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The Martian moon Phobos is of great interest for both planetary science and space exploration motivations, and has been the

frequent target of space missions and remote observations. However, orbital dynamics in its vicinity are strongly perturbed relative to

Keplerian motion, with its extreme environment extending to its surface as well. Thus, to plan and implement missions in the vicinity

of and on Phobos will require these considerations be taken into account. We use the latest published models of the Phobos shape and

dynamics to characterize its dynamical environment, both in close proximity orbit about the body and for motion across its surface.

The results of this study have direct application to any orbital, landing or surface motion mission to this body.
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1. Introduction

Previous studies of dynamics in the Phobos system have been

made, with a few that focus on both orbital and surface motion.

Wiesel12) presented an analysis of motion in this system using

simplified shape model for Phobos. Dobrovolskis2) analyzed

motion from the surface and studied its tidal stresses. More re-

cently, Zamaro and Biggs15) performed a systematic study of

the system using both ellipsoidal and shape-based models. In

our study we consider both surface motion issues and orbital

stability issues. We start with a discussion of the base model

used throughout the paper. Then we consider the surface force

environment and dynamical constraints for motion on the sur-

face. Following this we consider orbital motion about Pho-

bos, both neglecting and accounting for the small eccentricity

of Phobos’ orbit.

2. Model for Motion in the Phobos System

2.1. Phobos Shape and Gravity Model
Recent camera images with a resolution of approximately

100 m/px taken by the Mars Express spacecraft enabled the de-

velopment of a higher-resolution shape model. Willner et al.

used these images to construct a degree 45 spherical harmonic

model of Phobos, which captures significant surface detail and

provides a continuous shape representation.14) In this model,

the radius ρ of a surface point is expressed using Fourier series

function of its latitude λ and longitude φ, as:

ρ(φ, λ) =

J∑
j=0

j∑
k=0

(
Ajk · cos (kλ) + Bjk · sin (kλ)

)
· Pjk(sin φ)

(1)

where Ajk and Bjk are the degree j and order k spherical har-

monic coefficients, Pjk is the corresponding associated Legen-

dre function, and J is the maximum degree of the considered

shape model. On the left side of Fig. 1, we show the Phobos

shape that is constructed using this model.

The gravitational field of a spherical harmonic shape can be

evaluated using a series expansion similar to that of Eq. 1. Un-

fortunately, this series diverges when evaluated inside of the cir-

cumscribing sphere of the considered shape. In order to study

Fig. 1. (left) Degree and order 45 spherical harmonics and (right) polyhe-

dron shape model of Phobos.

the surface dynamics of a body, for which gravity field eval-

uations on the surface are necessary, we therefore cannot use

spherical harmonics for gravitational computations. Instead, we

make use of the constant-density polyhedron model, as devel-

oped by Werner and Scheeres.11) This model can be evaluated

both inside and outside of the circumscribing sphere of a body,

and is therefore well-suited to perform gravity field evaluations

on the surface. We construct the polyhedron-equivalent of Pho-

bos’ spherical harmonic shape by tessellating the shape model

such that the resulting polyhedron has n = 2, 562 vertices; this

model is shown on the right-hand side of Fig. 1. By combining

the computed volume of this polyhedron and the total mass of

Phobos M = 10, 678 × 109 kg, the corresponding polyhedron

density is computed as σpoly = 1.8611 g/cm3. For comparison,

Willner et al. use a bulk density of σsh = 1.8600 g/cm3 for

Phobos’ spherical harmonic shape. With this density value, we

can finally evaluate the gravitational potential U(r), accelera-

tion ∇U(r), and gravity gradient matrix ∇∇U(r) at any position

r = [x, y, z]T near or on Phobos.

Surface computations are carried out with respect to a

Phobos-fixed rotating frame whose positive x-axis points to

Mars. The positive z-axis is aligned with Phobos’ rotation axis,

and the positive y-axis points opposite to Phobos’ velocity vec-

tor. Although Phobos orbits Mars with a semi-major axis of

a = 9, 375 km and a slight eccentricity of e = 0.151,13) for sur-

face computations we assume its orbit to be circular, such that

the relevant accelerations are invariant along that orbit. The net

acceleration experience by a particle with position r and veloc-



ity ṙ in the Phobos-fixed frame can be expressed as:13)

r̈ = ∇U(r)−ω×ω×r−2ω×ṙ+μMars·
(

rMars − r
|rMars − r|3 −

rMars

|rMars|3
)

(2)

where ω =
√
μMars/a3 · ẑ is the angular velocity of Phobos,

μMars = 4.2828372854 × 1013 m3/s2 is the gravitational param-

eter of Mars, and rMars = [a, 0, 0]T is the position vector of

Mars (assumed constant) in the Phobos frame.

Eq. 2 has four acceleration terms: the gravitational attrac-

tion from Phobos ∇U(r), centrifugal acceleration −ω × ω × r,

Coriolis acceleration −2ω × ṙ, and the tidal acceleration from

Mars μMars. The Coriolis acceleration is zero for stationary par-

ticles, which is the case for all further results in this paper, un-

less explicitly mentioned otherwise. Finally, we note that Eq. 2

corresponds to the acceleration of a particle in the restricted

three-body problem (CR3BP), though the gravitational field of

the secondary body is not restricted to that of a point mass.

2.2. Hill Approximation
When the Mars-Phobos distance a is much greater than the

particle-Phobos distance r, i.e., a � r, Eq. 2 can be simplified.

This results in the famous Hill 3-body problem, in which the

net particle acceleration is given as:8)

r̈ = ω2

⎡⎢⎢⎢⎢⎢⎢⎣3x
0
−z

⎤⎥⎥⎥⎥⎥⎥⎦ + ω
⎡⎢⎢⎢⎢⎢⎢⎣ 2ẏ
−2ẋ

0

⎤⎥⎥⎥⎥⎥⎥⎦ + ∇U(r) (3)

The accuracy of this approximation can be questioned, as Pho-

bos’ orbit lies a mere 2.4 Mars radii away from the surface. To

quantify the accuracy, we generate distributions of the net sur-

face acceleration across Phobos’ surface with both the full and

simplified equations. These distributions are shown on latitude-

longitude contour plots in Fig. 2, together with the relative dif-

ference between the two expressions. Inspecting this figure, we

find that the two expressions are indeed in very close agreement,

with the largest error at the sub-Mars point at 0.08%. This al-

lows us to use the simplified expression to evaluate the net ac-

celeration on a particle in the Phobos environment.

Fig. 2. Net surface acceleration computed with (top) full and (middle)

simplified expression, and (bottom) their relative differences.

2.3. Acceleration components
In Fig. 2, we plot the distribution of the net acceleration mag-

nitude across the Phobos surface. In Tab. 1, we provide ap-

proximate magnitudes of the separate acceleration components

corresponding to Phobos gravity, Mar’s gravity, and centripetal

Table 1. Acceleration magnitudes in mm/s2.

Acceleration Poles Leading/trailing Sub/anti-Mars

Total 6.3 5.6 3.5

Gravitational 5.8 5.6 5.4

Tidal 0.4 0.6 1.3

Centrifugal 0.0 0.6 0.6

at, respectively, the poles, leading/trailing edges, and sub-/anti-

Mars points. Please note that, as the accelerations act in differ-

ent directions, their magnitudes do not necessarily add up to the

magnitude of the total acceleration.

2.4. Surface slope
Using the net acceleration provided by Eq. 3, we can compute

the local slope θ across the surface of Phobos, as:

θ = arccos

(
N̂ · r̈
‖r̈‖
)

(4)

in which N̂ is the surface normal. The resulting slope distribu-

tion is included in Fig. 3. We find slopes of up to 35◦, though

most surface regions have a slope smaller than 15◦. As ex-

pected, the highest slopes are found on crater rims, particular in

Stickney crater. These results match those computed by Willner

et al.14)

Fig. 3. Slope distribution across the surface of Phobos.

3. Surface Dynamical Environment

Now we consider the characterization of dynamical limits re-

garding motion on and emanating from the Phobos surface.

3.1. Energy and Velocities
Although the motion of a particle in the Phobos neighbor-

hood does not have any analytical solutions, the three-body

motion expressed by Eqs. 2 and 3 does permit one integral of

motion that provides insight into the feasible trajectories of a

particle. This integral is commonly known as Jacobi’s integral
for the restricted three-body problem. Using our Phobos-fixed

frame and the HCW equations and their corresponding assump-

tions, the integral reduces to a simpler form:

C =
1

2
ω2
(
3x2 − z2

)
+ U(r) − 1

2
v2 (5)

This integral, which expresses the total energy of a particle in

the Phobos-fixed frame, may be used to study the regions within

the three-body system that are accessible to the particle, given

some set of initial conditions. By setting v = 0 and evaluating

Eq. 5 across Phobos’ surface, we can determine the the energy

distribution of stationary particles on the surface (Fig. 4).



Fig. 4. Jacobi constant distribution across the surface of Phobos.

3.2. Equilibrium points and Roche lobe
The distribution of the Jacobi constant C within the xy-plane

of the system is shown in Fig. 5, where we identify two equi-

librium points. To compute them precisely we iteratively solve

the equation ∇C = 0 to find the L1 and L2 equilibrium points,

rL1
=

⎡⎢⎢⎢⎢⎢⎢⎣17.366
−0.435
−0.322

⎤⎥⎥⎥⎥⎥⎥⎦ km and rL2
=

⎡⎢⎢⎢⎢⎢⎢⎣−17.246
−0.514
−0.096

⎤⎥⎥⎥⎥⎥⎥⎦ km (6)

which have corresponding Jacobi constants CL1
and CL2

.

Fig. 5. Zero-velocity curves and Roche lobe of Phobos.

Included in Fig. 5 are also the equipotential lines within the

xy-plane that have the same Jacobi constant (and therefore the

same energy level) as the L1 and L2 points. For the L1 point,

the resulting closed curve is known as the Roche lobe. All sta-

tionary particles that lie within this lobe are energetically bound

to remain in Phobos’ vicinity; particles outside of the lobe are

not. This means that, energetically, any stationary particle lo-

cated outside of the Roche lobe could escape Phobos’ vicinity

through the neck region around L1 and depart on some orbit

that takes it further away from Phobos (return to Phobos is pos-

sible, but not guaranteed within finite time). Inspecting Fig. 5,

we find that Phobos’ leading and trailing edges partially lie out-

side of this Roche lobe. Particles on these edges are therefore

not energetically bound to Phobos, and could escape through

the L1 neck region. A similar curve can be constructed using

the energy level of the L2 point; as the two equilibrium points

have highly similar energy levels, the L1 lobe lies very close to

the L2 Roche lobe. Most particles on the leading/trailing edge

therefore also have the energy to escape throguh L1. However,

this does not mean those particles have a physical path along

which to escape. Indeed, a stationary particle on Phobos’ lead-

ing/trailing edge would have to burrow through the surface in

order to reach either of the neck regions.

3.3. Guaranteed return speed
Stationary particles outside of the L1 and L2 lobes have suf-

ficient energy to escape the respective neck regions; particles

within these lobes do not, and are therefore bound to remain

within Phobos’ vicinity. However, when the latter are given

some velocity v, their energy as given by the Jacobi constant C
increases, such that the neck regions may open up and allow de-

parture from Phobos. The necessary velocities can be computed

from Eq. 5 as:

Vi =

{√
2
(
C −CLi

)
if C −CLi > 0

0 if C −CLi ≤ 0
(7)

where C is the Jacobi constant of the considered surface loca-

tion. The velocity Vi is the guaranteed return speed, as particles

with a velocity lower than Vi cannot pass through the corre-

sponding neck region and escape the Phobos vicinity. Particles

with a lower velocity are therefore guaranteed to eventually re-

turn to the surface. The surface distributions of V1 and V2 are

shown in Fig. 6. Following the difference in L1 and L2 energy

levels, the escape speeds V2 are slightly higher than the guar-

anteed return speeds V1. We also find that, in addition to the

leading and trailing edges, particles on Phobos’ northern pole

have sufficient energy to escape. This suggests that surface mo-

bility operations are safest when carried out at the sub- and anti-

Mars points, and at the southern pole as vehicles operating on

these regions do not have sufficient energy to escape Phobos’

vicinity. Craft operating on the leading/trailing edges or on the

northern pole could escape through either L1 or L2 after a small

hop, either intentionally or unintentionally.

Fig. 6. (top) Guaranteed return speed for (top) the L1 neck region and

(bottom) L2 neck region.

3.4. Lift-off velocity
The guaranteed return speeds are defined energetically and

do not restrict the direction of these velocities; both normal

and tangential velocity components are allowed. When we re-

strict the particle velocity to be purely tangential, a third type of

‘speed limit’ can be derived that relates to temporary and local

lift-off from the surface. This lift-off velocity is defined by Van

wal and Scheeres9) as “the (tangential) surface velocity given to
a particle on a body with arbitrary shape, rotation, and gravity,
at which the particle will locally lift off from that surface in its
direction of travel.” It can be expressed as:

Vθ = ±
√
ρ2
θ

(
b̂δ ·Ω

)2
+ ρθb̂ρ ·

(
Ω̃ · Ω̃ · P − aE

)
− ρθb̂δ ·Ω

(8)

where ρθ is the surface radius of curvature in the direction of

travel b̂θ, which governs the magnitude of the lift-off velocity



Vθ. The velocity magnitude therefore varies as a function of

the direction of travel, and displays a minimum and maximum

that are roughly aligned along and against the local surface rota-

tional velocity. For a detailed discussion of the properties of this

expression, and computation strategy for ρ for spherical har-

monic shapes, the reader is referred to.9)

In Fig. 7, we show the surface distribution of minimum and

maximum lift-off velocities. Please note that lift-off is only pos-

sible when the surface is locally convex; black regions in Fig. 7

are locally concave and are therefore given an infinite lift-off

velocity. We find that lift-off is possible in most regions at a

velocity of roughly 2 m/s, and is guaranteed in most regions at

velocities greater than 8 m/s. In most regions, surface mobility

operations can therefore safely be carried out at velocities up to

2 m/s, and should never exceed 8 m/s.

In addition to this lift-off velocity across the curved Phobos

surface, we can also develop a lift-off criterion using the local

surface normal and net acceleration. This criterion, known as

the ridge lift-off velocity, expresses the velocity required for a

very brief ‘air time’ after an object with finite radius R rolls off

a small ridge or asperity on the surface, such as a rock. This ve-

locity is independent of the direction of travel, but does depend

on the object radius R, and is equal to:

VR =
√
−RN̂ · r̈ (9)

In Fig. 8, we plot the distribution of the normalized ridge lift-

off velocity, i.e., of VR/
√

R. The values shown therefore also

correspond to the ridge lift-off velocity of an object with radius

R = 1 m. These results show that although an object can move

on Phobos’ surface at velocities of several meters per second

without lifting off and entering a global ballistic trajectory, we

can expect a reduction in friction/traction with the surface at ve-

locities exceeding roughly 7 cm/s due to brief ballistic intervals

due to “bumps” on the surface.

Fig. 7. (top) Minimum and (bottom) maximum lift-off velocity across the

surface of Phobos.

4. Orbital Environment

The Phobos orbital environment is now characterized using

previously developed methodologies focusing on periodic or-

bits and their stability. We consider families that both ignore

the eccentricity of Phobos’ orbit, and those that account for it.

Fig. 8. Normalized ridge lift-off velocity across the surface of Phobos.

4.1. Periodic Orbit Families about the Libration Points
Ignoring the Phobos eccentricity, its shape is fixed in the Hill

rotating reference frame allowing us to study the periodic orbits

emanating from its libration points. The lack of symmetry of

the HR3BP+shape model makes the periodic orbit computation

more challenging since the periodic orbit families no longer in-

tersect with each other (except at the equilibrium points where

each Floquet multiplier pair corresponds to an emanating fam-

ily of periodic orbits). Since bifurcations can be quite help-

ful for exploring periodic orbit families, we start from an in-

termediate, symmetric model: HR3BP+ellipsoid. That is, in-

stead of using an irregular shape, Phobos is represented as a

uniform density tri-axial ellipsoid whose mass and moments of

inertia are the same as the polyhedron’s. In all three models

(HR3BP, HR3BP+ellipsoid, HR3BP+shape), there are two li-

bration points L1 and L2, though their locations differ between

the models. The L1 point lies between Mars and Phobos (x < 0

in the plots), and the L2 point is on the far side of Phobos

(x > 0 in the plots). In all the cases, both libration points have

stability (Floquet multiplier pairs) of type: center, center, sad-

dle. As in the usual HR3BP, the two center components in the

HR3BP+ellipsoid correspond to planar and vertical periodic or-

bit families. A notable difference between the HR3BP and the

HR3BP+ellipsoid model is that in the latter model the halo or-

bits bifurcate from the vertical Lyapunov orbits rather than the

planar ones. We can, however, take advantage of the fact that

our non-symmetric model may be close to a symmetric model.

In this case, we can trace out the periodic orbit bifurcation be-

havior in the symmetric model, then use a homotopy method to

move some of these orbits to the non-symmetric model. This

way we can obtain orbits in the non-symmetric model that are

not directly connected to the equilibrium point. Once we have

one orbit on the disconnected branch, we can perform continu-

ation of its family strictly in the non-symmetric model. If the

non-symmetric model is far from the symmetric model, com-

pletely new branches may also appear that are unrelated to any

in the symmetric model.

Periodic orbits related to the libration points in the

HR3BP+shape model are shown in Figure 9. Here the pla-

nar orbits shown in green have a similar structure to the ellip-

soid case, except now these orbits have some small out-of-plane

component. However, since the shape model is not symmet-

ric, the bifurcation along the vertical orbit family is no longer

present. Instead the small vertical orbits merge into southern

halo orbits for L1 (red branch), and the small vertical orbits

merge into the northern halo orbits for L2 (yellow branch). For

L1, the large vertical orbits (blue) merge into the northern halo

orbits (yellow); for L2, the large vertical orbits (blue) merge

into the southern halo orbits (red). The approximate turning



Fig. 9. Periodic orbits for Mars-Phobos HR3BP+shape model.

points are shown as black orbits. Neither of these branches are

directly connected to its corresponding libration point. Rather,

they were computed by using the homotopy method to move

a large vertical orbit from the (symmetric) HR3BP+ellipsoid

model to the (non-symmetric) HR3BP+shape model. Then,

standard pseudo-arclength continuation could be used to gener-

ate the entire branch (including going beyond the turning point).

While the rich structure in these periodic orbit families is of

interest, we note that they are all unstable orbits in general.

Most relevant, we note that the small interval of stable halo

orbits that exist in the Hill problem are not present about Pho-

bos. Thus, while these orbit families control the dynamics about

these regions of space, they do not have any direct practical use

as their instability times are quite short.

4.2. Stable Periodic Orbits about Phobos
Finally, we consider the family of retrograde periodic orbits

about Phobos analogous to the stable retrograde in the Hill 3-

body problem.4) When far from the body, these degenerate into

the 2:1 ellipse orbits found in the Clohessy-Wilshire equations.

In our case, we compute both the stable family when the eccen-

tricity is zero, and the quasi-periodic orbits that emerge when

non-zero eccentricity is considered.

4.2.1. Dynamical Model for an Eccentric Phobos Orbit
When the Phobos eccentricity is accounted for, following an

ellipse around Mars with e = 0.01515, the equations of motion

of the spacecraft can be described by the elliptic Hill Problem

Elliptical Hill Problem (EHP),10) and can be written as a modi-

fication of our earlier equations of motion as:

r′′ =
1

1 + e cos ν

⎡⎢⎢⎢⎢⎢⎢⎣3x
0
−z

⎤⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎣ 2y′
−2x′

0

⎤⎥⎥⎥⎥⎥⎥⎦ + 1

1 + e cos ν
∇Ū(r) (10)

where the ′ indicates a derivative with respect to the Phobos 2-

body true anomaly about Mars and the time and length units

of Eq. (10) are normalized such that one orbital revolution of

Phobos around Mars corresponds to 2 π (i.e., ω = 1) and such

that the resonance radius8) a (μ/GM)(1/3) is equal to 1 with μ as

the gravitational parameter of Phobos, GM as the gravitational

parameter of the Red Planet, and a as the semi-major axis of the

planetary satellite. Ū(r) represents the potential normalized by

these quantities. It is assumed that the effects of Mars’ oblate-

ness are negligible, so that the trajectory of Phobos around Mars

can be simply described by its two-body dynamics. Finally, ν
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Fig. 10. Period vs positive x-crossing for the family of quasi-satellite or-

bits with e = 0. Only the periodic orbits whose period is resonant with 2 π

survive when e � 0.

is the true anomaly of the planetary satellite as well as the inde-

pendent variable of (10).

It is worth noting that ∇Ū(r) is obtained from the rotation

of the gravitational acceleration computed in Phobos’ principal

axes frame B with the algorithm outlined in.11) This accounts

for kinematic librations due to the eccentricity of Phobos’ orbit.

In particular, knowing that Phobos is in a synchronous state and

assuming that the principal axes of the small body are oriented

such that x̂P is pointing towards the anti-Mars direction, ẑP is

aligned with ẑ, and ŷP = ẑP × x̂P, the direction cosine matrix

that maps vectors in B to vectors in S is given by

[SB] =

⎡⎢⎢⎢⎢⎢⎢⎣ cos φ, sin φ, 0
− sin φ, cos φ, 0

0, 0, 1

⎤⎥⎥⎥⎥⎥⎥⎦ (11)

where the libration angle φ = ν−M is equal to the instantaneous

difference between ν and Phobos’ mean anomaly M.

4.2.2. Periodic Orbits
By inspection of Eq. (10), it is apparent that the equations of

motion depend explicitly on the independent variable ν. Con-

sequently, the EHP is a nonautonomous system that does not

depend on any external parameter as long as the eccentricity of

the planetary satellite is fixed. Following Broucke,1) this means

that periodic orbits are no longer organized in families but are

isolated at best. In particular, the period must be resonant with

the periodicity of the equations of motion (10), i.e., with the

orbital period of Phobos around Mars.

As an example, consider the family of quasi-satellite orbits

found in the circular case e = 0 when [SB] is also equal to the

identity matrix. Fig. 10 displays the chart of the periodic orbit

period versus the x-axis crossing with v < 0, illustrating that

only those whose period is resonant with 2 π actually survive

when the eccentricity of Phobos is taken into account.

4.2.3. Quasi-periodic Tori Calculation
As pointed out by Jorba and Villanueva,5) quasi-periodic in-

variant tori of a six-dimensional non-autonomous Hamiltonian

system such as (10) lie in one-parameter families. This is equiv-

alent to periodic orbits in the autonomous circular case. As

such, quasi-periodic invariant tori should be seen as key play-

ers in understanding and organize the dynamics of the EHP. In

fact, each of the family members of the QSO family illustrated

in Figure 10 gets replaced by a two-dimensional quasi-periodic



Fig. 11. a) Family of QSO periodic orbits in the circular Hill problem. b)

Family of quasi-QSO invariant tori in the elliptic Hill problem. The units in

these plots are normalized as described in the text.

invariant torus that belong to a family of quasi-QSO tori.

To compute these invariant manifolds, consider the numeri-

cal algorithm outlined in Gómez & Mondelo3) and Olikara &

Scheeres7) (GMOS). The main idea of the GMOS algorithm is

that quasi-periodic invariant tori can be calculated as invariant

curves of a stroboscopic mapping by solving a boundary value

problem. The interested reader may find more information on

the methodology in the PhD. thesis of Olikara.6)

Some example periodic orbits for the circular case are shown

in Fig. 11, top while example quasi-periodic orbits for the ec-

centric case are shown in the bottom frame. All of these solu-

tions are stable, meaning that perturbations from each of these

cases will lie on quasi-periodic orbits in general and just os-

cillate about the nominal solution. The quasi-periodic orbits

shown in the bottom are driven by the periodicity of the Pho-

bos eccentric orbit, and we see that their amplitude grows as

they move between the low-order resonances shown in Fig.

10. As the specific resonances are approached, the tori am-

plitudes shrink until they degenerate into periodic orbits at the

precise resonances, meaning that they lose a dimension. The

existence of these stable quasi-periodic orbits in the eccentric-

ity driven case imply that precise mission orbit designs can be

flown, with consistent periodic crossing of the two distinct pe-

riods distributed about the body.

5. Conclusion

This paper presents and provides a comprehensive analysis

of dynamics about and on the surface of the Martian moon Pho-

bos using the best currently available models. The intent of

this paper is to provide support for the planning of missions to

this body. We find detailed results for surface motion, includ-

ing limits on the rate of travel on the surface to ensure contact

with the surface. For orbital dynamics, we map out the fam-

ilies of orbits in the vicinity of the synchronous orbits about

Phobos, noting that their bifurcation structure becomes signifi-

cantly shifted from the ideal symmetric cases most commonly

investigated. Finally, we provide detailed analysis and results

for the family of stable retrograde orbits about Phobos, which

retain stability up to contact with the surface. When the eccen-

tricity of Phobos is taken into account these orbits expand into

quasi-periodic orbits.
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