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    In assessing the risk an asteroid may pose to the Earth, the asteroid’s state is often predicted for many years, often decades. 
Only by accounting for the asteroid’s initial state uncertainty can a measure of the risk be calculated. With the asteroid’s state 
uncertainty growing as a function of the initial velocity uncertainty, orbit velocity at the last state update, and the time from 
the last update to the epoch of interest, the asteroid’s position uncertainties can grow to many times the size of the Earth when 
propagated to the encounter “risk corridor.”  This paper examines the merits of propagating the asteroid’s state covariance as 
an analytical matrix.  The results of this study help to bound the efficacy of applying different metrics for assessing the risk 
an asteroid poses to the Earth. Additionally, this work identifies a criterion for when different covariance propagation methods 
are needed to continue predictions after an Earth-encounter period. 
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: potentially hazardous asteroid 
: time of closest approach 
: near-Earth asteroid 
: probability of collision 
: Mahalanobis distance 
: sphere of influence 
: characteristic scale ratio 
: albedo 
: absolute magnitude 
: asteroid diameter 
: orbit energy 
: orbit velocity 
: orbit radius 
: gravitational constant 
: mass of the central body 
: finite difference 
: standard deviation 
: covariance quality factor 
 

  
 

1. Introduction 
 

Many metrics exist for assessing the risk a potential 
hazardous asteroid (PHA) may pose to the Earth.†   A 
fundamental issue with any metric is generally the scale 
of the asteroid’s position uncertainty when propagated to 
the time of closest approach (TCA) with the Earth.  As 
PHAs generally have orbits somewhat similar to Earth, 
their synodic period is often multi-year or even decades-
long.  As such, any initial measurement uncertainty is 
very large when propagated to TCA.   

Two common metrics that are used to assess a 

collision risk are the probability of collision ( ) and 
Mahalanobis distance ( ).1,2)  Large uncertainties 
generally affect calculations by returning negligible 
values early on and by returning false positives with 
subsequent measurements (described later).  
Mahalanobis distance calculations are affected by large 
uncertainties predominantly based on how close the 
distribution gets to the Earth’s gravitational sphere of 
influence (SOI).  Because  calculations require the 
uncertainty distribution to be approximated by a 
covariance matrix, this matrix imposes Gaussian 
assumptions on the distribution in the coordinate frame in 

†PHAs are defined as near-Earth objects whose minimum orbit 
intersection distance with the Earth is 0.05 AU or less and 
whose absolute magnitude is 22.0 or brighter. 
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which the matrix is represented.[2]  These assumptions 
are challenged when the distribution is propagated 
through a significant gravitational gradient.  

This paper examines the appropriate domains for 
using  or to assess an asteroid’s impact risk.  
Often, the difficulty of calculating is the necessity to 
use a large-scale Monte Carlo approximation of the 
covariance matrix, which is computationally expensive 
and often time-consuming.  Conversely,  can be 
calculated by propagating the 6x6 position matrix using 
a standard state-transition matrix.  As such, this paper 
identifies a criterion – called the characteristic scale ratio 
( ) – for determining which metric is more appropriate. 

 
2. Background 

 
2.1. Observability and Orbit Determination 
 

While many small asteroids strike the Earth 
frequently without serious consequence, the threat posed 
by asteroids only tens of meters in size is non-trivial.  In 
2013, a 20-meter asteroid exploded roughly 30 km over 
Chelyabinsk, Russia.  The resulting shock wave damaged 
nearly 7,200 buildings and injured over 1,500 people.  
Current NEO population estimates predict there are 
nearly 10 million NEOs larger than the Chelyabinsk 
asteroid that are yet undiscovered.3)  The Tunguska event 
in 1908 flattened nearly 500,000 acres of forest in the 
uninhabited area of the Eastern Siberian Taiga.  That 
asteroid was estimated to be roughly 40 meters in 
diameter.  A similarly sized, denser asteroid created a 
nearly 1 mile wide crater in the Arizona desert 50,000 
years ago.  Current estimates of undiscovered NEOs 
larger than 40 meters exceeds 300,000.3)   

In 2005, the United States Congress directed a 
survey to find 90% of all NEOs with diameters larger 
than 140 meters by 2020.  Such asteroids, were they to 
impact Earth, would release more energy than the largest 
nuclear weapon ever tested.  As of 2017, only 28% of 
asteroids larger than 140 meters have been discovered - 
the primary detection difficulty stemming from the 
limited observability of small celestial objects.3)   

The estimated diameter of an asteroid is related to its 
reflectivity (quantified through its albedo, ) and 
brightness in the sky (quantified as the absolute 
magnitude, ) through the following equation: 

 

                       (1) 

 
Measuring the reflectivity, or albedo, of an asteroid 

generally requires an in-depth composition analysis best 
performed in-situ.  As such, the size of an asteroid is most 
commonly estimated by its absolute magnitude alone, 

with albedo approximated to be between 0.05 and 0.25 
with an average of 0.1.  Figure 1 below shows the 
approximate size range of detectable asteroids with 
absolute magnitudes between 20 and 25 (the lower limit 
of detection for most current ground-based telescopes).   

The number of telescopes that can detect dim objects 
decreases with increasing magnitude, implying that there 
are very few telescopes currently able to detect objects 
with magnitudes above 21 – 22.  This is why the 
catalogue of asteroids larger than 140 m has remained so 
limited.  

The limited observability of these small asteroids 
leads to additional problems – namely, large orbit 
uncertainties following ground-based observation.  With 
the detectability of dim objects improving with proximity 
to Earth, smaller objects are generally only observable 
within narrow encounter windows – typically less than a 

few days.  Orbit determination is improved by observing 
an appreciable section of an orbit period.  With NEO 
asteroids’ heliocentric periods often in the range of one 
to three years, a few days’ worth of observations leads to 
observing less than 1% of an asteroid’s orbit.  While a 
given asteroid’s position can be well determined with 
such a limited observation arc, the resultant orbit energy 
and velocity cannot.  

Large initial orbit velocity uncertainties lead to poor 
position predictions in the future.  This can be seen by 
propagating two states with an initially small difference 
in velocity.  From the equation for orbit energy, 

 
 

Figure 1:  Approximate asteroid size as determined from 
absolute magnitude, H.  Here, asteroid albedo is estimated to 
lie between 0.05 and 0.25. 
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and taking the derivative of energy with respect to orbit 
velocity, one can see that orbit energy uncertainty is not 
only related to initial velocity uncertainty but also the 
orbit velocity at the time the uncertainty is found.  
 

                               (3) 
 

In other words, an orbit velocity uncertainty applied 
at periapsis will result in a larger position uncertainty 
compared to the same orbit uncertainty propagated from 
apoapsis.   Figure 2 below shows an example of this 
difference.  For this case, a heliocentric orbit with a 3.2-
year orbit period was used.  This orbit had an aphelion 
orbit velocity of about 10 km/s and a perihelion velocity 
of about 40 km/s.  Figure 2 shows the resultant position 
uncertainty after one orbit with an uncertainty of only 10 
cm/s applied at both orbit apses. 

While this orbit is somewhat representative of the 

family of PHAs currently catalogued, the achievable 
velocity uncertainty is highly dependent on the number 
of observations, the observation geometry, and a bevy of 
other factors.  As such, typical velocity uncertainties can 
range widely from 5 to 10 cm/s up to 50 cm/s, resulting 
in position error growths anywhere between 500 km to 
65,000 kilometers per year.   

 
2.2. Risk Assessment Metrics 

 
The risk posed to the Earth by a near-Earth asteroid 

(NEA) is often difficult to quantify.  While simulations 
of the damage caused by asteroids of various sizes and 
composition are possible using atmospheric density 
models and complex fluid dynamics software, assessing 

the likelihood of a particular impact requires direct 
observation of that asteroid along its orbit.  Complicating 
this problem is that the ability to detect asteroids that may 
cause regional-level devastation is near the current limits 
of telescopic detection.  As such, many PHAs have 
limited observations – leading to large orbit uncertainties.  
Propagating these uncertainties, say to a potential Earth 
impact, only causes the position uncertainty to grow, as 
was shown in the previous section.  Hence, when the 
uncertainty contour is used to calculate the probability of 
collision ( ), the  value often comes back 
insignificantly small because the Earth’s volume 
subsumes so little of the uncertainty contour.  Figure 3 
shows the predicted position of the asteroid Apophis 
propagated from shortly after its discovery to the first 
possible Earth impact in 2029. 

 
 

This initial risk assessment of Apophis yielded a 
calculated  of only 0.33%.4)  Such a small value could 
cause hesitancy if action were necessary.  While it was 
later determined that Apophis posed no threat to Earth (it 
will still pass closer to Earth than many communication 
satellites), this may not be the case for future discoveries. 
One proposed improved metric for assessing risk was 
proposed via the use of the Mahalanobis distance.5)  This 
calculation returns the number of standard deviations a 
point is from the center of  a distribution.  One benefit of 
this metric over  is the exclusion of a phenomenon 
referred to as “ roll-off.”  This phenomenon is caused 
as the covariance matrix – the measure of the orbit 
uncertainty – collapses as a result of additional orbit 

Figure 3: Image from NASA JPL Near Earth Object Program 
(neo.jpl.nasa.gov/news/news146.html) 

Figure 2: Position uncertainty growth from intial velocity 
uncertainty of 10 cm/s 
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measurements.  As such, the local probability density 
temporarily rises in the vicinity of the Earth, causing the 

value to increase.  In the Apophis case, additional 
measurements caused the covariance matrix to collapse 
close to the Earth, and the  rose to 2.7%.4)  Eventually, 
additional observations caused the covariance to collapse 
beyond the surface of the Earth, and the dropped to 
effectively zero.  Conversely, an initial Mahalanobis 
distance calculation returns a -contour which would 
trend monotonically with subsequent measurements.  
Following the Apophis example, the initial risk 
assessment would have likely yielded . 
This can be interpreted as having between a 1 in 3 and 1 
in 22 chance of an impact.  Subsequent measurements 
would have collapsed the covariance matrix, hence 
returning something like , or between 1 
in 22 and 1 in 370 chance of impact.  Compare this to the 
increase of  from 0.33% to 2.7% using the same 
measurements.   

 
3. Motivation and Approach 

 
3.1. Propagating through Gravity Gradients 

 
It was found in Ref. 5) that propagating the 

covariance matrix through an Earth encounter period 
using only the state transition matrix caused the matrix to 
“teeter” or torque as it passed the Earth.  As such, the 
leading and trailing edges of the matrix were stretched 
out and pivoted toward the Earth, causing the uncertainty 
distribution to shift its principal axes in the heliocentric 
frame from predominantly along-track prior to the 
encounter to predominantly cross-track afterward.  The 
magnitude of the reorientation was dependent on two 
main factors: 1) how close the nominal trajectory passed 
by the Earth, and 2) how large the uncertainty distribution 
was prior to entering the Earth’s SOI.5) 

 
3.2. Miss Distances and Uncertainty Distributions 

   
The reorientation of the covariance as it passed the 

Earth motivated analysis to relate the reorientation to 
Earth’s gravitational field.  This analysis aimed to 
compare the largest eigenvalue of the analytical 
covariance matrix just prior to entering the Earth’s 
gravitational SOI to the asteroid’s minimum nominal 
miss distance with the Earth.  The largest eigenvalue was 
used because this represents the largest spatial dimension 
of the uncertainty distribution.  The minimum nominal 
miss distance was used as it implicitly relates to the 
largest gravitational magnitude that the distribution 
would encounter throughout its trajectory.  The ratio of 
the eigenvalue and the minimum miss distance was in 
turn called the characteristic scale ratio, or . 

To assess how well the uncertainty distribution 
remained Gaussian in Cartesian space, a Monte Carlo 
sampling of the covariance was compared to the 
analytical covariance propagated using a state transition 
matrix.  Seven hundred and fifty samples were taken prior 
to the distribution entering the Earth’s SOI, when the 
leading sample was approximately 1.5 million km from 
the Earth.  As both distributions were propagated across 
the Earth encounter, the percentage of samples that 
remained within each analytic -contour was determined 
via a  calculation of each sample.  This percentage 
was then compared against the expected percentages of a 
standard Gaussian distribution, shown below in Table 1. 

 
Table 1: Expected proportion contained within various standard 
deviations of a Gaussian distribution 

-contour Percentage contained 
 68.2689492% 
 95.4499736% 
 99.7300204% 
 99.993666% 
 99.9999426697% 
 99.9999998027% 
 99.9999999997440% 

 
A covariance quality factor ( ) was defined as the 

fraction of points that remained in the correct -contour.  
The  was then used to assess how Gaussian a given 
sample set remained for a particular characteristic scale 
ratio.  In this way, provided a particular , it was 
possible to determine which -contour was valid for a 

 calculation to assess an asteroid’s impact risk. 
 

4. Results and Conclusion 
 

4.1. Setup and Assumptions 
 
For this analysis, the hypothetical impact scenario 

created for the 2015 Planetary Defense Conference was 
used.6)  This scenario closely emulated the Chelyabinsk 
meteor trajectory and provided observation-based 
covariance information about the asteroid’s trajectory.  
From the scenario, the largest initial position and velocity 
eigenvalues were about 100 km and 7 cm/s, respectively.   

To generate a data set for this analysis, two 
parameters needed to be varied: the amount of state 
uncertainty at the Earth encounter and the miss distance 
at TCA.  First, to vary the scale of the uncertainty, the 
initial covariance was applied to the nominal trajectory at 
different times along its path.  By applying the covariance 
along the asteroid’s trajectory as it came closer to Earth, 
the uncertainty had less time to grow.  Hence, the scale 
of the covariance could be adjusted simply by adjusting 
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how long it was propagated.  Second, to tailor the 
minimum nominal miss distance at TCA, small impulsive 
velocity perturbations were applied to the asteroid’s orbit 
at the time the initial covariance was applied.  By 
adjusting the magnitude of these velocity perturbations, 
it was possible to affect different miss distances.  
Generally, the greater the applied perturbation, the 
greater the nominal miss distance.  By repeating this 
process at a number of different times along the asteroid’s 
trajectory, it was possible to accumulate a representative 
set of characteristic scale ratios.  

 
4.2. Results 

 
Figure 4 below shows the 7  agreement between the 

Gaussian covariance matrix and the Monte Carlo samples 
for a subset of the cases examined.  As previously 
mentioned, the characteristic ratio is the uncertainty scale 
divided by the minimum miss distance.  Hence,  
corresponds to a covariance matrix that is 10  larger than 
the minimum achieved miss distance over the encounter. 

An initial assessment of Figure 4 shows that 
for , the distributions appear to “rebound” to a 

7  Gaussian agreement shortly after the encounter. 
Separately, for cases where , the uncertainty 
distribution appears to continue to deteriorate from a 
Gaussian distribution following the encounter.  This 
deterioration would thus imply that there exists values of 

 between 104 and 766 where the uncertainty 
distribution no longer rebounds following the encounter.  

Additionally, this figure suggests that for , the 
7  agreement remains above 80% with characteristic 
ratios around 55 showing a nearly 98% agreement with 
the Gaussian distribution.  

Figure 5 below examines the minimum achieved 
covariance quality factor against the characteristic ratio.  
This comparison shows what appears to be an optimal 
characteristic ratio (better than 98% agreement) between 
values of 55 and 150.   

These results are somewhat surprising as the 
expected relation was that the quality factor would 
monotonically improve with decreasing characteristic 
ratio.  As such, it is possible that these results are a 

consequence of the limited samples examined thus far in 
the study.  Specifically, the Earth encounter scenarios 
include a limited number of conjunction geometries 
where the relative orientation of the covariance is 
somewhat fixed based on the Earth’s and asteroid’s orbit 
alignment, despite earlier minor perturbations in the 
asteroid’s trajectory.  Extending the scenarios to include 
additional Earth-asteroid conjunction cases should 
improve these results.  These results may also be a 
characteristic of the step-size granularity used for 
propagating the asteroid through the Earth encounter 
period.  Smaller step-sizes may reveal much less peaked 
minima than are seen in these results.  Repeated 
examinations for the -, -, and -contours can be 
seen below in Figures 6, 7, and 8, respectively.   
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Figure 4: Covariance quality factor and characteristic scale 
ratio for different encounter trajectories 

7 -contour Agreement 

Figure 5: Covariance Quality Factor as a function of the 
Characteristic Scale Ratio 
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6 -contour Agreement 

Figure 6: Covariance quality factor trending with time across Earth TCA (left) and minimum quality factor as a 
function of characteristic ratio (right) 

-contour Agreement 

Figure 7: Covariance quality factor trending with time across Earth TCA (left) and minimum quality factor as a function 
of characteristic ratio (right) 

-contour Agreement 

Figure 8: Covariance quality factor trending with time across Earth TCA (left) and minimum quality factor as a function 
of characteristic ratio (right) 
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As expected, these figures show that the quality degrades 
with decreasing -contours, implying that the 
distribution becomes less Gaussian closer to the nominal 
value.  This result advocates a lower limit of around 
5 when using a Mahalanobis metric for quantifying the 
impact risk of an asteroid, based on at least a 95% 
agreement with the Gaussian distribution. 
 
5. Conclusions and Future Work 

 
Preliminary results from this analysis suggest that 
 calculations are a well suited risk metric for cases 

where .  However, this analysis also suggests 
that  values below 5  are poorly representative of a 
Gaussian distribution.  This can be seen qualitatively in 
Figures 9 and 10 below.  In both figures, the top plot 
shows the 1-dimensional distance distribution between 
the Monte Carlo samples and Earth; the bottom plot 
shows the Monte Carlo samples of the covariance in the 
heliocentric, Cartesian frame.  For a 3-dimensional, 
spatial Gaussian distribution, the corresponding distance 
distribution is also Gaussian for cases where the mean is 
much greater than the standard deviation ( ).  
Hence, the top plot is very informative for how Gaussian 
the distribution remains after encountering the Earth.  
Both figures show the distributions a little more than two 

weeks after encountering Earth, and an obvious tail can 
be seen in the histogram in Figure 10 – implying a poor 
Gaussian approximation for smaller -contours.  For 
such cases where the uncertainty distribution does not 
remain Gaussian, a metric like  would still likely be 
necessary. 

Future work is still needed to address the peaked 
minima shown in Figures 4, 6, 7, and 8.  As stated 
previously, the sharp peaks are likely due to the step-size 
granularity during the Earth encounter period.  Repeating 
the propagations with smaller step-sizes should rectify 
this issue.  Additional asteroid trajectories will also need 
to be examined for this work to be complete.  These 
trajectories will need to include a variety of relative 
velocity angles to capture different covariance 
orientations as the uncertainty distribution crosses 
through the Earth’s gravitational field. 

 
References 

1) Akella, M. and Alfriend, K.: Probability of Collision 
Between Space Objects, Journal of Guidance, Control, 
and Dynamics, Vol. 23, No. 5, September-October 
2000 

2) Mahalanobis, P. C.: On the generalized distance in 
statistics, Proceedings of the National Institute of 
Sciences of India, Vol. 2, No. 1, pp. 49-55, 1936 

Figure 9: Distance distribution (top) and 3-dimensional position 
uncertainty (bottom) 

Figure 10: Distance distribution (top) and 3-dimensional position 
uncertainty (bottom) 



 

 

 

8 

3) US National Science and Technology Council: National 
Near-Earth Object Preparedness Strategy, December 
2016 

4) Giorgini, J. D., et al: Predicting the Earth encounters of 
(99942) Apophis, 
neo.jpl.nasa.gov/apophis/Apophis_PUBLISHED_PAP
ER.pdf, October 2008 

5) Mattern, D.: Deflection of an Earth-bound Asteroid 
using a Gravity-assisted Kinetic Impactor, 2016 
Astrodynamics Specialist Conference, September 2016 

6) National Aeronautics and Space Administration Near 
Earth Object Program: The 2015 PDC Hypothetical 
Asteroid Impact Scenario, April 2015 


	ISTSProgramNumber: 
	0: 
	12309463435685841: ISTS-2017-d-057／ISSFD-2017-057




