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Failure of the orbit insertion maneuver has significant impact on the entire mission, for the trajectory of a spacecraft is largely
deflected by swing-by. One method to reduce the risk is to target a point on the B-plane where the spacecraft reaches the synchronous
orbit with the target body in the case of insertion failure. We call this method robust orbit insertion. Among various failure modes
at the orbit insertion maneuver, we focus on the robustness to the escape by inoperative maneuver. The impact parameters on the
B-plane to achieve robust orbit insertion are formulated based on the geometry of velocity vectors at swing-by. To achieve robust orbit
insertion, necessary deflection angle αrobust at swing-by must be smaller than the possible maximum deflection angle αmax for the
target body. When the trajectory of a planet is approximated as a circular orbit, the relationship of αmax and αrobust is characterized
by a single parameter λ. Using polar orbit insertion as an example, maps which show the reachability of synchronous orbit after the
insertion failure for each approaching condition are presented. The derived maps can be used as a tool to asses the applicability of
robust orbit insertion in the design phase of a mission scenario. As an application to practical mission design, we demonstrate the use
of robust orbit insertion in JAXA’s MMX mission.
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Nomenclature

α : deflection angle at swing-by
β : angle between v∞in and −vp
k̂ : reference vector to represent orbital plane

Ŝ, T̂ , R̂ : unit vectors for B-plane coordinate
b : norm of B vector

D(α)n : rotation matrix around n-th axis by angle α
λ : non-dimensional parameter
η : angle between vp and vout
µ : standard gravitational parameter
ψ : parameter to express v∞out
θ : angle from T̂ axis to B

φ : angle that indicates the track of v∞out
φR : angle from P̂1 axis to R̂ axis
a : semimajor axis

Ls f : scaling factor for length
Ts f : scaling factor for time
M : number of revolution by a target body
N : number of revolution by a spacecraft
T : orbital period
v∞ : hyperbolic excess velocity
δ : declination
ω : argument of periapsis

Subscripts
p : planet
in : incoming

out : outgoing
S/C : spacecraft
peri : periapsis

Superscripts
∗ : non-dimensional
ˆ : unit vector

1. Introduction

In the interplanetary exploration, the orbit insertion is one
of the most critical event in the entire mission sequence. If an
orbiter does not perform a maneuver to decelerate itself with
respect to a target body, it flies by the target body and escapes
into the deep space. This means the failure of the orbit insertion
has strong impact on the outcome of the mission.

Generally, there are a lot of failure modes in the orbit inser-
tion maneuver. In the past NASA’s NEAR Shoemaker mission,
a temporal malfunction in the attitude control system while ma-
neuvering caused a one-year delay of the rendezvous with an
asteroid Eros.1, 2) In Japan, Venus exploration mission Akatsuki
suffered from the insertion failure. The orbit maneuvering en-
gine broke down amid the thrust, and achieved ∆V was only
20% of its nominal value.3) In order to assess the possibility
of each failure mode, consideration of thruster and spacecraft
systems will be necessary. In this study, we only focus on the
failure mode that the spacecraft cannot perform any maneuver
and escape into the deep space.

As a measure to avoid the risk, utilization of the synchronous
orbit has been proposed.4) The idea is to target a point on the
B-plane so that a spacecraft enters a synchronous orbit with the
body when the maneuver for insertion fails. If a spacecraft is on
the synchronous orbit, the spacecraft’s and target body’s revo-
lution period around the primary body form a simple integer
ratio, which materializes the re-encounter at the exact same lo-
cation. We call this method robust orbit insertion and the condi-
tion to reach synchronous orbit robust condition, following the
denomination in the preceding research. The previous work has
focused only on the trajectory design for SELENE mission by
JAXA. Thus, the motivation in this study is to investigate the
applicability of the method in general. As a first step, we for-



Fig. 1. 3D view of the velocity vector geometry at swing-by.

mulate the B-plane parameters b and θ necessary for the robust
orbit insertion through geometric analysis on the velocity vec-
tors at swing-by, which has not shown in the forgoing works.

Another contribution of this work is to systematically inves-
tigate the approaching condition that is advantageous for the ro-
bust orbit insertion. It is desirable that the robust condition cor-
responds to other mission requirements such as achieving small
insertion ∆V or passing particular point over the target body.
In the preceding study, a method to adjust the robust condition
by the use of an intermediate Lunar swing-by has been exem-
plified. Introducing the intermediate swing-by is inconvenient
if the target body has a large orbital period. Therefore, know-
ing the reasonable approaching condition a priori is beneficial
in the design of an interplanetary trajectory. Using polar orbit
insertion as an example, maps which show the reachability and
information regarding insertion ∆V over the grid of approach-
ing condition are presented.

To further evaluate if the method can be utilized in the prac-
tical mission design with a complex insertion sequence, the ap-
plication to JAXA’s MMX (Martian Moons eXploration) mis-
sion is studied. MMX is a sample return mission planned to be
launched in the early 2020s. The spacecraft needs to perform
multiple maneuvers for Mars orbit insertion (MOI), which in-
sert the probe into the same orbit with one of the Martian moons
Phobos. When we draw a contour of the distribution of ∆V for
MOI on the B-plane, it shows a complex trend. The process to
design a trajectory that satisfies mission requirements and the
robust condition is discussed.

2. Geometric Analysis of Velocity Vectors

2.1. Velocity to Achieve Synchronous Orbit
We assume a target body and a primary body as a planet and

Sun respectively for ease of explanation. The insertion to the
synchronous orbit after the swing-by is realized in other sys-
tems such as Earth-Moon system in the same manner. As for
the swing-by trajectory where a spacecraft naturally returns to
the same body after a certain time of flight, the exhaustive re-
search has been conducted in the framework of two-body prob-
lem.5) Of the possible free-return trajectories presented in the
research, we focus only on the full-revolution trajectories. The
synchronous orbit with the target body satisfies the following
relationship.

TS/C =
M
N

Tp (1)

where N and M are irreducible. A spacecraft can re-encounter
the target body at the same location after the period of MTp

in the case of insertion failure. Fig. 1 shows the relationship
among velocity vectors at the swing-by. Since |v∞in| equals
|v∞out |, the vector v∞out is somewhere on the sphere with ra-
dius |v∞|. When v∞out is at the intersection of |v∞| sphere and
the sphere whose radius is expressed in equation Eq. (2), the
necessary condition for the robust orbit insertion is met.

vout =

√
µS un

 2
rp
−

( N
M

) 2
3 1

ap

 (2)

2.2. B-plane parameters for Robust Orbit Insertion
Several formulas and coordinate systems are proposed to

help design swing-by trajectories.6, 7) They are useful when we
design various variables at the same time such as orbital pe-
riod, inclination, eccentricity, etc. However, our objective is to
find the relation between B-plane parameters and orbital period;
therefore, new reference frames are introduced. Figs. 2 and 3
show the definition of angles and coordinate systems associated
with the velocity vectors. The point O1 is the origin of the ve-
locity vectors viewed from the primary, whereas the point O2 is
the origin of the velocity vectors viewed from the planet. The
orthogonal coordinate system O2−q1q2q3 and O2−P1P2P3 are
defined. The direction of q1 is same with vp. The direction of
q2 and P1 is same with vin × vp direction. P2 is aligned with
v∞in. The vector v∞out comes at the intersection of v∞ sphere
and the sphere of |vout | . The two spheres form a circle, and we
can designate a v∞out by a single parameter ψ as in Fig. 4.

v∞out =

 L
V sinψ
V cosψ

 (3)

L and V is expressed as follows.

L = vout cos η − vp (4)
V = vout sin η (5)

here η = arccos

 v2
p + v

2
out − v2

∞

2vpvout

 (6)

By rotating the coordinate system, the expression for v∞out in
O2 − P1P2P3 coordinate system is derived.

v∞out = D(β)1D(π/2)3

 L
V sinψ
V cosψ


=

 V sinψ
V sin β cosψ − L cos β
L sin β + V cos β cosψ

 (7)

From this equation, a deflection angle α after the swing-by for
each parameter ψ is obtained.

2α = arccos
(
v∞in · v∞out

v2
∞

)
= arccos

(
V sin β cosψ − L cos β

v∞

)
(8)

The angle φ is defined as shown in Fig. 5 to correlate ψ to
B-plane parameter θ. The angle φ is measured from P1 axis



Fig. 2. Relationship among velocity vectors at the swing-by

Fig. 3. Two-dimensional geometry of velocity vectors at the swing-by

to a mapped trace of v∞out on the P1P3 plane. From Eq. (7),
parameter φ that corresponds to each ψ is derived as

cosφ =
V sinψ√

(V sinψ)2 + (L sin β + V cos β cosψ)2

sinφ =
L sin β + V cos β cosψ√

(V sinψ)2 + (L sin β + V cos β cosψ)2

(9)

To associate B-plane coordinate system with O2 − P1P3 co-
ordinate system, we introduce another parameter φR. As shown
in the bottom right picture in Fig. 5, φR is determined from the
following equations

cosφR = R̂ · P̂1

sinφR = R̂ · P̂3

(10)

and then θ for each parameter ψ is computed as

θ =
3
2
π + φR − φ (11)

Fig. 4. v∞out in O2 − q1q2q3 coordinate system

Fig. 5. Mapping of v∞out onto P1P3 plane

The value of b is calculated from Eqs. (8), (12), and (13).

sinα =
1

1 + rperiv
2
∞

µp

(0◦ ≤ α ≤ 90◦) (12)

b = rperi

√
1 +

2µp

rperiv
2
∞

(13)

3. General Characteristics of Robust Orbit Insertion

3.1. Reachability of Resonant Orbit
How acutely the body can bend spacecraft’s trajectory de-

pends on Rp and µp. Smaller radius enables close approach to
the mass center, and body with larger µp can bend the trajectory
more easily, both of which lead to the increase in possible max-
imum deflection angle at the swing-by. Whether we can use
the method of robust insertion depends on the deflection angle
αrobust and αmax at a given approaching velocity. In this section,
we generally characterize the reachability of the synchronous
orbit after a swig-by. To make the system time independent, the
velocity of the planet is assumed to be constant; the velocity of
each planet is computed as a velocity of circular orbit with ra-
dius ap. This assumption becomes valid when the eccentricity
of the planet is close to zero.
3.2. Scaling

When we choose scaling factor for nondimensionalization as
follows, αmax and αrobust are characterized by a single parameter
associated with the target body.

Ls f = Rp (radius of the target body)

Ts f =

√
R3

p

µp

The upper bound is given as

αmax = arcsin
(

1
1 + v2

∞

)
(14)

and αrobust is obtained from the following equations.

2αrobust = arccos
(

V∗ sin β cosψ − L∗ cos β
v∗∞

)
(15)

cos η =
v∗2out + v

∗2
p − v∗2∞

2v∗outv
∗
p

(16)

sin η =
√

1 − cos η2 (17)

V∗ = v∗out sin η (18)
L∗ = v∗out cos η − v∗p (19)

v∗out =

√
λ

2 − ( N
M

) 2
3

 (20)

v∗p =
√
λ (21)

λ =
RpµS un

apµp
(22)

The parameter λ defined in Eq. (22) becomes square of the
ratio of the velocity of the planet to the first astronautical ve-
locity around the planet. A small λ corresponds to a large first



Table 1. Body name and corresponding parameter λ

Target Primary λ
v∗∞ for Hohmann transfer

from Earth

Moon Earth 3.67 × 10−1 　
3.89 × 10−1

(from LEO)
Mercury Sun 2.54 × 102 3.20
Venus Sun 2.28 × 10 3.70 × 10−1

Earth Sun 1.42 × 10 -
Mars Sun 4.62 × 10 7.46 × 10−1

Jupiter Sun 9.62 × 10−2 1.34 × 10−1

Saturn Sun 1.48 × 10−1 2.17 × 10−1

Uranus Sun 2.04 × 10−1 3.09 × 10−1

Neptune Sun 1.07 × 10−1 2.44 × 10−1

astronautical velocity for a given vp. If the first astronautical
velocity is relatively large, a spacecraft can attain high speed
at the periapsis for a same v∞, which results in the large αmax.
Therefore, λ signifies how hard it is to deflect the trajectory of a
spacecraft. We can use the robust orbit insertion if the condition
αrobust ≤ αmax is satisfied.
3.3. Robust Polar Orbit Insertion

When we plan an orbit insertion, its target trajectory is de-
cided so that the trajectory meets mission requirements and, at
the same time, has small ∆V . It is conceivable that there is a
trade-off between the condition for the robust insertion and re-
quired ∆V . With an intent to evaluate the trade-off in a general
manner, an orbit insertion to polar orbit is discussed in this sec-
tion.

The reason we choose a polar orbit as a test case is that its
simple formulation is suitable for investigating general charac-
teristics of the robust orbit insertion. When a spacecraft ap-
proaches a target body, there are always regions that we can in-
sert a spacecraft into the polar orbit, regardless of its approach-
ing direction. For instance, if a reference vector that defines the
B-plane is in a direction of the north pole, targeting any point on
the R̂ axis results in the insertion to the polar orbit. The study
on the polar orbit insertion is also useful from the viewpoint of
actual mission application. In a planetary exploration mission,
the polar orbit is often profitable, for a spacecraft observes the
entire surface of the body as a result of its rotation.

The robust orbit insertion to the polar orbit is characterized
by the geometric parameter φR defined in Eq. (10). The pa-
rameter φR indicates the direction of the south pole in P1P3

plane when we choose k̂ as a normal vector of equatorial plane.
By solving Eq. (7) for ψ, we can find ψR corresponding to φR

(−π/2 < φR < π/2). Derived equation is

−V cos β cosψR + V tanφR sinψR = L sin β (23)

and the solution is

ψR = γ + arccos

 L sin β√
(V cos β)2 + (V tanφR)2

 (24)

where


cos γ = −V cos β√

(V cos β)2+(V tanφR)2

sin γ = V tanφR√
(V cos β)2+(V tanφR)2

(25)

The tracks of v∞out are symmetric against P3 axis as seen in
Fig. 5. Therefore, examining the range of −π/2 ≤ φR ≤ π/2
suffices to know the entire solution space.

Fig. 6. Reachability of robust orbit insertion over v∞ and angle β for Mars.
λ = 46.2 and φR = 45deg.

Once φR is specified, ψR is obtained by Eqs. (15) to (22).
By providing two parameters φR and λ, one can judge if αmax is
larger than αrobust for each incoming v∞. Maps that represent
possible synchronous orbits are obtained by this method, using
v∞ and β as independent variables. To understand the depen-
dency on the parameters φR and λ, maps with λ= 1, 5, and 100
are shown for each φR =0deg, 10deg, and 45deg in Fig. 7. In the
figure, only the combinations of {N:M}={1:1}, {1:2}, {2:1}, and
{3:2} are displayed. As λ becomes small, overlaps of reachable
regions for different combination of {N:M} emerge. The maps
with negative and positive φR are symmetric against a line of
β = 0. This symmetry is in accordance with the symmetric be-
havior of v∞out in P1P2 plane with respect to P1 axis when β
becomes negative. In the figure, we overlay contour lines on the
reachable region that signify a non-dimensional altitude from a
target body’s surface at the periapsis. This altitude is computed
from the non-dimensional version of Eq. (12). The information
on the altitude is helpful in estimating necessary ∆V for the or-
bit insertion. As λ gets smaller, possible region for robust polar
orbit insertion forms a closed shape as in the second row of the
Fig. 7. The value of the contour is small in the area near the
center of this closed shape.

In Fig. 6, detailed maps for Mars is shown. Values of v∞
for Hohmann transfer from Earth is expressed as a black line.
The values of λ and the characteristic v∞ for Hohmann transfer
from Earth are summarized in table 1. In the case of polar orbit
insertion, necessary ∆V depends only on the altitude from the
target body, given v∞. By looking at the map, we can determine
ideal v∞ and β that satisfy the robust condition and small ∆V .
Even in the other type of the orbit insertion, low altitude at pe-
riapsis generally contributes to the small ∆V for the insertion.
Thus, the map also serves as a reference to estimate a desirable
approaching condition.

4. Application to MMX Mission

Martian Moons eXplorer (MMX) mission is a sample return
mission from one of the Martian Moons, Phobos. It is planned
by JAXA to launch the probe in early 2020s. In the design
of a trajectory that is tolerant to an orbit insertion failure, a
key question is whether we can achieve robustness and small



Fig. 7. Reachability of robust orbit insertion over v∞ and angle β. Body associated parameter λ increases from top to bottom (1, 5, 100). Geometric
parameter φR increases from left to right (0, 10deg, 45deg).

∆V for the entire mission at the same time. Since the explorer
needs to visit Phobos, it executes multiple maneuvers to alter
its trajectory. Necessary ∆V for the orbit insertion does not
monotonously change according to the distance from Mars on
the B-plane, which is a major difference with the polar orbit
insertion. Except for this complexity in ∆V , the same computa-
tion is utilized.

From Fig. 6, we will see that a line showing the v∞ for
Hohmann transfer is on the region of 1:1 synchronous orbit
when φR is large. Since MMX uses a trajectory like Hohmann
transfer, we choose 1:1 synchronous orbit for the target of the
robust orbit insertion. If the insertion maneuver fails, the probe
can re-encounter Mars after one Martian year (1.88 Earth year).

An overview of the trajectory design is as follows.8) In the
preliminary design, the use of a chemical propulsion system and
an electric propulsion system were investigated, and the plan to
use the chemical propulsion system for the entire mission has
been adopted. In the reported nominal condition, the spacecraft
departs from Earth on August 23rd in 2022 and arrives at Mars
about a year later. After the spacecraft arrives at SOI of Mars,

it performs three maneuvers for Mars orbit insertion (MOI) and
transfers to the orbit of Phobos. They have explained the nomi-
nal sequence of MOI as follows.

• MOI1
At the periapsis, MOI1 decelerate the explorer with respect
to Mars and inject it into the elliptic orbit around Mars.
The altitude at the periapsis is 500km from the ground and
radius at the apoapsis is 40RM . RM means the radius of
Mars. This initial elliptic trajectory is designed so that its
apoapsis is in the orbital plane of Phobos, which means the
argument of periapsis ω regarding Phobos’s orbital plane
is either 180◦ or 0◦.
• MOI2

At the apoapsis where the orbital plane of Phobos and
the orbital plane of the spacecraft intersect, MOI2 is per-
formed. This maneuver changes its orbital plane to that of
Phobos and lifts the altitude at the periapsis to the orbital
radius of Phobos.
• MOI3

At the periapsis, MOI3 is applied and lowers the apoap-



Fig. 8. Conditions on B-plane for nominal launch and arrival case.

sis altitude. Ogawa et al. have explained that the merit of
choosing the specific argument of periapsis ω is that it re-
duces ∆V for MOI2 since the plane change can be achieved
when the spacecraft has the lowest velocity.8)

For the computation of MOI, a similar sequence was adopted
in this study. To enable the computation for any value of b and
θ, we assumed that MOI2 was performed at either ascending or
descending node. Except for MOI2, the scenario was same.

4.1. Robust Condition and ∆V on B-plane
Fig. 8 shows the contour of necessary total ∆V on the B-

plane for the nominal launch case; also depicted are the nominal
altitude (black circle), the robust MOI condition (blue circle),
and the minimum ∆V condition (blue and green line). We define
minimum ∆V condition as the condition where ω after MOI1 is
either 0◦ or 180◦ In this case, the spacecraft accomplishes the
plane change at the lowest speed.

If we fix the altitude at the periapsis to 500km, target point is
on the black circle in the figure. An intersection of the blue line
and the black circle is the potential solution if we do not take
the robustness into account. When we give priority to the robust
insertion, a target point is the intersection of the blue and black
circle. In the latter case, additional ∆V is required. The amount

Table 2. Sample launch window

Range of the window
Earth Departure Aug. 21, 2022 - Sep. 3, 2022

Mars Arrival Jul. 27, 2023 - Aug. 9, 2023

of drawback changes depending on the launch and arrival date.
Therefore, we feedback the necessary drawback for the robust
orbit insertion to the design of an interplanetary trajectory.
4.2. Determination of the Launch Window

Fig. 9 shows the porkchop plot to determine the feasible so-
lutions. The blue lines, the red lines, and the black lines are
the contour of total ∆V for MOI, the contour of minimum ∆V
for MOI, and C3 at Earth respectively. The altitude at MOI1 is
fixed to RM + 500km both in the robust and non-robust MOI.
To decide a launch window, we filter out infeasible solutions.
In the design of the nominal condition by Ogawa et al., mission
requirements are defined as shown below.8) We follow the same
requirement for the trajectory design with robust MOI.

• C3 at Earth is smaller than 18 km2/s2 .
• The declination of v∞ at Earth satisfies −30◦ ≤ δ ≤ 30◦.

This condition is required for the lunch from Tanegashima
Space Center.
• The flight time is less than one year.
• There exists two weeks of the launch window that satisfies

the above conditions.

In addition to the criteria considered in the nominal trajectory
design, another condition that the extra ∆V to achieve robust
MOI is no greater than 100m/s is added. Feasible solutions are
in the white area.

We can secure a launch window that satisfies these condi-
tions over the entire domain of two weeks by two weeks. For
example, if we choose a new nominal launch window as shown
in table 2, in the entire period, the extra ∆V is less than 76m/s.
And if we choose a nominal launch date of Aug. 29, 2022 and
arrival date of Aug. 6, 2023 in the window, the necessary extra
∆V is less than 1m/s.

Fig. 9. Porkchop plot of minimum total ∆V (km/s) at MOI and total ∆V for robust MOI. Red lines represent the contour of minimum ∆V (km/s) at MOI.
Blue lines represent the contour of total ∆V for the robust MOI. Black lines represent C3(km2/s2) at Earth. Gray region has no feasible solution.



5. Conclusion

In this study, we investigated the general characteristics of
the robust orbit insertion and its application to JAXA’s MMX
mission. Conclusions are as follows.

We established the analytical method to compute target
points for the robust orbit insertion on the B-plane. The values
of b and θ that satisfy the robust condition are obtained based
on the geometry of the velocity vectors at the swing-by. Using
the coordinate transformation, v∞out was expressed by a single
parameter ψ. For each ψ, the value of b is obtained through the
computation of deflection angle α and the radius at periapsis
rperi. The angle θ that shows the direction of insertion is also
computed by correlating the reference frame O − P1P3 and the
B-plane.

By properly choosing the scaling factors as Rp and
√

R3
p/µp,

we showed that a maximum deflection angle achieved by the
planet αmax and a necessary deflection angle for the robust polar
orbit insertion αrobsut are classified by two parameters λ and φR.
We showed that λworks as an index to show how difficult it is to
deflect the trajectory at swing-by and φR works as a parameter
to correlate the insertion direction on the B-plane.

General maps that show conditions on incoming v∞ to
achieve a robust polar orbit insertion were obtained for each
set of two parameters λ and φR. We presented that by looking at
the maps, desired approaching condition can be evaluated and
mission planning would benefit from it.

The method of the robust orbit insertion is applied to the tra-
jectory design of MMX mission and we confirmed that we can
secure two weeks of launch window that satisfies the mission
requirements that has extra ∆V for robust orbit insertion less
than 100m/s.
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