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This paper addresses the dynamic modeling for the space multi-pointing Stewart system (SMSS). The main feature of the 

SMSS is that a six-degrees-of-freedom (6 DOFs) Stewart mechanism is adopted to connect the central hub of the on-orbit 
satellite and the optical payload, so that the pointing of the payload can be precisely controlled by the active actuators in the 
Stewart mechanism, rather than by the attitude controls in the satellite only. To evaluate SMSS’s dynamic characteristics 
and design its control systems, a comprehensive dynamic model is indispensable. Since the Stewart mechanism brings 
closed-loop motion constraints to SMSS, the formulation of the equations of motion is performed in two steps. Firstly, the 
motion constraints are released so that the Kane’s method in matrix form can be used to derive the governing equations of 
the unconstrained system. Then, to avoid introducing unknown multipliers, the new form of Kane’s method is applied to 
handle the closed-loop motion constraints. The obtained equations of motion incorporate all the mass parameters of the 
bodies in SMSS, and can be directly used for control synthesis.  
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Nomenclature 
 

jΔ  :  modal selection matrix 

AF  :  generalized active force 

IF  :  generalized inertia force 

sF


 :  the s th external force 

jΓ


, jΓ  :  vector characterizing the joint hj 

K  :  total degrees of freedom (DOFs)  

M  :  inertia matrix 

lN


 :  the l th external torque 

n  :  body number in the multibody system
τ  :  modal coordinate 

,j jt t


 :  the translation at the prismatic joint 

T


 :  translational modal vector 
u  :  generalized speeds 
u


 :  elastic displacement 
v


 :  velocity  
pv


 :  partial velocity 

pω


 :  partial angular velocity 

Subscripts 
D :  dependent  
r :  rigid 
f :  flexible 
i :  number for the generalized speeds 
I :  independent  
j :  body number 
mj :  element mass in body Bj 
p :  partial 
r :  rigid 
t :  nonlinear component 

 

1.  Introduction 
 

The Stewart platform is a six-degrees-of-freedom (6 DOFs) 
mechanism composed of two rigid bodies connected by six 
extensible struts.1-3) It has been wildly used for passive 
vibration isolation in imaging spacecrafts.4-6) By introducing 
active actuators to the extensible struts, the Stewart platform 
can also be used for attitude maneuver of the payload to 
realize the precise multi-pointing. In this work, we focus on 
the dynamics modeling issue related to such application. 
  The considered space multi-pointing Stewart system 
(SMSS) is constituted of a rigid central hub, two solar panels, 
a Stewart mechanism and a flexible payload (such as a long 
mirror cylinder or a space truss). As Fig. 1 shows, it is a 
typical multibody system subject to nonholonomic constraints. 
In fact, much research have been performed on the dynamics 
of the Stewart platform by employing the Lagrange equation,7) 
Newton–Euler method,8,9) and Kane’s equation.3) The 
Lagrange formulation involves the partial derivatives of the 
Lagrangian, so a large amount of symbolic computation is 
required. Furthermore, the multipliers are adopted to describe 
the constraints in this formulation, which increases the 
dimension of the system and leads to difficulty for controller 
design. When using the Newton–Euler method, one have to 
eliminate (or calculate) the interaction forces between each 
body; and yet, this procedure also related with tedious 
derivations for the unknown forces8,9). The above issues could 
be avoided in the Kane’s method, but the unknown multipliers 
are also introduced for the nonholonomic constraints.3)  

In this work, the new form of Kane’s method is adopted to 
obtain the equations of motion of the SMSS without 
introducing multipliers.10) The equivalent unconstrained 
system is demonstrated in Fig. 2, whose governing equation is 
firstly formulated by the Kane’s equation in matrix form. 
Then, the new form of Kane’s equation is used to handle the 
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nonholonomic constraints, then the equations of motion are 
finally reduced to a minimum order. The obtained equations 
of motion is quite suitable for controller design. 
 
2.  System Description 
 

As it is shown in Fig. 1, the Stewart platform connects the 
payload and the central hub to precisely control their relative 
translation and rotation. It is composed of six extensible struts. 
Each strut connect to the upper and lower platform by a 
spherical joint or a Hooke joint respectively. Besides, an 
active prismatic joint is embedded in each strut to enable the 
change of its length. The Stewart mechanism brings five 
closed-loop constraints to the system, which makes it a typical 
multibody system with nonholonomic constraints. To 
establish its governing equation, we firstly derive the 
equations of motion of the equivalent unconstrained system, 
and then model the nonholonomic constraints specially.  
 

Solar Panel Solar Panel
Rigid Lower Platform 

& Central Hub

Stewart 
mechanism

Flexible Payload &
 Rigid Upper Platform

 
Fig. 1. Space Multi-pointing Stewart System. 
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Fig. 2. The equivalent system without motion constants. 

 
The equivalent unconstrained system is obtained by 

introducing five corresponding cut points to remove the 
closed-loops, as Fig. 2 shows. This treatment leads to a 
multibody system in tree topology. The number of body is 16, 
since each strut is viewed as two links connected by a 
prismatic joint. However, for sake of generality, we suppose 
there are n  rigid bodies and n  joints. The n  bodies can 
be numbered as shown in Fig. 2 and each joint has the same 
number with its outboard body. A body fixed frame Fj is 
attached to Bj ( 1,2,...,j n= ), while the inertial frame is 
denoted by Fe.  
  The generalized speeds for the unconstrained system can be 
chosen as 

1 2[ , ,... ]T T T T
n=u u u u                (1) 

where ju  is the generalized speeds for Bj and the superscript 
“ T ” denotes the transpose of a matrix. ju  describes the 

relative motion between Bj and its inboard body Bc(j). If Bj is 
flexible, the assumed mode method is adopted to describe the 
structural vibration. In this case, we define [ , ]rT T T

i i i=u u τ . 
Thus the total DOFs of the unconstrained system is given by 

1
dim( )

n

ii
K

=
= u                  (2) 

 
3. Equations of Motion of the Unconstrained System 
 

In this section, we formulate the equations of motion by the 
Kane’s equation in matrix form. The notions “partial velocity 
matrix” and “partial angular velocity matrix”, 10-12) would be 
first introduced, so that each body’s contribution to the 
generalized inertia force would be expressed by a same 
equation. Thus, the system inertia matrix and the nonlinear 
forces can be directly extracted by simply add up the 
contributions of each body. Then, the kinematics of the Hooke, 
prismatic, and spherical joints will be written in a compatible 
manner with the dynamics equation.  
 
3.1 Kane’s Equation in Matrix Form 

The equations of motion of a multibody system in tree 
topology can be written as 

( 1,2, )I A
i i i n= =F + F 0           (3) 

where I
iF  and A

iF are the generalized inertia force and 
generalized active force with respect to iu . I

iF  is 
calculated by  

1

( 1,2, )
n

I p
i i mj mj

j Bj

dm i n
=

= − ⋅ =F v v
      (4) 

where mjv


 is the inertial velocity of dm and p
i mjv


 is the 
partial velocity of the element mass dm corresponding to the i 
th generalized speed iu . It is defined by the fact that, mjv


 is 

a linear combination of iu ,  

1

n
p

mj i mj i mjt
i=

= +v v u v
  

            (5) 

The linear coefficients in Eq. (5) are defined as the partial 
velocity; whereas mjtv


 is a function of the generalized 

coordinates and time. 
For the generalized active force A

iF , we assume that S 
active forces and L active torques are exerted on the 
unconstrained system. Then, we have 

1 1

S L
A p p

i i s s i l l
s l= =

= + F v F ω N
  

             (6) 

where p
i sv


 is the i th partial velocity of the point where force 

sF


 is exerted; p
i lω


 is the partial angular velocity of the 
place where lN


 is exerted. 

  The formulation of A
iF  is quite straightforward, but more 

efforts are required to have the explicit expression of I
iF . In 

what follows, the integration of I
iF  would be fully 

expanded. 
 
3.2 Generalized Inertia Force 

Consider the two adjacent bodies in a multibody system 
( Fig. 3 ), Bc(j) is the inboard body of Bj. They are connected 
by joint hj, whose DOFs can be 1~6. To obtain a universal 
derivations, we assume that both Bc(j) and Bj are flexible. 
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Fig. 3. Two adjacent bodies in an unconstrained multibody system.  

 
  The inertial velocity and inertial angular velocity of Fj can 
also be expressed as the linear combination of ui,  

1

n
p

j i j i jt
i=

= +v v u v
  

                (7) 

1

n
p

j i j i jt
i=

= +ω ω u ω
  

               (8) 

where p
i jv


 and p
i jω


 
are the i th partial velocity and partial 

angular velocity of Fj, respectively. jtv


 and jtω


 have 
similar definitions with mjtv


. 

  To simplify the formulation and clarify each body’s the 
contribution to the equations of motion in the system, we 
define 

1 2

1 2

[ ]

[ ]

p p p p
mj mj mj n mj

p p p p
mj mj mj n mj

 =


=

v v v v

ω ω ω ω

   
   

         (9) 

where p
mjv


 is termed as the partial velocity matrix, and 
p

mjω


 is the partial angular velocity matrix of dm. According 
to Eq. (5), we have  

p
mj mj mjt= +v v u v
  

              (10) 

  Moreover, the generalized inertia forces related with Bj can 
be stacked together and expressed as 

1[( ) ,...,( ) ]I I T I T T
j j jn=F F F  

p
mj mjBj

dm= − ⋅ v v
                (11) 

  Similarly, the partial velocity matrix p
jv


 and partial 
angular velocity matrix p

jω


 of Fj are written as  

1 2

1 2

[ ]

[ ]

p p p p
j j j n j

p p p p
j j j n j

 =


=

v v v v

ω ω ω ω

   
   

           (12) 

  Then, the inertial velocity and inertial angular velocity in 
Eqs. (7) and (8) become  

p
j j jt

p
j j jt

 = +


= +

v v u v

ω ω u ω

  

                 (13) 

  Furthermore, the modal selection matrix for Bj is defined to 
make the following equation always satisfied, 

,
f
jK K

j j j
×= ∈τ Δ u Δ               (14) 

where Kf
j is the modes number for the flexible body Bj. 

Obviously, jΔ  has the following form,  
[ ,..., , , ,..., ]f fj K K×

=Δ 0 0 I 0 0             (15) 

where I  and 0 are the unity matrix and null matrix with 
appropriate dimension, respectively. 
  The inertial velocity of dm can be written as  

( )mj j j mj mj mj= + × + +v v ω r u u
                (16) 

where mjr


 is the position of dm relative to the origin of Fj in 
the undeformed state. mju


 is the elastic displacement of dm, 

discretized by  

mj mj j=u T τ


                (17) 

  Substituting Eqs. (13), (14) and (17) into Eq. (16) yields 

( ( ) )p p
mj j j mj mj mj j= + × + +v v ω r u T Δ u

    
 

( ( ))jt jt mj mj+ + × +v ω r u
   

             (18) 

  Comparing Eq. (10) with Eq. (18), the relation for the 
partial velocity is obtained, 

( )p p p
mj j j mj mj mj j= + × + +v v ω r u T Δ

    
       (19) 

  Time derivative of Eq. (16) leads to the inertial acceleration 
of dm, 

( )mj j j mj mj mj jτ= + × + +v v ω r u T
         

2 ( )j mj j j mj mj+ × + × × +ω u ω ω r u
         (20) 

  Substituting Eqs. (19) and (20) into Eq. (11) and perform 
the integration on Bj, we obtain the generalized inertia forces 
of Bj as 

[ 2 ]I p
j j j j j j j j j j j j j jm τ τ= − ⋅ − × + + × + × ×F v v S ω P ω P ω ω S

            

[ 2 ]p
j j j j j j j j j j jH ω− ⋅ × + + + + × ⋅ω S v J ω τ H τ ω J ω
           

[ 2 ]T
j j j j j j j j j jω ωω− ⋅ + ⋅ + + +Δ P v H ω E τ F τ F
            (21) 

where the details of the integrals jm , jS


, jJ , jP


, jH


, 

jωH


, jE , jωF


, and jωωF


 are given in the Appendix. 
 
3.3 System Equations of Motion 

Observing Eq. (21), I
jF  can be divided into two groups: 

the one consists of all the terms that are explicit in the 
derivatives of generalized speeds, and the other does not: 

0
I I I
j j jt= − −F F F               (22) 

where the one linear in u  can be written in a compact form, 

0
I
j j=F M u                 (23) 

where K K
j

×∈M   is Bj’s contribution to the system inertia 
matrix, calculated by 

[ ]p p p
j j j j j j j jm= ⋅ − × +M v v S ω P Δ

   
 

      [ ]p p p
j j j j j j jω+ ⋅ × + +ω S v J H Δ
   

 

[ ]T p p
j j j j j j j+ ⋅ + ⋅ +Δ P v H ω E Δ
  

    (24) 

  I
jtF  in Eq. (22) is the contribution of Bj to the system 

nonlinear generalized inertia force, expressed by 

[ 2 ]I p
jt j j jt j jt j j j j j jm= ⋅ − × + × + × ×F v v S ω ω P τ ω ω S

          

[ 2 ]p
j j jt j jt j j j jω+ ⋅ × + + + × ⋅ω S v J ω H τ ω J ω
         

[ 2 ]T
j j jt j jt j j jω ωω+ ⋅ + ⋅ + +Δ P v H ω F τ F
              (25) 

  Since the system generalized inertia force can be calculated 
by 

1

nI I
jj =

=F F                (26) 

the inertia matrix and the nonlinear terms of the entire system 
can be obtained as 

1 1

,
N N

I I
j t jt

j j= =

= = M M F F         (27) 

  Finally, the equations of motion of the unconstrained 
system are written as  

I A
t+ =Mu F F                (28) 

where AF  is the generalized active forces rearranged by  
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1[( ) ,...,( ) ]A A T A T T
n=F F F            (29) 

 
4. Kinematics of the Joints 
 
  In this section, the kinematic terms jω , p

jv


, p
jω , jtv
  

and jtω , required in Eqs. (24) and (25), will be discussed for 
the joints in the SMSS. The recursive kinematic relations are 
specially developed to improve the modeling efficiency. 
 
4.1 Revolute Joint 
  As shown in Fig. 2, the central hub and the solar panels are 
connected by the revolute joints. Denote the central hub by 

( )Bc j  and the solar panel by B j . Then, the recursive 
relationship between ( )c jω


 and jω


 is written as 

( )j c j j j= + Γω ω u
 

             (30) 

where jΓ


 is the vector characterizing the direction of 
revolution; ju  is the relative rotational speed between ( )Bc j  
and B j . Equation (30) can be rewritten in a vectrix form  

( ) ( )
T T

j c j c j j j j= +ω ω Γ uF F
          (31) 

where ( )c jF  and jF  are the vectrices for frames ( )c jF  and 

jF , respectively. The vectrix of jF  is given by 
[ , , ]T

j j j jx y z=F   
, where jx


, jy


, and jz


 are the three unit 
orthogonal vectors of jF . Differentiating Eq. (31) with 
respect to time, we have 

( ) ( )
T T T

j c j c j j j j j j j j= + +ω ω Γ u ω Γ uF F F         (32) 

  Suppose j jθ=u   is the x th element in the generalized 
speeds vector u . Then, substituting ( ) ( ) ( )

T
c j c j c jω ω= F

( ) ( )
p

c j c j t= +ω u ω
 

 into Eqs. (31) and (32) leads to the 
recursive relations for the partial angular velocity matrices 
and the nonlinear part of the angular accelerations, 
respectively, 


3

( ) 3 1 3 1 3 1 3 1[ ] ,p p p K
j c j j j

x

×
× × × ×= + Γ ∈ω ω 0 0 0 0 ω

      (33) 

( )
T

jt c j t j j j j= +ω ω ω Γ uF                (34) 

where x indicates the position of jΓ


 in the 3 K×  matrix.  
  Similarly, the counterparts related with the velocities of Bc(j) 
and Bj can be obtained as 

3
( ) ( ) ( ) ( ) ,p p T p p K

j c j c j c j c j jω ×= − ∈v v l vF           (35) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
T T

jt c j t c j c j c j c j t c j c j c j c jω= − +v v l ω ω lF F F         (36) 

where ( ) ( ) ( )
T

c j c j c j=l lF


 is the position vector of the origin of 

jF  relative to the origin of ( )c jF . 
 
4.2 Prismatic Joint 
  The prismatic joints are embedded in each strut. Active 
actuators, such as voice coil motors, are mounted in the 
prismatic joints to control the length of the struts, so that the 
attitude and position of the payload can be changed. When 
establishing the equations of motion of the system, the struts 
should be viewed as two connected rigid links. Denote the 
upper link by Bj and the lower link by Bc(j). The allowed 
translational velocity at the joint is 

T T
j j j j j j= =t t Γ uF F
              (37) 

where jt


 is the translational displacement; T
j j jΓ = ΓF


 is 
the vector signifying the direction of the displacement; ju  is 

the corresponding generalized speed.  
  Since there is no relative rotation between Bj and Bc(j), we 
have the following recursive relations,  

( ) ( ) ( )
T

j c j c j c j= =ω ω b ω
 

, ( )
p p

j c j=ω ω
 

,  ( )jt c j t=ω ω
    (38) 

  Yet for the velocities, we have  

( ) ( ) ( ) ( ) ( ) ( )( )T T T
j c j c j c j c j hj c j c j hj= − + +v v l t ω tF F F        (39) 

  Differentiating Eq. (39) with respect to time, the recursive 
relation of jtv

  can be obtained as 

( ) ( ) ( ) ( ) ( )( )T
jt c j t c j c j hj c j c j tω= − +v v l tF F       

( ) ( ) ( ) ( ) ( ) ( )( ) 2T T
c j c j c j c j hj c j c j hj+ + +ω ω l t ω tF F     (40) 

  Substitute Eq. (13) into Eq. (39), we have  

( ) ( ) ( ) ( ) ( )( )p p T p
j c j c j c j hj c j c j= − +v v l t ωF F     

( )
T

c j hj +  0 Γ 0F           (41) 

 
4.3 Hooke Joint and Spherical Joint 
  The lower links are mounted on the central hub by Hooke 
joints, whereas the upper links are connected to the payload 
through spherical joints. These two joints have similar 
recursive kinematic relations as the revolute joint, but the 
definitions of jΓ


 and ju  are different. The spherical joint 

permits the two adjacent bodies rotate in three DOFs. We 
adopt the Euler angles in “3-1-2” rotational sequence to 
describe the relative attitude. Thus we have 

cos 0 cos sin

0 1 sin

sin 0 cos cos
j

θ φ θ
φ

θ φ θ

− 
 =  
  

Γ , j j

φ
θ
ψ

 
 = Θ  
 
 

u


 


   (42) 

where φ , θ , and ψ  are the three successive rotation 
angles. Compared with the revolute joint, jΓ  is also time 
varying, so it should be incorporated when formulating the 
recursive relations for the angular accelerations. 
  As for the Hooke joint, two successive rotation angles are 
defined to describe the relative attitude of the two connected 
bodies. If the “1-2” rotational sequence is used, we have 

cos 0

0 1

sin 0
j

ϕ

ϕ

 
 =  
  

Γ , j j

θ
ϕ
 

= Θ  
 

u


 


        (43) 

 
4.4 Generalized Speeds for the SMSS 
  Basing on the discussions above, the generalized speeds of 
the system u  are specified in this sub-section. Following the 
body numbers in Fig. 2, the generalized speeds are defined in 
Table 1. 

 

Table 1. System Generalized Speeds. 

Generalized 

Speeds 

Descriptions 

3 1
1

×∈v   Inertial velocity of B1 
3 1

1
×∈ω   Inertial angular velocity of B1 
2 1

j
×∈Θ   Rotational speeds in Hooke joints.  

11, 21, 31, 41, 51, 61j =  
1 1

j
×∈t   Translational speeds in prismatic joints. 

12, 22, 32, 42, 52, 62j =  
3 1

13
×∈ω   The relative angular velocity at the spherical joint.



 

 

 

5

jθ  Rotational speeds at the revolute joints connecting 

the solar panels. 71, 81j =  

jτ  Modal coordinates for the flexible payload and the 

two solar panels. 13,71, 81j =  

 
5. Motion Constraints 
 
  In this section, the motion constraints will be developed for 
the Stewart mechanism. To obtain the unconstrained system, 
we introduce five cut points at the spherical joints to eliminate 
the closed loop, which brings in 15 constraint equations.  
  Taking the constraint equation for Strut 2 (constituted of 
B21 and B22, as Fig. 2 shows) as an example, the constraint 
equations for other struts can be similarly obtained.  
  The motion constraint for the closed-loop is derived from a 
straightforward observation: the relative velocity between C22 
and C23 is zero, where C22 and C23 are the cut points at B22 
and the payload B13 respectively, as Fig. 5 demonstrated.  

23 22C C=v v
 

                   (44) 

where 22Cv


 and 23Cv


 are the inertial velocity of C22 and 
C23, respectively.  
  It should be noted that, the payload is attached on the rigid 
upper platform of the Stewart mechanism, therefore, we do 
not have to consider the structural flexibility when 
establishing the constraint equations. 
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Fig. 4 The rigid upper platform of the Stewart. 

 
  Expanding Eq. (44) by the system generalized speeds, we 
have 

11 11 11 12 12 12 13 13 21 21 21 22 22 22t t+ + = +C Γ Θ C Γ C ω C Γ Θ C Γ     (45) 

where ( 11,12, 21, 22)j j =Γ  are the vectors characterizing 
the direction of motion for each joints. They are defined in 
Eqs. (37), (42) and (43). ( 11,12,13, 21, 22)j j =C  are the 
coefficient matrices determined by the system configuration.  
  The generalized speeds in Eq. (45) can be divided into two 
parts: the dependent ones ,2Du  and the independent ones Iu . 
Then we have 

3 1 6 1
,2 21 22 11 12 13[ , ] , [ , , ]T T T T T

D h h I h h ht t× ×= ∈ = ∈u Θ u Θ ω    (46) 

Then the constraint equation for Strut 2 is written as 

1,2 ,2 2,2D I=G u G u               (47) 

where  
3 3

1,2 21 21 22 22[ , ] ×= ∈G C Γ C Γ   
3 6

2,2 11 11 12 12 13[ , , ] ×= ∈G C Γ C Γ C         (48) 

  The constraints equations for Struts 3-6 can be obtained by 
following the derivation in Eqs. (44)-(48). Thus, all of the 
constraints equations are gathered to form 

1 2D I=G u G u                    (49) 

where 

1,2

1,3

15 15
1,41

1,5

1,6

×

 
 
 
 = ∈
 
 
  

G

G

GG

G

G

  

2,2

2,3

15 3
2,42

2,5

2,6

×

 
 
 
 = ∈
 
 
  

G

G

GG

G

G

 , 

,2

,3

15 1
,4

,5

,6

D

D

D D

D

D

×

 
 
 
 = ∈ 
 
 
  

u

u

u u

u

u

       (50) 

  Equation (49) stands for the motion constraints in the 
Stewart mechanism. It will be combined with the equations of 
motion of the unconstrained system in Eq. (28) to describe the 
complete dynamic model of the multi-pointing stewart system 
in Fig. 2. 
 
6. Application of the New Form of Kane’s Equation 
 
  In this section, the new form of Kane’s equation is adopted 
to form the equations of motion without introducing unknown 
multipliers, so that the resultant model is suitable for 
controller design. 
  Divide the generalized speeds in Table 1 into three groups 
as 

0[ , , ]T T T T
I D=u u u u                  (51) 

where Iu  and Du  are given in Eq. (47) and (50). 0u  is 
the generalized speeds irrelevant to the motion constraints: 

0 1 1 71 81 13 71 81[ , , , , , , ]T T T T T Tθ θ=u v ω τ τ τ             (52) 

  Then, the equations of motion in Eq. (28) should be 
rearranged and also be divided into three parts:  

0 00 0

I A
t

I A
I I tI I

AI
D D DtD

      
       + =      
             

F FM u

M u F F

M u FF





           (53) 

  Transform Eq. (49) into the standard constraint equation as 

D I=u Au                    (54) 

where 1
1 2
−=A G G . Differentiating Eq. (54) with respect to 

time leads to the constraint equations in acceleration level: 

1
I

I
D

 
= 

 

u
A Au
u

 


                (55) 

where 1 [ ]−A A I . According to Ref. 10), we define the 
orthogonal complements matrix of 1A  as 2 [ ]T=A I A . 
Thus Eq. (53) can be projected by 2A  as 

[ ]

0 00

0

2 2 2

1,

I A
t

I A
tII I

I I A
D tD D

D

I

    
      

            + =                                  

F FM
u

FM F
A u A A

M F F
u

0 A 0Au







    (56) 

  From Eq. (56) we can see that the equations of motion are 
composed of three parts:  
  Firstly,  
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0 0 0 0
I A

t+ =M u F F , 

which is the equations of motion for the generalized speeds 

Iu .  
  Secondly,  

2 2 2

I A
tII I

I I A
D tD D

    
+ =    

      

FM F
A u A A

M F F
 , 

which is the reduced equations of motion for Iu  and Du . 
The dimension of this equation is same as Iu .  
  Thirdly, 

1
I

I
D

 
= 

 

u
A Au
u

 


, 

which is the constraint equation.  
  It is obvious that the equations above are free of multipliers 
and has the same dimension with the system generalized 
speeds. However, it should be noted that, the constraint 
equations at the acceleration level should be twice integrated 
to obtain the generalized coordinates. It makes the numerical 
solutions sensitive to the finite precision and accuracy errors. 
  Therefore, we have to utilize certain approaches, such as 
the Baumgarte’s constraint violation stabilization 
technique,13,14) for constraint enforcement while numerically 
integrating Eq. (56).  
  Observing Eq. (56), we find that the new form of Kane’s 
equation belongs to the common projective methods for 
constrained multibody systems.15) The key feature of this 
method is that the projection matrix 2 [ ]T=A I A  is directly 
constructed by the coefficient matrix A  in the constraint 
equation D I=u Au . A rigorous formulation can be found in 
Ref. 10) for more details. 
  Furthermore, noting that 2

TT T
I D I  = u u A u , we further 

reduce the first two parts in Eq. (56) to  

0 00

0

2 2 2 2 2

I A
t

I A
I tI I

I II A
D tD D

    
      + =           +                        

F FM
u

M F F
A A u A A u A

M F F




 (57) 

  Equation (57) is only related to the independent generalized 
speeds. The dependent one Du  can be solved from the third 
part of Eq. (56), which means that the control synthesis could 
be directly performed on Eq. (57). However, not all the joints 
are embedded with active actuators. Consequently, the 
designed control, expressed as 

2

A
IA

design A
D

 
=  

  

F
F A

F
, 

is actually the projection of the real control on the subspace of 
the independent variables. To solve this problem, the 
following weighted pseudo-inversion logic is employed for 
the redistribution of the control input,  

1
2 2 2 2( )

A
I T T A

designA
D

− 
= 

  

F
WA AWA A F

F
      (58) 

where 1diag[ ,..., ] n n
nw w ×= ∈W   is the weighted matrix. It 

needs to be emphasized that the iw  corresponding to the 
Hooke joints and spherical joints should be zero, since no 
actuators are located in those joints. 
 

7. Numerical Simulations 
 

  In this section, the dynamic model of the SMSS established 
by the proposed methodology is compared with the simplified 
model in which the struts are considered as a group of spring 
damper without mass.4)  
  The mass properties of the considered system is given in 
Table 2. The exciting torques in the central hub and the active 
forces in the struts are given in Table 3.  
 

Table 2. Mass properties. 
Items Values 

Mass of the rigid hub 2000kg  

Mass of the upper platform and 

payload 

1000kg  

Moment of inertia of the rigid hub 2diag(1000,1000,800) kg m⋅  

Moment of inertia of the upper 

platform and payload 

2diag(500,500,250) kg m⋅  

 

Table 3. Exciting torques and active forces. 
Items Values 

Exciting torques in central hub [1 1 1] N m⋅  

Active forces in Struts 1 to 6 0.1N  

  
  By inserting the same forces in to the two models, we 
presented a 10s simulation. The time histories of Euler angle 
of the central hub and the upper platform solved by the two 
model are compared in Figs. 5 and 6 respectively. As we can 
see, the responses of the central hub and the upper platform 
solved by the two models are consistent. 

 
Fig. 5. Euler angles of the rigid hub by two models (deg). 
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Fig. 6. Euler angles of the upper platform (deg). 

 
  The error of length of each strut between the two models 
are given in Fig. 7. Its order of magnitude is 610 m− , which 
means the error of struts’ deformation between the two 
models are rather small. Thus, the results of the two model 
agree with each other.  

It should be noted that, since we assume that the mass and 
inertia of the payload are comparable with the rigid hub, both 
of which are much bigger than the mass and inertia of the 
Stewart mechanism, so the results of the two model agree well. 
However, when the inertia is comparable with the Stewart, the 
proposed model should be used. Moreover, another advantage 
of the proposed method is that the flexibility of the payload 
and the flexible appendages can be described.  
 
8. Conclusions 

 
  In this work, the detailed dynamics of the SMSS were 
formulated. A universal Kane’s method in matrix form was 
developed first. It can be used for establishing the equations of 
motion of an arbitrary multibody system in tree topology. It 
permits that the body is rigid or flexible, and the joints 
connecting the bodies has 1~6 degrees of freedom. Then, the 
new form of Kane’s method was combined with the Kane’s 
method in matrix form to handle the motions constraints.  
  The proposed methodology was applied to a typical SMSS. 
The closed-loop constraints in the Stewart mechanism was 
first released, then the equations of motion for the 
unconstrained SMSS as well as the constraint equations were 
derived and combined.  
  A numerical example shows that the dynamic model 

established by the methodology above is in correspondence 
with the pre-existing model. The obtained equations of motion 
are free of multipliers, thus would be more suitable for control 
synthesis.  
  Future work will be focused on the controller design and 
specific applications of SMSS. 
 

 
Fig. 7. Error of the struts’ length (m). 
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Appendix: Integrals in Eq. (21) 

 

j Bj
m dm=   is the mass of Bj. 
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( )j mj mj mjBj Bj
dm dm= + ≈ S r u r

   
is the first moment of inertia 

of Bj. 

3[( ) ( ) ( )( )]j mj mj mj mj mj mj mj mjBj
dm= + ⋅ + − + +J r u r u I r u r u

       

3[ ]mj mj mj mjBj
dm≈ ⋅ − r r I r r

   
is the second moment of inertia. 

j mjBj
dm= P T

 
 is the modal momentum coefficient. 

( )j mj mj mj mj mjBj Bj
dm dm= + × ≈ × H r u T r T

    
 is the modal 

angular momentum coefficient. 

j mj mjBj
dm= ⋅E T T

 
is the modal mass of Bj. If normal modes 

are utilized, jE  is an unity matrix. 

jHω


, jFω


, and jFωω


 are nonlinear terms given by, 

( ) ( ) ( )j mj mj j mj mj j mjBj Bj
H r u T dm r T dmω ω ω= + × × ≈ × × 
     

 

( )j mj j mjBj
F T T dmω ω= ⋅ ×
  

 

( ( ( )))

( ( ))

j mj j j mj mjBj

mj j j mjBj

F T r u dm

T r dm

ωω ω ω

ω ω

= ⋅ × × +

≈ ⋅ × ×




     

     
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