSO

2These differential equations are not included here. The interested
reader should refer to [8]. Note however that some discrepancies exist
between equations 3.66 of Cabral’s document and the equations derived
by the authors.
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solutions of the ER3BP. The continuation parameterε
from 0 to 1 is multiplied toUG,2 in equations (3), with
the objective of controlling the percentage of high order
terms of the gravity field of Phobos that are taken into
account. Thus, at each step of the computation the differ-
ential equations governing the dynamics are slightly dif-
ferent, and we jump from one approximation to the next
one by using a multiple shooting method.

This methodology presents several advantages for the
mission analyst. First of all, it provides full control of
the design parameters of the QSO (amplitudes, phases
and displacement of the center). And secondly, there is
no qualitative difference between applying it to the planar
problem and applying it to the 6 dimensional space of the
3D case (no dramatic increase in computational time).

3.2. Two dimensional QSO orbits

When a QSO is contained in the orbital plane of Pho-
bos around Mars (z = ż = 0) we call it 2 dimensional.
In terms of the osculating elements, this means that the
out-of-plane amplitudeγ is set to 0. Periodic motions can
be found in Phobos BCBF frame by choosing a Poincaré
section (for instancex = 0) and looking for initial condi-
tions(0,y,0, ẋ, ẏ,0) which come back to the starting point
(0,y,0) with exactly the same initial velocity. In figure 1,
the relative period of the motion around Phobos of the
planar QSOs is presented, as a function of their minimum
distance to the surface. Moreover, some examples of the
2D QSOs that can be computed are shown in figure 2,
as well as table 1. Note that when the S/C is far enough
from Phobos (≥ 80 km) the gravity of this moon becomes
negligible and the relative motion of the S/C tends to a ke-
plerian epicycle3 with period equal to the orbital period of
Phobos and any-amplitude which is twice the amplitude
in x (in three body coordinates,x: coordinate along the
axis going from Phobos to Mars,y: axis perpendicular to
x-axis, in Phobos orbital plane,z: parallel to the angular
momentum of Phobos around Mars).

Table1. Examples of low altitude 2D QSO.
Size (km) hmin hmax Period
Ax, Ay (km) (km) (hours)

1 14 x 16 1.5 5 2.64
2 19 x 25 6.6 14.45 3.83
3 24 x 35 10.8 26.9 4.75
4 30 x 48 17.5 36.6 5.74
5 35 x 60 23.1 51 5.99
6 42 x 75 29.5 65.4 6.5
7 48.5 x 90 36.1 81 6.92
8 51.5 x 100 39.2 88.2 7.1

3The epicycle is the typical formation flying relative motion, when
the chief S/C has no gravity effect on the deputy
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Fig. 1. Period of the 2D-QSO orbits (hours) as a function of its
minimum distance to Phobos surface.
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Fig. 2. Examples of 2D QSO orbits with different periods (spherical
Phobos of radius 12 km, plotted to give an idea of the relative size of the
orbits). In the first row: 2D QSO with period 3.83 hours [1:2 resonant
orbit, orbit 2 in table 1] and in the second row: 2D QSO with period 5.7
hours [3:4 resonant QSO, orbit 4 in table 1]. On the left, the orbits are
plotted in the equatorial plane of Phobos in BCBF rotating frame, while
on the right the XY projection in Phobos centered ICRS frame isshown.

3.3. Three dimensional QSO orbits

For scientific purposes such as detailed imaging of the sur-
face or gravity model characterization, the computation of
3 dimensional motions around Phobos is required. The
closer to the surface and the more inclined with respect
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Table2. Examples of 3D QSO.
Size (km) hmin hmax Latitude
Ax, Ay, Az (km) (km) max (deg)

1 22 x 30 x 3 9.5 20 8.7
2 25 x 40 x 8 12.5 32 18.7
3 28 x 45 x 10 15.5 35.5 22.8
4 30 x 50 x 18 17.8 42.3 33.7
5 55 x 110 x 45 44 107.8 42.3
6 75 x 145 x 60 72.7 153.5 42.6

to Phobos equator that the S/C can fly the better, because
in this way areas at high latitudes are accessible with a
higher resolution. The problem of trying to decrease the
altitude while increasing the apparent orbital inclination
is that QSO motions quickly become unstable. It is be-
yond the scope of the present paper to perform mathemat-
ical stability analysis of the QSOs. Our goal is to use the
methodology that has been explained in the previous sec-
tions for generating 3 dimensional QSOs that allow both
the fulfillment of the scientific requirements and the oper-
ational stability of the associated scenarios (practical no-
tion of stability, meaning survival without ground control
for several days if needed).

The only difference of the 3D case with respect to the 2D
QSO generation of section 3.2. is that now the method-
ology has to be applied with an out-of-plane amplitude
γ 6= 0. We know from the literature that any QSO with
γ > 0.9α will quickly become highly unstable and we
have experienced it in our simulations. Bearing this in-
equality in mind, we have successfully computed 3D
QSOs for several couples ofγ andα respecting thissta-
bility condition, while trying to maximize the reachable
latitude above Phobos equator for each orbital size (see
table 2 for a summary of the characteristics of several 3D
QSO computed in this way).

When we allow the distance to Phobos surface to increase,
it is obviously easier to reach high latitudes of the sur-
face while respecting the stability relation between in-
plane and out-of-plane amplitudes. Nevertheless, distant
orbits may be unusable for particular scientific objectives,
as large distances to the target imply low resolution of the
observations. On the contrary, if either planar QSOs or 3D
QSO with small out-of-plane amplitude are used around
Phobos, the minimum distance to the surface can be dras-
tically reduced down to only a few km. The drawback
is that for the low altitude QSOs the observation of high
latitude regions becomes difficult and it may require large
depointing angles, which can seriously harm the quality
of the images. This is why motions like examples 3 and
4 of table 2 are interesting, because they exhibit a good
trade-off between reachable latitude and distances to the
surface (see figure 3).
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Fig. 3. Example of 3D QSO [orbit 4 in table 2]. 14 days integration un-
der the dynamics of ERTBP-GH. From top to bottom: Phobos centered
trajectory in ICRS frame, YX and YZ projection in Phobos BCBF (km),
Ground-track of the S/C on Phobos surface with altitude information
(red: 35 to 42 km, yellow: 25 to 35 km, green: 17 to 25 km).
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3.4. QSO orbits in realistic dynamical models

In the previous sections, a methodology for the computa-
tion of QSO trajectories in the ERTBP including the grav-
ity harmonics of Phobos has been presented. We consider
this methodology to be satisfactory for preliminary mis-
sion design purposes, as it allows for an assessment of the
types of QSO orbits, their sizes and orbital velocity, the
ground-track path on the surface of Phobos. . .. Further-
more, the tools that have been developed are fast (com-
putational time of the order of 1 minute for obtaining a
14 days integration of a 3D QSO orbit in the ER3BP-GH
model, with an Intel core i3 at 2.40 GHz) and flexible (as
the design parameters can be chosen by the user, and the
simulations can be easily run with different orbital param-
eters of Phobos around Mars or with a different spherical
harmonics model for the complex gravity of the moon).
Despite all these assets, our tools would be useless if they
provided as a final output an artificial 3D trajectory that
only made sense when integrated under simplified dynam-
ical equations. In other words, we need to check that we
are able to easily turn our preliminary approximations to
QSOs into operational trajectories, through a procedure
that implies as few changes in significant orbital charac-
teristics as possible.

Together with our colleagues at the GRGS, we have per-
formed the first step towards the transformation of our
QSO trajectories for use in a real mission, using a re-
alistic dynamical model which takes into account the
real ephemeris of Mars and Phobos, the complex grav-
ity model of this moon, the J2 attraction of Mars, Mars
tidal effects, the effect of the Sun as third body and the
solar radiation pressure, in addition to some almost neg-
ligible relativistic accelerations. The procedure that has
been used is the following:

a) Select an interval of time of several hours in the
ephemeris file obtained using the methodology ex-
plained above under the ERTBP-GH equations,

b) Apply a least squares method to adjust the state vec-
tor at the initial date in such a way that the numerical
integration of the orbit under the realistic dynamics
fits the preliminary QSO in the best possible way,
during the interval selected at step a),

c) Integrate the modified state vector from the previous
step under the realistic equations of motion for one
week.

If the final integrated trajectory of step c) maintains the
characteristics of the original QSO in the ERTBP-GH for
several days, we consider that our method fulfills the ex-
pectations of preliminary mission design and that our ap-
proximations to this kind of motion are usable for the
estimation of interesting parameters for Phobos explo-
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Fig. 4. Integration of a 30 x 50 x 18 km QSO using realistic dynamics.
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centered frame vs time, idem for Z coordinate and XYZ view of the
two trajectories (red=ER3BP-GH, blue=full model) for a total integra-
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ration such as the distances to the surface, orbital velocity,
eclipse duration. . . . This is the case for large and middle
size QSO orbits (from x amplitudes starting at 30 km),
which match the preliminary estimation of the trajectory
for around 2 to 3 days almost perfectly, and whose devia-
tions from it in a week are not dramatic and do not imply
qualitative changes in the aforementioned parameters. An
example of these results is shown in figure 4. On the con-
trary, for low altitude QSOs (≤15 km from the surface),
large deviations from the original QSO estimation were
detected at very early stages (just after day 1) when trying
to adjust the motion to make it follow a realistic model of
the dynamics. If the propagation was continued, for some
low altitude cases collisions or escape from Phobos vicin-
ity occurred before the end of the first week. We expect to
improve these results in the near future, simply by using
a more sophisticated adjustment of the initial conditions.
Nonetheless, the use of a spherical harmonics expansions
is probably not the best approach for low altitude orbit
computations. These results confirm the obvious fact that
the operations of the S/C in low altitude QSOs can entail
risks and that the fuel budget and frequency of the maneu-
vers can be significantly high, especially if the modeling
of the gravity of Phobos is not accurate enough or is not
taken into account in the appropriate way when generating
preliminary approximations to these orbits.

4. Libration Point Orbits

The so-called libration points of a three body system are
equilibrium points of the dynamical equations in (1). In
particular, L1 and L2 stand for the libration points at both
sides of the small primary of the system. The dynamics
around these points in the CR3BP has been exhaustively
studied in the past (see for instance the series of books
[9]). Periodic and quasi-periodic bounded orbits around
L1 and L2, belonging to the so-called center manifold,
can be computed by using numerical procedures. More-
over, the hyperbolic character of these equilibrium points
yields the existence of asymptotic manifolds associated to
the LPOs, which can be exploited for mission design pur-
poses. For the Mars-Phobos system, libration points are
found only a few km above the surface of Phobos (roughly
2 to 3 km). This means that the irregularities of the moon’s
gravity field will have a significant effect on the libration
point orbits and their manifolds. Consequently, any model
considering Phobos only as a point mass is not valid for
assessing the feasibility of the use of LPOs for Phobos
proximity operations. Furthermore, the eccentricity of the
orbit of Phobos around Mars also has an effect on the mo-
tion of the S/C. The final goal of the work presented in
this section is to compute the dynamical substitutes of the
libration point orbits in a three body model taking into
account the irregular gravity of Phobos and the orbital ec-

centricity of the moon (ER3BP-GH). Impressive advances
in this direction have been done in [7], and this PhD. dis-
sertation has inspired most of the work explained in the
following paragraphs.

The methodology we plan to apply to fulfill the objec-
tive of computing the dynamical substitutes of LPOs in
the Mars-Phobos environment can be summarized in the
following steps:

1. Computation of a LPO with the desired design pa-
rameters (size, period. . .) or an associated manifold
in the CR3BP, using the methods found in the litera-
ture (like the Lindstedt-Poincaré procedures [10]).

2. Computation of the dynamical substitute of the ob-
ject computed in step 1) in a model taking into ac-
count the GH of Phobos, by means of a numerical
continuation method. The continuation parameterε
varying from 0 to 1 allows for a progressive inclusion
of the acceleration caused by the GH of Phobos.

3. Assessment of the effect of the eccentricity of Pho-
bos and obtention of the corresponding object in the
ER3BP-GH (equations (3)), by using the eccentricity
as continuation parameter (from 0 to e=0.0156).

The final trajectories after step 3) are not fully realistic or-
bits yet. Nevertheless we believe they are a good starting
point for the estimation of representative quantities such
as the size and orientation of the LPOs, their periods and
station keeping costs, as well as for the assessment of the
feasibility of the use of the associated invariant manifolds
for operational issues such as the transfer from low alti-
tude QSO to the LPO region, or for descent and ascent
operations in the sample return phase. Unfortunately, the
development of our analysis tools is still on-going at the
moment of writing this paper and therefore, concluding
results cannot be presented by the authors yet. However,
it will be shown in what follows that the characteristics
of the LPOs in the Mars-Phobos environment change in
a qualitatively significant way when computed in models
that are not the plain CR3BP, contrarily to what happens
in other systems, classicaly modeled by using the CR3BP
(such as the Sun-Earth). Therefore, we strongly recom-
mend discarding the use of this simplified model for the
study of LPOs in the environment of the Martian moons.

4.1. Periodic orbits in the CR3BP-GH

For the sake of simplicity and as a first application of
the methodology, only periodic orbits around the libra-
tion points L1 and L2 have been taken as initial orbits
in the CR3BP and transformed into periodic motions in
the CR3BP-GH. Planar Lyapunov orbits have been com-
puted in the Mars-Phobos CR3BP, with sizes going from
a few hundreds of meters to several kms (in the direction
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of the axis joining Mars and Phobos). Moreover, 3D halo
orbits have also been computed, with Y amplitudes that
can reach several km. The inclusion of Phobos spheri-
cal harmonics expansion in the equations of motion has a
qualitative effect on these families of periodic orbits: they
are progressively tilted and their shapes and periods can
be affected. An example of a planar Lyapunov orbit with
initial amplitude of 500 m in the x direction is presented
here (see figure 5). For this example, the gravity harmon-
ics have been introduced thanks to a 10 step continuation.
The objective at each step was to find a periodic orbit,
with a period as close as possible to the initial one. In
the future, we plan to introduce more elaborated continu-
ation methods, such as the energetic approach explained
in section 4.2 of [7]. Moreover, other ways of express-
ing the irregularities of Phobos gravity field will have to
be explored, in order to assess its impact on the evolution
of the periodic orbit families. For instance, the use of a
gravity model derived from a high fidelity shape model of
the moon (assuming constant density) can cast some light
on the effects of the non-sphericity of the moon for very
low altitude operations around features such as the Stick-
ney crater4. We acknowledge that these effects cannot be
observed when using spherical harmonics expansions.
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Fig. 5. Continuation of planar Lyapunov orbit, CR3BP to CR3BP-GH.

4.2. Effect of Phobos eccentricity

Additional simulations have been done using the final or-
bits computed in the previous section (i.e the dynamical
substitutes of the LPOs resulting from the inclusion in
the equations of motion of the CR3BP of the acceleration
computed by the spherical harmonics expansions of Pho-
bos gravity field) and using a continuation method on the
value of the eccentricity to transform them into solutions
of the ER3BP-GH. These analyses are still not finished
at the moment of writing the paper. However, we have

4The polyhedron gravity model has been used by the authors for the
mission analysis of other space probes ([11], [12]) but it is yet to be
implemented for Phobos, even though its use would probably help the
design of the descent and sample return operations

already been able to observe some features of the behav-
ior of the dynamical substitutes of LPOs in the ER3BP-
GH. Contrarily to what happened when we introduced the
effect of the GH, switching on the eccentricity does not
result in a significant modification of the qualitative char-
acteristics of the LPOs. The orbits keep their size and
relative tilting or inclination with respect to the axes of
the Mars-Phobos synodic frame (see figure 6). However,
we have not been able to find periodic motions similar
to the original LPOs in the ER3BP-GH yet. This can be
due to an implicit problem of the methodology that is ap-
plied, which may not be able to catch the libration effects
derived from the eccentricity by simple numerical contin-
uation. We want to investigate this issue in the near future,
before moving on in terms of stability assessment, station
keeping and navigation issues and the computation of the
manifolds associated to the new objects in the ER3BP in-
cluding the irregular gravity of Phobos.
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Fig. 6. Evolution of an example LPO, from CR3BP to ER3BP-GH.

5. Conclusions

In this paper, the work performed at CNES devoted to the
trajectory design for the proximity operations of a Phobos
exploration mission has been presented.

On the one hand, for Phobos observation at altitudes of
several tenths of km from the surface, we have developed
a tool for QSO computation which uses a robust trajectory
generation method, with application oriented results. It al-
lows for a fast generation of preliminary QSO trajectories
using intuitive design parameters known as osculating el-
ements. The characteristics of this method, using several
dynamical systems methods for preliminary approxima-
tion to QSOs, as well as multiple shooting and numerical
continuation techniques for dynamical equationsupgrade,
represent a remarkable improvement with respect to the
brute-force numerical search for solutions. It is worth not-
ing that our methodology uses a single representation of
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both the planar and the 3D QSOs, with similar computa-
tional effort despite the difference in the phase space di-
mension of these two cases. Furthermore, the trajectories
that are obtained are suitable for preliminary assessment
of mission design parameters, as it has been proved that
they can be easily converted into realistic motions. Fi-
nally, our methodology has provided notable results for
the generation of QSO trajectories that are particularly de-
manding in terms of the trade-off between altitude from
the surface and relative inclination with respect to Phobos
equator. This type of QSOs may be the most interesting
for scientific purposes, such as the global mapping of the
surface of Phobos or the measurements aimed at improv-
ing the current knowledge of this moon’s gravity field.

On the other hand, we have also developed tools for the
computation of dynamical substitutes of libration point or-
bits using the specific dynamics of the Mars-Phobos sys-
tem. As an example, the dynamical substitute of a planar
Lyapunov orbit around the L1 point has been presented.
The goal of our on-going studies is the improvement of
the numerical methods used for the computation of LPOs
in the ER3BP taking into account Phobos irregular gravity
field, in addition to the computation of invariant manifolds
associated to the dynamical substitutes of these LPOs. We
have good reasons to believe that even if the aforemen-
tioned orbits and manifolds may not completely solve the
problem of descending to the surface for sample recollec-
tion, they can provide an alternative scenario for observa-
tions at very low altitude, as well as help solving trans-
fer problems from the QSO to the surface and backwards
(see [7], [3]). In the near future, we plan to use our find-
ings in this topic to propose an operational scenario using
the LPOs for an MMX-like mission.
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