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Harnessing the Sun’s Gravity for LEO to GEO transfers
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This paper introduces a new type of transfer between inclined circular low-Earth orbits and geostationary orbits. Traditionally,
the required inclination changes are achieved through out-of-plane maneuvers. For this new type of transfer, by properly timing and
orienting the initial orbit, all inclination change and periapse raise is performed by solar gravity. For high start inclinations, the required
∆V can be significantly reduced from the more traditional geostationary transfer options.
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Nomenclature

e : eccentricity
i : inclination

M : mass
n̂ : normal unit vector
P : orbital period of the Earth around the Sun
t̂ : tangent unit vector

rp : periapse radius
x : converged state
x̃ : predicted state

∆V : change in velocity
ω : argument of periapse
Ω : longitude of ascending node

1. Introduction

In 1964, Syncom 3 became the first satellite to be launched
into a geostationary orbit (GEO). Ever since, the geostationary
orbit has achieved widespread popularity among mission
designers through its unique features. Proof of that are
the more than 500 satellites currently active in GEO. GEO
satellites are commonly launched from Guiana Space Centre,
Kennedy Space Center and Baikonur Cosmodrome. The lowest
inclinations that can be achieved for each launch site without
dog-leg maneuvers are 5, 28.5 and 51.5◦ respectively. Hence,
for high latitude launch sites, a large part of the ∆V budget
needs to be allotted to the inclination changes (∆i).

The transfers of interest for this research are from inclined
circular orbits at 185 km altitude to a geostationary orbit; a
circular, equatorial orbit at an altitude of 35,786 km. Several
strategies exist to minimize the fuel cost for such transfers.
Examples are a two-burn strategy where the ∆i is optimally
distributed over the two burns and three-burn bi-elliptic or
super-synchronous transfers where the ∆i is performed at a
high altitude. Both are briefly explained in the next paragraphs.

The two-burn transfer option achieves the inclination
and altitude change in one transfer orbit. At a node crossing in
the initial circular orbit, the first maneuver raises the apoapse
to the geostationary altitude and reduces the inclination by

an amount ∆i1. The satellite then traverses the transfer orbit
to its apoapse at geostationary altitude. There, a second
maneuver reduces the eccentricity and inclination to zero.
The distribution of the performed inclination changes over the
two maneuvers can be optimized to minimize the overall ∆V
budget. Examples of such optimization procedures for different
initial inclinations can be found in Figure 1.
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Fig. 1.: Two-burn strategy: ∆V cost as function of ∆i1.

A three-burn bi-elliptic transfer leverages the fact that
inclination changes require the least fuel when applied at low
velocities, e.g., at a high apoapse. The bi-elliptic transfers
are composed of two consecutive transfer orbits. At a node
crossing of the initial circular orbit, the first maneuver raises
the apoapse altitude above the geostationary altitude. This
transfer orbit is followed up to apoapse. Here, a second
maneuver is executed that raises the periapse from the initial
value to the geostationary altitude. This maneuver also nearly
nullifies the inclination. This second transfer orbit is followed
down to periapse. There, a third maneuver is performed to
circularize the orbit. In theory, the transfer requires the least
∆V when apoapse is at infinity and the inclination change can
be performed for free. However, this requires infinite time of
flight. In Figure 2a, one can see a few examples of the trade-off

between time of flight and fuel cost for bi-elliptic transfers
for different initial inclinations. In Figure 2b, the optimal
two-burn strategies for different inclinations are compared
to the theoretical minimum of the bi-elliptic transfers. For
start inclinations larger than 38.365◦, the optimal two-burn
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(a) ∆V as function of maximum distance from Earth.
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(b) ∆V as function of total inclination change required.

Fig. 2.: Comparisons between two- and three-burn strategies.

strategy has a higher fuel cost than the theoretical minimum
for bi-elliptic transfers. Note that this value is specific for the
transfers from 185 km to geostationary altitude.

Significant fuel savings can be realized using the bi-elliptic
strategy on transfers with a high initial inclination. Those
transfers fly far away from Earth and have a high time of flight.
This presents a new opportunity; the further you get from the
Earth, the stronger the perturbation of the Sun becomes. For
the discussion and analysis above, this effect has been ignored.
An approach has been identified in Ref. 1), wherein the Sun’s
gravity may be fully utilized to perform the plane change and
periapse raise using minimal fuel, if any. This strategy will be
further investigated in this paper.

These transfers leave LEO after an in-plane impulse in
the velocity-direction. Throughout the transfer, solar gravity
perturbs the orbit such that the next periapse occurs at GEO
altitude with 0◦ inclination. Then, another in-plane impulse
in the anti-velocity direction re-circularizes the orbit. This
strategy and the bi-elliptic transfer are visualized in Figure 3.
Both transfers depart with identical orbital elements, but the
Sun-perturbed orbit does not require an out-of-plane maneuver
at apoapse to execute the plane change. Ref. 1) has found
transfers for an initial 51.5◦ inclined orbit that require only
2.5% more fuel than the classic two-burn transfers from 28.5◦,
the common transfers for launch from Kennedy Space Center.
Therefore, this technology increases flexibility in launch site
selection for GEO spacecraft.

The solar perturbations add complexity to the design of
the transfers. While the two- and three-burn strategies have
no dependence on the relative geometry between the Sun,
the Earth and the orbit, this geometry will determine the
perturbing acceleration on the orbit. Assuming fixed initial rp

and i, the design variables are time of year of LEO departure,
initial transfer eccentricity (e), argument of periapsis (ω) and
right ascension of ascending node (Ω). Note that the time

Fig. 3.: Visualization bi-elliptic (blue) and Sun-perturbed orbit
(red). Not to scale.

of year is computed w.r.t. to the J2000 epoch. Navigating the
four-dimensional state space is not trivial, especially given
the sensitive maps between design variables and final rp and
i values. In this paper, the initial conditions for transfers at
different times of year, with resolution one day, and for three
different initial orbital inclinations are identified. This requires
finding intersections between contour surfaces representing the
correct ∆rp and correct ∆i in (ω,Ω, e)-space, at the smallest
e they occur. By minimizing e, the required fuel to inject the
spacecraft from LEO into its transfer orbit is minimized.

In the next section, the used methodology will be sum-
marized. Next, the developed methodology will be used to
design transfers throughout the year for different start inclina-
tions, e.g., different potential launch sites. Finally, the transfers
will be compared to the classic two- and bi-elliptic transfers
based on time of flight and fuel budget.
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2. Methodology

In this chapter, the four building blocks of the developed
methodology will be briefly discussed. The first building block
maps a given set of initial conditions to the next periapse. This
is used in the second building block: a single-shooting method
to find a set of initial conditions that satisfy the required pe-
riapse raise. The third block uses this functionality within a
continuation technique to compute all points with the correct
periapse-raise. Local minima on this contour can be identified.
The fourth building block traces the local optima out in eccen-
tricity until the maximum inclination change for that local op-
tima is obtained. In the next sections, each of the four blocks
will be explained in more detail. Finally, it will be explained
how the four building blocks co-operate in a single algorithm.

2.1. Building block 1: Poincaré map
The transfers are designed to attain the periapse raise and

inclination change in one orbit. Therefore, the initial state must
be integrated from periapse to periapse. This has been done
through a Poincaré map where the flow between two periapse
surface of section crossings is numerically integrated.

To perform this integration, the Hill problem dynami-
cal system is well suited. This model assumes that the primary
body is much more massive than the secondary and that the
third body is massless. Hence, the two massive bodies only
experience gravitational attraction from the other massive body
and orbit their center of mass. This orbit is assumed to be
circular. Hence, one body revolves around the other body with
constant angular velocity. These are good assumptions for
this system given MS un = 1.99e30 kg > MEarth = 5.97e24 kg
� MS C and the Earth’s actual eccentricity of 0.0167.3) Finally,
the Hill problem assumes that the spacecraft is much closer to
the secondary than to the primary body. This is representative
for the transfers of interest, as they will need to stay in close
proximity to the Earth to have reasonable transfer times.

Using this map, the periapse and inclination change can
be computed for different sets of initial conditions. Keeping
the time of year, e, initial rp and initial i constant, Figure 4
shows the periapse and inclination change for the entire range
of possible ω and Ω values. Clearly defined contour lines
for the inclination and periapse raise can be observed. This
figure also showcases a useful symmetry of the Hill problem:
the realized periapse and inclination change are the same for
(a, e, i, ω,Ω) and (a, e, i, ω + π,Ω). Therefore, the ω design
space can be halved; ω ∈ [0, π). The Hill problem also has a
temporal symmetry. The periapse and inclination change for
a set of initial orbital elements at time t and time t + 0.5P are
identical, with P the orbital period of the secondary around the
primary. Therefore, the temporal design space can be halved;
t ∈ [0, 0.5P), e.g., day 0 to 182.5. Through the temporal and
ω-symmetry, the design space can be reduced by a factor four.

2.2. Building block 2: Find point satisfying required peri-
apse raise

The developed periapse-to-periapse map method can be used
within a single-shoot method to find a set of initial orbital
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(a) Inclination change contours.
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(b) Periapse change contours.

Fig. 4.: Contours for day 0, i0 = 51.5◦, e0 = 0.9856.

elements that raise the periapse altitude by 35,601 km from the
original 185 km to GEO altitude. For this method, all initial
conditions are kept fixed, except for ω and Ω.

First, an initial set of orbital parameters is mapped using
building block 1 to compute the final rp. Using a forward finite
difference step method, the partials of rp with respect to ω

and Ω are computed. The required change in both angles is
then predicted, after which building block 1 is used to evaluate
the periapse at this state. This procedure is repeated until the
required periapse raise is achieved, within a 100 km tolerance.

2.3. Building block 3: Find contour satisfying required pe-
riapse raise

Building block 2 provides a set of initial conditions (ω,Ω)
that realize the desired periapse raise. This point can be used to
find all combinations of (ω,Ω) that realize the desired periapse
raise, while keeping all other initial conditions fixed. To this
end, a continuation method is developed. From Figure 4b,
it is known that the periapse contours have turning points.
Therefore, a pseudo-arclength continuation method4) has been
selected, which is known to be robust around turning points.5)

At the initial point x0, the partials of rp with respect to ω

and Ω are computed using a forward finite difference step
method. Using this information, the tangent unit vector t̂ can
be computed. By selecting a certain step size ∆s, the new
predicted state is x̃1 = x0 + ∆s t̂. Computing the periapse raise
at this predicted state completes the predictor step.
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The corrector step is then performed under the pseudo-
arclength constraint: the dot product between the tangent
direction and the difference between the previous point (x0)
and the next point (x1) must equal ∆s. Hence, x1 is enforced to
be on the line through x̃1 with a direction perpendicular to t̂; n̂.
The geometric interpretation of this can be seen in Figure 5.

By computing the gradient of the periapse raise at x̃1 along
the n̂-direction, the next corrected state can be predicted. Here,
building block 1 is used to assess the realized periapse raise and
the gradient along the n̂-direction is computed again. This New-
ton method is iterated until convergence. Based on the number
of required iterations, the step size ∆s is adjusted and the pro-
cess is repeated for the next point.

�̂

��

Fig. 5.: Pseudo-arc length continuation method.

This method can be used to compute the periapse raise con-
tours. In Figure 6, the periapse contour plots for different values
of eccentricities have been depicted. One can see that at small
eccentricities, multiple periapse contours exist, which grow in
size and merge at a certain eccentricity. The number of lo-
cal maxima of the inclination change (indicated by the colored
dots) is not constant. Starting with one local optima per con-
tour line, a V-shape appears where the local optima branch off.
From then on, there are two local optima per contour line. When
the two contours merge into one, the V-shaped pattern prevails.
Hence, there are four local optima on that contour line. For all
cases encountered, a maximum of four local optima has been
found.

Fig. 6.: Contour plots for different eccentricities.

2.4. Building block 4: Follow inclination gradient on peri-
apse contours

Figure 6 demonstrates that the local maxima move smoothly.
Therefore, computing complete contours for every eccentricity
is unnecessary. It is more efficient to compute the local optima
on a contour for one eccentricity. Then, using building block
2, at a new eccentricity, a point on the contour line is found in
the neighborhood of the previous optima. A modified version
of building block 3, where the continuation is performed in the
direction of largest inclination reduction and stopped at a local
optima, is used to find the local optima at that eccentricity.
This is repeated for different eccentricities until the maximum
∆i is found for that local optima family. An example of this
procedure can be found in Figure 7, where the green and blue
stars are respectively the local maxima on the full contour plot
for the initial eccentricity and the maxima for each family
in eccentricity. A limit of 0.99 has been imposed on the
eccentricity. For those very eccentric orbits, the TOF between
two periapses becomes very large, and in some cases infinite,
meaning they escape the Earth system. This causes numerical
issues with the developed algorithm.

Fig. 7.: Evolution of the four local minima in eccentricity.

2.5. Full algorithm
Building block 3 is used on different eccentricities, until an

eccentricity is found with a single, closed contour with four lo-
cal optima. Then, for each local optima on this contour, the
eccentricity that results in the minimal achievable inclination is
determined using building block 4. These are the results for that
day and can be used as initial guesses for the next day.

3. Results

The developed method has been applied to three different ini-
tial inclinations that capture the entire range of possible launch
sites between Baikonur and polar latitudes. Furthermore, the
retrograde counterpart of the Baikonur launch latitude has been
investigated. The results for start inclinations 51.5◦, 90◦ and
128.5◦ can be found in Figure 8 where one can see how the four
local optima evolve over the year. The initial e, ω and Ω are
plotted, which combined with the fixed initial i and rp fully de-
termine the initial state of the trajectory. The first row shows
the realized i change. Only the first 182 days of the year have
been computed, as the results for the next half of the year are
identical through the temporal symmetry of the Hill system.
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Fig. 8.: Comparing the four different families for the three different start inclinations. From left to right: 51.5◦, 90◦ and 128.5◦.
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Fig. 9.: Feasible trajectories 51.5◦ (left), 90◦ (middle) and 128.5◦ (right).

For higher initial inclinations, it can be observed that the
families start at higher eccentricities. Hence, the 0.99 eccen-
tricity cut-off is reached earlier. Examples of this can be seen
for the 128.5◦ case, where for the first 16 days, the 0.99 eccen-
tricity cap is active on the black family, explaining why the in-
clination cannot be reduced fully. Another example is the green
family curve, which reaches the 0.99 cut-off between days 129
and 166 for the 90◦ case. Similarly, for the 128.5 degree case,
it reaches it at day 95. Hence, for higher required inclination
changes, less days have a feasible transfer. Figure 9 shows the
initial orbital elements for the feasible transfers, and indicates

in grey when and for how long the transfers are infeasible. A
transfer is deemed feasible when the second periapse condition
is within one degree inclination and 100 km periapse altitude of
a geostationary orbit. For an initial i of 51.5◦, 90◦ and 128.5◦,
respectively 325, 225 and 113 days per year have feasible tra-
jectories. One can observe very similar structures for the initial
elements. At first, the ω is around 180◦, after which it starts
increasing strongly, at the same time as the strong increase in e.
During this time, the Ω is increasing linearly. Then, the e limit
of 0.99 is encountered during which no transfer is possible. Af-
ter this, the ω and Ω values drop significantly, and a different
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Fig. 10.: Comparison of the different transfer strategies.

family of transfers becomes feasible. The ω value increases,
until it reaches 180◦ and stays there. To enable this, the eccen-
tricity has to increase again. For the 90 and 128.5◦ scenario, the
0.99 eccentricity cut-off is reached again.

4. Conclusion and discussion

This paper identified the required initial conditions to per-
form a Sun-driven transfer from a low-Earth orbit at an altitude
of 185 km with three different initial inclinations (51.5◦, 90◦

and 128.5◦) to a geostationary orbit. Compared to the optimal
two-burn and bi-elliptic transfers, the total required ∆V for the
designed transfers is smaller. Figure 10 shows the time of flight
vs. ∆V for the different transfer strategies, for different values
of initial inclination. The higher the initial inclination, the
larger the ∆V savings are. From this figure, some disadvantages
can also be identified. First, the time of flight is significantly
larger than for the two-burn strategy. Second, for a specific time
of year, only one trajectory, with a specific time of flight and
fuel cost, has the right Sun-Earth-orbit geometry. Hence, the
bi-elliptic transfers’ flexibility between TOF and fuel budget is
lacking. Third, not all times of year have feasible trajectories.
Taking these disadvantages into account, when transfer time is
considered less important than fuel savings, the new transfer

method can be a possible alternative to the classic transfers for
launches from high latitudes.

Some of those disadvantages could be mitigated by
relaxing the constraints on the trajectory. A significant eccen-
tricity increase is required for a marginal reduction in the final
inclination. By allowing small out of plane maneuvers during
the transfer, the time of flight can be reduced and the number of
feasible trajectories increased. This research can provide good
initial guesses for those trajectories.
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