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Cassini’s Grand Finale Mission begins after the last targeted Titan flyby on April 22, 2017 and ends with a series of 22 ballistic
orbits each passing within a few thousand kilometers of the cloud tops of Saturn, ultimately impacting the planet on September 15,
2017. Despite the ballistic nature of the trajectory, the absence of targeted maneuvers throughout the final orbits causes position uncer-
tainties to grow exponentially with time, posing a significant difficulty for the science sequence planning team. Thus, a strategy that
incorporates trajectory correction maneuvers was developed to significantly reduce dispersions from the reference path and maintain
dispersions below 250 km (1-σ). In this paper, the linear method used to determine the optimal number and location of the maneuvers
to control the trajectory, along with the corresponding targets, is detailed. A nonlinear Monte Carlo trajectory dispersion tool served as
a testbed to validate the linear analysis results. Based on orbit determination covariance sampling with Monte Carlo simulations, the
linear approach allowed the Cassini maneuver analysts to run thousands of maneuver combinations in little time, eventually finding
an optimal strategy with three statistical maneuvers (∆V99 < 1.5 m/s) to adequately control most of the trajectory.
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Nomenclature

Subscripts
0 : initial
f : final
p : perturbed

Acronyms

INT : integrated
STM : State Transition Matrix
OTM : Orbit Trim Maneuver
OD : Orbit Determination
RCS : Reaction Control System
SVD : Singular Value Decomposition

P : Periapsis

1. Introduction to The Problem

After almost twenty years of successful mission operations
and invaluable scientific discoveries, the Cassini orbiter contin-
ues to tour Saturn on the most complex gravity-assist trajec-
tory ever flown.1–3) The mission is soon coming to an end with
a series of 22 highly inclined (62 degrees), short period (6.5
days), ballistic orbits each passing within a few thousand kilo-
meters of the cloud tops of Saturn. On September 15, 2017,
the spacecraft will dive into Saturn’s atmosphere and become
permanently captured. The end of mission trajectory depicted
in Fig. 1 was incorporated in the final phase of the Solstice
Mission after multiple studies were carried out to ensure that,
per Planetary Protection requirements and before the spacecraft
runs out of propellant, the possibility of future impact with any
of the large icy moons, such as Enceladus, was precluded.4)

The Cassini science sequence planning team expects to re-
ceive high volumes of unique science data from various onboard
instruments throughout the Grand Finale Mission. This data re-
turn is vastly improved if pointing and timing errors are reduced
such that key observations can be identified and located with
high precision. However, the absence of targeted maneuvers
throughout the 22 final ballistic orbits causes position uncer-
tainties to grow exponentially with time, posing a significant

Fig. 1. Representation of Cassini’s Grand Finale trajectory encompassing
the F-ring orbits (green), the Grand Finale orbits (blue), and the final orbit
(red) culminating with Saturn atmospheric entry on September 15, 2017.

difficulty for the sequence planning team. Thus, it was of great
interest to develop a strategy that incorporates trajectory cor-
rection maneuvers to significantly reduce dispersions from the
reference path, eliminating late sequence updates and facilitat-
ing sequence planning tasks. Although controlling the trajec-
tory to reduce position uncertainties is highly desirable, Saturn
atmospheric entry on September 15, 2017 must be guaranteed,
as detailed by the following set of end of mission requirements:

• Achieve Saturn atmospheric entry at end of mission (radius
< 60, 848 km).

• Ensure that the spacecraft is safe from ring particle impact
at the descending ring plane crossing (radius ≤ 64, 300 km
to avoid D-ring dust and entering the outer F-ring bound-
ary).

• Ensure that the spacecraft is above tumble density at Saturn
periapsis (radius > 61, 750 km).

The trajectory control requirements to maintain the space-
craft in the “safe” zone during the final 22 orbits are summa-
rized in Fig. 2. To meet these requirements, the Cassini Navi-



Fig. 2. Schematic of Cassini’s end of mission ‘safe” corridor: the red dots
represent each of the 22 periapses locations and the solid red lines mark the
three safety boundaries: HGA to RAM to protect the instruments from any
dust particles, clearance from tumbling altitude, and permanent capture into
Saturn’s atmosphere.

gation Team faces a targeting paradigm shift, i.e., the goal be-
comes staying as close as possible to the reference trajectory
overall instead of focusing on meeting a flyby target accuracy.
Along this set of requirements, a number of science requests are
also detailed:

• Remain – overall – within 250 km (68% probability) of the
reference trajectory.

• Provide trajectory dispersion plots to assist with science
planning activities.

• Specify the number and locations of impulsive maneuvers
to reserve time within the sequence from other activities.

• Avoid scheduling maneuvers during occultations or within
±24 hours of Saturn periapsis.

• Limit the number of maneuvers to allow maximum time
for science data collection.

An added difficulty in the design of a suitable trajectory con-
trol strategy is presented by the amount of propellant left in
the tanks to maneuver the spacecraft. As of February 22, 2017
(completion of OTM468A), about 27 m/s of usable ∆V propel-
lant is estimated to be available for maneuvers at the end of
mission (at the 90th percentile), which accounts for approxi-
mately 1.1% of the mission total. With such constrained pro-
pellant margin, the exploration of different maneuver strategies
for preserving propellant becomes a driving factor in the design
process.

Determining the optimal number and location of the maneu-
vers to control the trajectory, along with the corresponding tar-
gets, was a nontrivial task. Several strategies were attempted
until a feasible solution was found via two different approaches:
a linear analysis to strategize maneuver and target placement
and a nonlinear analysis to produce final trajectory dispersions.
Both methods are based on orbit determination covariance sam-
pling with Monte Carlo simulations. The linear method maps
uncertainties from a given state to a future time while the non-
linear approach is based on numerical state integration. After
cautious initial testing, it was determined that the results from
both methods were in agreement with insignificant differences,
allowing the maneuver analysts to confidently run thousands
of maneuver combinations in little time. The control strategy

ultimately adopted by the Cassini Project and the trajectory dis-
persion results from the nonlinear approach were detailed in a
paper by Wong et. al.5) In this paper, the results from the lin-
ear Monte Carlo approach are detailed along with the different
strategies that led to a ∆V-optimal solution to control the po-
sition uncertainties along the proximal orbits, highlighting the
benefits of adopting a linear technique for preliminary studies.

2. Solution Approach

Unlike the primary mission, where maneuvers were designed
to precisely target the desired satellite flyby conditions, the
control strategy during the proximal mission is to “stay close”
(within 250 km, 1-σ) to the reference trajectory while minimiz-
ing the number of maneuvers and the total ∆V . To solve the
problem, members of the Cassini Navigation Team examined
the trades and carried out analyses used to develop the maneu-
ver strategy for controlling the trajectory during the proximal
mission, focusing on two tasks: number and location of maneu-
vers and location of targets.

2.1. Validating the Linearity of the Trajectory
To proceed confidently with the proposed linear approach,

the linearity of the trajectory needs to be validated. There
are many different ways to do so, but in this analysis a sim-
ple and straightforward perturbation/propagation approach was
used, where the reference trajectory is initially (X0(t0)) per-
turbed by a certain amount (∆X0) and propagated forward to
an end time (t f ). The final state associated with the perturbed
trajectory, Xp(t f ), is then compared to the final state of the ref-
erence trajectory (X f (t f )). The deviation from the truth at t f is
then estimated two ways: via the state transition matrix (STM)
and by computing the difference between the numerically (non-
linear) integrated states, as depicted in Fig. 3.

Fig. 3. A simple way of assessing the linearity of the reference trajectory.

The eigenvalues (λi) and eigenvectors (vi) from the initial orbit
determination (OD) covariance matrix are then used to estimate
the size of the initial perturbation, ∆X0, via singular value de-
composition (SVD),

S VD =
∑
i=1,6

niλivi (1)

resulting in six perturbed initial states in the direction of each



eigenvector ( ni = 1 for 1-σ perturbation), given by:

Xp1 = X0 + λ1v1

Xp2 = X0 + λ2v2

Xp3 = X0 + λ3v3

Xp4 = X0 + λ4v4

Xp5 = X0 + λ5v5

Xp6 = X0 + λ6v6

(2)

with the largest perturbation being 82 km in position and 15
cm/s in velocity. Once the vector difference, ||∆X f (INT ) −

∆X f (S T M)||, is calculated, its magnitude is plotted as a function
of time for each time interval from t0 to t f . For illustration pur-
poses, the worst case corresponding to Xp2 is plotted in Fig. 4.
The peaks on the graph correspond to periapsis locations.

Fig. 4. Integration vs. STM mapping: ∆X f vector difference in km as a
function of time for the worst case scenario corresponding to Xp2 in Eq. 2.

A discrepancy of less than 200 km over 22.5 orbits suggests
that the trajectory behaves fairly linearly, indicating that a linear
approach is suitable to solve the maneuver design problem.

2.2. The Uncontrolled Trajectory
After performing a detailed OD covariance analysis with

simulated Doppler and range tracking data, it was determined
that the Titan-126 (T126) flyby error dominates the resulting
covariance. The downtrack dispersions are largest by far, with
peaks at periapsis and troughs at apoapsis, as illustrated in
Fig. 5, indicating that the dispersions are primarily related to or-
bit period differences. The trajectory dispersion plots in Fig. 5
are generated by filtering simulated tracking data from the arc
epoch of April 9, 2017 to the data cutoff for the last control point
prior to T126 on 18-April-2017 and then mapping the resulting
covariance past T126. Considered errors in the covariance anal-
ysis include ephemeris and masses of Saturn and its satellites,
Saturn’s pole orientation, tracking station locations, Earth’s po-
lar motion, and media effects. By the last periapsis, the 7,757
km along-track dispersion is roughly equivalent to a dispersion
in periapsis time of 226 seconds. Additionally, the distribution
of dispersions approaching and departing periapsis is close to
one-dimensional. Even though the uncertainty in radius at the

last periapsis is 25 km, Saturn atmospheric capture is statisti-
cally guaranteed.

Fig. 5. Uncontrolled (no maneuvers) trajectory dispersion plots in three
spatial dimensions based on orbit determination analysis for the uncon-
trolled trajectory with no maneuvers after OTM469.5) For reference, V
denotes along-track direction and H represents the angular momentum di-
rection.

If left uncontrolled, that is, if no maneuvers are performed
after the last approach maneuver (OTM469) before the last tar-
geted flyby (T126), the position dispersions can grow to almost
8000 km, 1-σ, as illustrated in Fig. 5. Recall that the goal is to
stay within 250 km (1-σ) from the reference path at all times, if
possible, which is never achieved if left uncontrolled. Figure 6
illustrates the overall 68% position dispersion as a function of
time resulting from the nonlinear propagation of 1000 sample
trajectories, each combining dispersion contributions from the
initial T126 flyby, subsequent Reaction Control System (RCS)
thruster events, and uncertainties in the atmospheric drag force.

Fig. 6. Overall uncontrolled dispersions for the 22 proximal orbits
(periapsis-1 through periapsis-22) resulting from the nonlinear analysis re-
lying on numerical integration. Peaks are locations of periapses5)

To demonstrate the agreement, to the first order, between the
nonlinear and linear models used in this investigation, consider
the plot in Fig. 7, which represents the same results based on
the linear approach. It is apparent that the along-track (timing)



component in Fig. 6 and Fig. 7 exhibits similar behavior,
validating the linear approach adopted to solve this problem.

Fig. 7. Overall uncontrolled dispersions for the 22 proximal orbits
(periapsis-1 through periapsis-22) resulting from the linear analysis relying
on linear mappings. Peaks and troughs correspond to locations of periapsis
and apoapsis, respectively, and the solid blue line at the bottom represents
the 250 km control threshold.

2.3. Control Strategy for the Cassini Grand Finale
The analysis for strategizing maneuver and target placement

is divided into two tasks: 1) determining the periapsis to target
along the entire reference trajectory in order to optimize the
trajectory control and reduce the dispersions to a minimum and
2) once a target is selected, determining the optimal location of
the targeting maneuver to minimize ∆V cost. Taking advantage
of the computational speed of the linear process, the first task
is tackled experimentally via a brute force approach in which
a large number of simulations are considered and the best
trajectory control design is eventually selected. Once the target
location is determined, an effective and quick way of calcu-
lating the optimal maneuver location to target to the selected
periapsis (second task) is to exploit the upper right 3×3 block
of the state transition matrix. Because of the computationally
expensive aspect of the nonlinear method, an exhaustive, brute
force search like this one could not have been carried by
numerical integration of thousands of sample trajectories. Of
course, the results of the final, optimal strategy obtained via the
linear approach is always validated wth a nonlinear, numerical
process.

2.3.1. Target Placement Analysis
To reduce the design space as much as possible, a number of

constraints are imposed on the problem:

• The location of the first maneuver is fixed on 24-APR-2017
19:15:00 ET (approx. 2 days after T126)

• Maneuvers must not be placed ±1 day from periapsis
• A backup maneuver opportunity must be included, per

nominal spacecraft requirements and procedures

Additionally, the number of maneuvers must be limited to avoid
interference with science activities. Therefore, only three sce-
narios are considered: a one-maneuver, two-maneuver, and
three-maneuver control strategy. Based on a preliminary analy-
sis, the most effective place to control the errors along the tra-
jectory is periapsis; thus, the target location is limited to pe-

riapsis, reducing the design space even more. Given the con-
straint of not having maneuvers within a day of periapsis where
most of the science activities take place, all subsequent ma-
neuvers are placed exactly one day after the targeted periap-
sis. Recall that once the optimal target locations are identified,
the maneuvers are moved around accordingly to minimize ∆V .
Given all these assumptions and constraints, all possible target
combinations are considered, i.e., 1-2-3, 1-2-4, ..., 20-21-22,
and each combination is run in LAMBIC to collect maneuver
and dispersion statistics. LAMBIC is a linear analysis of ma-
neuvers with bounds and inequality constraints tool which pro-
duces the statistics of ∆V magnitude and delivery accuracy by
simulating the execution of a sequence of maneuvers through a
Monte Carlo process.6) The simulation includes various sources
of uncertainties including flyby error (dispersions after T126),
orbit determination error, maneuver execution error (based on
Cassini’s most current Gates model), thruster firing control er-
ror (RCS effects), as well as uncertainty in Saturn’s atmospheric
model (drag effects).

Once the global search is performed, the output parameters
taken into consideration are the total ∆V for either one, two, or
three maneuvers (1 − σ, µ, and ∆V99 values), the average peri-
apsis dispersions through 22 revs (1-σ values), and the number
of periapses out of bounds. To filter solutions out, a feasibility
criteria is established as follows:

• average periapses dispersions ≤ 250 km
• total ∆V99 ≤ 2 m/s
• number of out-of-bound periapses ≤ 5

The one-, two-, and three-maneuver strategies required 22,
231, and 1540 LAMBIC runs, respectively. The outcome of
the simulation is to determine the optimal target location for
each control strategy based on this linear brute force approach,
and the filtered results, i.e., the solutions that meet the criteria
listed above, are illustrated in Fig. 8. The optimal target loca-
tion combination is identified from the lower left corner in each
plot. For instance, consider the results from the one-maneuver
control strategy global search. The dispersion-∆V data point
for each combination is represented by a blue dot and a number
indicating the periapsis number targeting to. The optimal tar-
get location corresponds to the data point with lower average
periapsis dispersions (x-axis) and lower total ∆V99 (y-axis),
which for the one-maneuver strategy is the end of mission on
15-September-2017. This result is intuitive, i.e., if only one ma-
neuver and one target are allowed, it makes most sense to place
the burn at the beginning and target conditions at the end. How-
ever, the results from the two- and three-maneuver strategies are
not as intuitive. Figures 8(b)-8(c) illustrate the rest of the results
for the two- and three-maneuver cases, respectively. To avoid
overcrowding the plots, the target combination labels are omit-
ted. For the two-maneuver strategy, the optimal combination is
periapsis-6 and periapsis-14, and for the three-maneuver strat-
egy, the best location for the targets is at periapsis-6, periapsis-
12, and periapsis-19 (as opposed to the intuitive choice of se-
lecting periapsis-22 or the end of mission as the last target). The
resulting trajectory dispersion plot for each strategy is shown in
Fig. 9. Note that the peaks and troughs along these curves cor-
respond to periapsis and apoapsis locations, respectively.

The optimal one-maneuver strategy result is unfavorable,



(a) Brute force results for the one-maneuver control strategy.

(b) Brute force results for the two-maneuver control strategy.

(c) Brute force results for the three-maneuver control strategy.

Fig. 8. Results from the global search for the target placement analysis.

meaning that no periapsis is controlled within 250 km (1-σ)
from the reference trajectory with one maneuver and one target
only and, thus, it is discarded. Clearly, the more maneuvers,
the lower the trajectory dispersions, that is, the dispersions are
drastically reduced by adding a second maneuver (Fig. 9(a) vs.
Fig. 9(b)). However, note that the first few periapses remain un-
controlled for the all depicted optimal control strategies. That is
because controlling the first segment of the trajectory requires a

(a) Dispersions for one-maneuver control strategy targeting to P22.

(b) Dispersions for two-maneuver control strategy targeting to P6 and P14.

(c) Dispersions for three-maneuver control strategy targeting to P6, P12, P19.

Fig. 9. 1-σ Position uncertainties for each optimal target location run.

large amount of ∆V – on the order of 25 m/s to 30 m/s – mostly
due to the T126 flyby errors. By adding a third maneuver, the
number of uncontrolled periapses at the end of the trajectory is
reduced by half at little cost, making the three-maneuver control
strategy the most favorable one.
2.3.2. Maneuver Placement Analysis

Once the target location is specified for each control strat-
egy, the optimal location of the associated targeting maneuver



to minimize ∆V cost is also found linearly from STM elements.
An effective and quick way of calculating the optimal maneu-
ver location to target to the selected periapsis is to exploit the
K-matrix, such that,

∆V = K−1∆X̄ f (3)

where K is the upper right 3×3 block of the state transition ma-
trix (φ), i.e.,

K =

 φ14 φ15 φ16
φ24 φ25 φ26
φ34 φ35 φ36

 =


δx f

δẋ0
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 (4)

and ∆X̄ f represents the changes, or corrections, to the final
state. In essence, the minimum-∆V location along a given or-
bit can be calculated by evaluating the norm of the inverse of
the K-matrix. That is, when ||K−1|| is minimum, then the re-
quired ∆V is also minimum. Thus, given a fixed target down-
stream (periapsis-j), the selected orbit for maneuver placement
(from periapsis-i to periapsis-i+1) can be split into a desired
number of intervals and the corresponding ∆V value can be cal-
culated using equation 3, as illustrated in Fig. 10. The STM
components are evaluated at the selected one-hour time inter-
vals (t0 to t f , t1 to t f , ..., t f−1 to t f ) over the length of the se-
lected orbit (approximately 6.5 days long). Once the resulting
∆V values are collected, they are plotted as a function of time.
Figure 11 illustrates a representative example associated with
the three maneuver strategy: a maneuver is to be designed and
placed between periapsis-6 and periapsis-7 with a fixed target at
periapsis-12. The resulting curve figuratively represents the ∆V
cost associated with placing the maneuver at any one-hour in-
terval along the selected rev targeted to periapsis-12. Two mini-
mum points on this curve, corresponding to minimum ∆V loca-
tions, are represented by blue dots and the associated epochs
are labeled. These two minimums represent candidate loca-
tions to place the prime and backup maneuvers; however, the
first local minimum violates the one-day constraint from peri-
apsis, therefore, the prime maneuver is placed a few hours later
at the 24 hr mark after the targeted periapsis at a small cost.
The backup maneuver is then placed at the second minimum,
allowing enough time between maneuvers at no cost. In fact,
the backup occurs at more ∆V-efficient location than the prime.
The specific ∆V cost in m/s is not given on the plot, but could
be easily calculated using Equation 3.

Fig. 10. Schematic to illustrate how the ∆V curve is generated: blue dots
indicate locations along a given rev (from periapsis-i to periapsis-i+1) at
which the norm of the inverse of the K-matrix is calculated based on the
state transition matrix components (φ3×3(ti, t f ))

Two noticeable peaks appear at two different locations on the
curve in Fig. 11: one in between periapsis and apoapsis, and a
second one right past apoapsis. Note that, although not clearly
seen in Fig. 11, there are spikes that form right at periapsis-6

Fig. 11. Representative example illustrating the norm of the inverse of the
K-matrix as a function of time: the minimum point on the curve repre-
sents the optimal location for maneuver placement between periapsis-6 and
periapsis-7 with the target fixed at periapsis-12.

and periapsis-7. These spikes are expected to occur and corre-
spond to a 180-degree transfer singularity. Similarly, because
of the same geometry constraint, it is expected that a peak oc-
curs at apoapsis; however, that is not the case. There is a peak
forming near apoapsis. It is well-understood that there is an
orbital transfer singularity due to a geometry constraint at pe-
riapsis and apoapsis (i.e., at 0, 180, and 360 degrees transfer
angles). For these specific transfer angles, the Lambert prob-
lem faces a singularity. The plane of the orbit is defined by two
position vectors (the space triangle). If the two position vectors
are co-linear with the central mass, then the plane is undefined
and a singularity in the equation arises, resulting in a ∆V of in-
finite magnitude (theoretically). Therefore, one would expect
a peak to appear right at apoapsis when the target is placed at
a periapsis downstream (180 degrees apart). In an attempt to
explain why the peak is slightly shifted from the expected apse
location, a two-body analysis was performed. That is, all the
additional gravitational bodies initially considered in the trajec-
tory propagation model are removed as well as the gravity har-
monics for Saturn. In essence, Saturn is treated as a point mass
and no other bodies are perturbing the spacecraft trajectory. If
the analysis is carried out in this simplified model, then the lo-
cation of the first peak shifts to apoapsis, as one would expect
(Fig. 12). Nevertheless, additional gravitational body effects
and Saturn J2 terms cause the shift in the location of the first
peak. Additionally, it is suspected that these extra terms have
an effect on the maneuver size, i.e., they make the peaks on the
∆V curve more pronounced. Even though the second peak can-
not be fully explained from an orbital geometry perspective, it
can be concluded that it is not an artifact of the numerical pro-
cess but rather due to a singularity in the equation caused by
a transfer geometry constraint similar to the well-known 180-
degree transfer problem.

A similar plot is used to find an optimal placement for sub-
sequent maneuvers, that is, for the second burn in the two-
maneuver strategy, and the second and third burns in the three-
maneuver strategy. After careful evaluation, it was determined
that the three maneuver control strategy was better suited for
this problem, even from a ∆V perspective: there are more peri-



Fig. 12. Simplified two-body analysis: multi-rev targeting scenario,
where the target is placed at any other periapsis downstream (at periapsis-
12 in this illustrative example). By removing the J2 affects, the central peak
shifts exactly to the apoapsis location.

Table 1. Statistical ∆V breakdown for the optimal control strategy result-
ing from the linear analysis detailed in Fig. 13.

∆V OTM470 OTM471 OTM472 Total
µ, m/s 0.353 0.032 0.008 0.394
1-σ, m/s 0.231 0.021 0.011 0.244
99%, m/s 1.119 0.092 0.058 1.193

apses controlled under the 250 km position dispersion threshold
and the ∆V99 cost between the two- and three-maneuver cases
was not large enough to disqualify the three-maneuver strategy.
Eventually, the linear analysis resulted in the the optimal con-
trol strategy illustrated in Fig. 13: there are three maneuvers,
OTM470 on 24-April-2017 shortly after the last targeted Titan
flyby, T126, OTM471 on 29-May-2017 and lastly OTM472 on
07-July-2017 with corresponding targets on 28-May-2017, 06-
July-2017 and 20-August-2017. The ∆V breakdown for each
maneuver is detailed in Table 1.

Fig. 13. Optimal control strategy resulting from the linear analysis: three
maneuvers targeting to P6, P12, and P19, respectively.

2.4. The Actual Controlled Trajectory
The control strategy ultimately adopted by the Cassini

Project and the trajectory dispersion results from the nonlinear
approach were detailed in a paper by Wong et. al.5) For refer-
ence, these results appear in Fig. 14(a) and the associated ∆V

Table 2. Statistical ∆V breakdown for the selected control strategy based
on Project decision (based on linear approach).

∆V OTM470 OTM471 OTM472 Total
µ, m/s 0.450 0.108 0.057 0.615
1-σ, m/s 0.274 0.070 0.041 0.341
99%, m/s 1.267 0.320 0.181 1.670

cost is detailed in Table 2. For reasons related to science ob-
servations and sensitivities to timing errors, the Cassini Project
decided that there were only three periapses that needed to be
controlled and maintained under 250 km at the 68th percentile,
as opposed to attempting to maintain the entire trajectory un-
der this control. Specifically, these control points are periapsis-
3 (P3) on 09-May-2017, periapsis-13 (P13) on 12-July-2017,
and periapsis-16 (P16) on 01-Aug-2017. The first maneuver,
OTM470, is left at the same location; OTM471 occurs on 10-
May-2017 and OTM472 is scheduled for 15-July-2017.

(a) Trajectory dispersions for the selected three-maneuver control targeting
to periapsis-3, periapsis-13 and periapsis-16 based on the linear approach.

(b) Trajectory dispersions for the selected three-maneuver control target-
ing to periapsis-3, periapsis-13 and periapsis-16 based on the nonlinear
approach5) (given for comparison and validation purposes with Fig. 14(a)).

Fig. 14. Linear vs. nonlinear dispersion results for the selected three-
maneuver control strategy by the Cassini Project.

By moving the first target to an earlier time, the position dis-
persion decreases significantly from over 1300 km at P1 to ap-
proximately 60 km at P3, at the expense of increasing the ∆V99
cost from 0.35 m/s to 0.42 m/s. This increase is not insignifi-
cant given the small amount of propellant left in the tanks. Ad-
ditionally, by moving the last target to an earlier epoch, the po-



sition dispersion at the subsequent six periapses increases sig-
nificantly. Nevertheless, this turned out to not be an issue since
there are no time-error sensitive science observations planned
during those trajectory segments. In the end, the Cassini Navi-
gation team designed a suitable control strategy using only three
OTMs with a ∆V99 usage of less than 2 m/s to adequately con-
trol the trajectory while meeting science planning requirements
and requests.
2.5. Remarks: Linear vs. Nonlinear Analysis

There are fundamental differences between a linear and non-
linear analysis of dynamical systems. The linear approach em-
ployed in this investigation relies on covariance mapping based
on the unperturbed reference trajectory. As so, it is applicable
to this particular problem as long as its validity is established by
comparing the linear results to the results from a full, nonlinear
analysis. The linear assumptions of small deviations and the in-
dependence of contributions from various error sources are not
necessarily apparent for certain problems, including this one.

In this investigation, a self-consistent numerical model that
closely simulated the underlying physics of the problem was
readily available to accurately model and statistically analyze
the trajectory. Consequently, it was straightforward to validate
the results from the linear approach, allowing the analysts to
fully exploit the benefits of a linear simulation to solve this
problem, more specifically, the short computational time as-
pect. That is, it was possible to quickly find an optimal tra-
jectory control strategy without the need to use long numerical
propagations or complex optimization schemes.

The intent of this paper is not to emphasize a set of specific
results particular to the Cassini Grand Finale Mission, but rather
to highlight the benefits of applying a linear approach early on
in the design process. More often than not, analysts seek the

truth, or accurate answers, by relying on highly complex nu-
merical schemes and optimization method, but sometimes the
simpler methods offer great insight into the design space at little
cost, and the problem detailed in this paper is a great example
of such.
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