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Proposed future space programmes, which, among others, include a space station in lunar vicinity, pose some interesting research
problems in the field of non-Keplerian dynamics. This paper investigates the orbit-attitude dynamics and the control of rotational
motion of an extended space structure in cislunar environment. The paper presents a fully coupled model for orbit-attitude dynamics,
which is based on a Circular Restricted Three-Body Problem formulation. The equations of motion take also into account the most
relevant perturbing phenomena, such as the Solar Radiation Pressure (SRP), the fourth-body (Sun) gravity and the variation in the
gravitational attraction due to the finite dimension of the large space structure. Preliminary results exploiting efficient control methods
are presented. Single and dual-spin stabilisation are compared and the results are carefully analysed to highlight a control strategy that
is less resource consuming. The space of orbit-attitude solutions is studied to highlight possible stable conditions that may be exploited
to host the cislunar station with minimum control effort. The outcomes of the research presented in this paper are intended to highlight
drivers for the lunar outpost design and station-keeping cost minimisation. Furthermore, a case study for a large space structure in
selected non-Keplerian orbits around Earth-Moon collinear Lagrangian points is discussed to point out some relevant conclusions for
the potential implementation of such a mission.
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1. Introduction

Future space exploration missions will be less and less con-
fined to Low-Earth orbits. In fact, the attention of the interna-
tional space community is evolving towards cislunar and inter-
planetary space7) . The modern vision about this broad explo-
ration program is based on the sustainability of the entire net-
work of systems and operations to accomplish the established
ambitious goals, which would not be achievable without a solid
support of preliminary missions, intermediate steps and new
technologies development. Planned human and robotic explo-
ration of the Solar System will rely on a complex infrastructure
of automated transfer vehicles, space stations and logistics op-
erations that will be progressively ideated and developed. The
feasibility of the whole project is strongly dependent from the
improvements in new trajectory design and GNC techniques
that have to leverage Three-Body problem dynamics, coupled
orbit-attitude equations of motion, appropriate structural mod-
els and efficient control techniques. These enhanced methods
are especially needed when dealing with a large and flexible
space structure, such as a space station in the vicinity of the
Moon: key point for the successful realisation of the aforemen-
tioned exploration program.

The analysis of this system is in a preliminary phase, and
the architecture still have to be defined, but it is already clear
that the cislunar station will be assembled in-orbit by means of
many automated operations. They will be carried out in a non-
Keplerian environment, being one of the Earth-Moon libration
points the ideal location for a space system of this kind.12) In-
deed, for instance, orbits about one of the Earth-Moon collinear
libration points, such as EML (Earth-Moon Lagrangian Point)
Halo orbits, have continuous line of sight coverage for com-
munications and they can be easily accessed from the Earth

with existing transportation systems. In addition, other fami-
lies of non-Keplerian orbits have appealing characteristics, such
as the excellent orbit stability of Distant Retrograde Orbits
(DRO) or the satisfactory ease of access from the Moon of Near-
Rectilinear Orbits (NRO). In this paper, all the aforementioned
families of orbits are considered and analysed.

The most appropriate method to analyse an extended space
system in cislunar environment is founded on the well-known
Circular Restricted Three-Body Problem (CR3BP) and ex-
pressed through a coupled orbit-attitude model. In fact, while
the majority of existing literature in this research context is
founded on dynamical models based on point-mass dynamics
without the inclusion of the rotational motion, accurate analy-
sis on a large space system can be carried out only taking into
account also the attitude dynamics. Moreover, the model used
in this research work includes the most relevant perturbing phe-
nomena, such as the second order deviations in the main grav-
itational attraction due to the finite extension of the spacecraft,
the Solar Radiation Pressure and the fourth-body (Sun) gravity.

When the coupled orbit-attitude dynamics is investigated in a
non-Keplerian environment, the translational and rotational be-
haviours of space systems may have extremely complex evolu-
tions. However, the chaotic appearance, which is typical when
more than one massive primary body is considered, hides some
interesting dynamical structures that may be exploited to design
space missions, leveraging the orbit-attitude dynamics to satisfy
very complicated requirements. For example, naturally peri-
odic orbit-attitude solutions could enable coarse pointing oper-
ational modes for data acquisition or communications without
a relevant control action. Yet in addition, a simple attitude con-
trol strategy could dramatically increase the design freedom, the
pointing capabilities, the rendezvous and docking possibilities
and the easiness of rotation manoeuvring. Indeed, the possi-



bility to have an additional degree of freedom on the attitude
dynamics allows enhanced operations. In this paper, spin sta-
bilisation methods are exploited to simply control the space sys-
tems with a limited active consumption of resources.

First investigations about attitude dynamics in the restricted
three-body problem assumed the spacecraft as artificially main-
tained close to the equilibrium points and only the stability of
the motion was considered8, 11) . Afterwards, Euler parameters
were introduced to study the rotational dynamics of a single
body located at one of the Lagrangian point.1) More recently,
other authors focused their attention to the attitude dynamics of
a spacecraft in the vicinity of equilibrium points, using Poincaré
maps and linear approximations of non-Keplerian orbits2, 13) .

In the last few years, the coupling between orbital and atti-
tude motion was investigated considering both planar and full
three-dimensional motion, providing different families of orbit-
attitude solutions6, 9) . In the same years, a stability analy-
sis of dual-spin spacecrafts in non-Keplerian orbits with semi-
analytical approach was proposed, underlining certain modes of
motion.10)

Most recently, Colagrossi and the research group at Po-
litecnico di Milano developed a model to study fully coupled
orbit-attitude perturbed motion in three-dimensional and planar
space, with applications to various scientific and technological
objectives3, 4) . In particular, the natural orbit-attitude dynamics
of an extended and flexible space structure has been investigated
drawing general preliminary conclusions about this typology of
dynamical system5) .

The paper starts introducing the coupled model for orbit-
attitude dynamics, which is based on a Circular Restricted
Three-Body Problem formulation with the addition of the pre-
viously mentioned perturbing effects. Subsequently, the atti-
tude spin stabilisation methods are introduced and applied on
some reference periodic motions. Then, the stability properties
of different orbit-attitude dynamics are critically analysed and
relevant implications for operations are highlighted. Lastly, rep-
resentative solutions are illustrated and discussed, with particu-
lar attention to the case study of an extended space structure in
non-Keplerian orbits around Earth-Moon collinear Lagrangian
points.

2. Orbit-attitude dynamical model

The orbit-attitude dynamical model is founded on Circu-
lar Restricted Three-Body Problem modelling approach, which
consider the motion of three masses m1, m2 and m, where
m ≪ m1,m2 and m2 < m1. m1 and m2 are denoted as primaries,
and are assumed to be in circular orbits about their common
centre of mass. The body m does not affect the motion of the
primaries.

The translational dynamics of m is conveniently expressed
in the rotating synodic reference frame, S , which is shown in
fig. 1. It is centred at the centre of mass of the system, O; the
x̂ axis, is aligned with the vector from m1 to m2; the third axis,
ẑ, is in the direction of the angular velocity of S , ω = ω ẑ; ŷ
completes the right-handed triad. At t = 0, the rotating frame
S is aligned to the inertial frame I, which is centred in O and is
defined by the versors X̂, Ŷ and Ẑ.

The system is defined by the mass parameter,

µ =
m2

m1 + m2
,

the magnitude of the angular velocity of S ,

ω =

√
G(m1 + m2)

r3
12

,

and the distance between the primaries r12. The equations of
motion are usually normalised such that r12, ω and the to-
tal mass of the system, mT = m1 + m2, are unitary in non-
dimensional units. These units are indicated with the sym-
bol [nd] in the paper. As a consequence, after the normalisa-
tion, the period of m1 and m2 in their orbits about their centre
of mass is T = 2π. In this paper, the parameters that have
been used to normalise the equations of motion in the Earth-
Moon system are r12 = 384 400 km, mT = 6.04 × 1024 kg and
T = 2π/ω = 27.28 d.
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Ŷ

Figure1.: Synodic and inertial reference frames.

The orbital dynamics of the body m has been modelled con-
sidering the usual Circular Restricted Three-Body Problem for-
mulation, valid for point-mass unperturbed dynamics, plus the
contribution of the Solar Radiation Pressure, the fourth-body
gravity and the variation in the gravitational attraction due to
the finite dimension of m, expressed with the second order term
of the force exerted on a finite dimension body by a particle.

The resulting problem is written in the following normalised
scalar form:

fx =


ẋ = vx
ẏ = vx
ż = vz

(1)



fv =



v̇x = x + 2vy−
(1 − µ)(x + µ)

r3
B1

− µ(x − 1 + µ)
r3

B2

+ a1x + a2x + aS RPx + a4thx

v̇y = y − 2vx−
(1 − µ)y

r3
B1

− µy
r3

B2

+ a1y + a2y + aS RPy + a4thy

v̇z = −
(1 − µ)z

r3
B1

− µz
r3

B2

+ a1z + a2z + aS RPz + a4thz ,

(2)

where x, y and z are the Cartesian coordinates of OB expressed
in terms of the synodic reference frame; vx, vy and vz are the
velocity components of the body m in S . The distances between
the centre of mass of m and the two primaries are respectively
rB1 =

√
(x + µ)2 + y2 + z2 and rB2 =

√
(x − 1 + µ)2 + y2 + z2,

as can be easily noted from fig. 1. The terms a1x,y,z , a2x,y,z , aS RPx,y,z

and a4thx,y,z are, respectively, the normalised accelerations due
to the variation in the gravitational attraction of the first and
second primary due to the finite dimension of m, to the Solar
Radiation Pressure and to fourth-body (Sun) gravity

The body m is extended and three-dimensional. Hence,
it has six degrees of freedom: the position of its centre of
mass in S , which is easily described by the position vector
rB, and the orientation of the body reference frame B with re-
spect to I or S . The four-dimensional quaternion unit vector,
qI

B = [q1, q2, q3, q4]T, also known as Euler parameters, is used
as attitude parameter that relates the frame B with respect to the
frame I. Indeed, in the present model, the equations of rota-
tional motion are written in the inertial frame. The body-fixed
frame B is centred at the centre of mass of m, OB, and it is
aligned with the body principal inertia directions, b̂1, b̂2 and
b̂3.

The resulting attitude kinematics and dynamics equations
are:

fq =


q̇1 =

1
2 (ω1q4 − ω2q3 + ω3q2)

q̇2 =
1
2 (ω1q3 + ω2q4 − ω3q1)

q̇3 =
1
2 (−ω1q2 + ω2q1 + ω3q4)

q̇4 = − 1
2 (ω1q1 + ω2q2 + ω3q3)

(3)

fω =



ω̇1 =
I3 − I2

I1

(3(1 − µ)
r5

B1

l2l3+
3µ
r5

B2

h2h3

−ω2ω3

)
+αS RP1 + α4th1

ω̇2 =
I1 − I3

I2

(3(1 − µ)
r5

B1

l1l3+
3µ
r5

B2

h1h3

−ω1ω3

)
+αS RP2 + α4th2

ω̇3 =
I2 − I1

I3

(3(1 − µ)
r5

B1

l1l2+
3µ
r5

B2

h1h2

−ω1ω2

)
+αS RP3 + α4th3 ,

(4)

where I1, I2 and I3 are the principal moments of inertia of m and
ω1, ω2 and ω3 are components of the angular velocity of the
body relative to I, expressed in the body-fixed reference frame
B, ωI

B. The gravity gradient torques due to the primaries are
evaluated in terms of direction cosines li and hi, which are re-
spectively computed in the reference B for the unit position vec-
tors r̂B1 and r̂B2 . The components of the angular accelerations
due to the SRP and to the presence of the Sun are expressed as
αS RP1,2,3 and α4th1,2,3 .

The effects due to the structural flexibility of the large space-
craft have not been considered in this paper since, in the pre-
vious works of the authors, the coupling between orbit-attitude
dynamics and flexible dynamics has resulted to be not so rel-
evant for typical frequencies of the non-Keplerian dynamics.
Moreover, the assumption is valid also with the control strategy
proposed in this work. In fact, as will be discussed in the fol-
lowing, the attitude stabilisation does not change the frequency
separation between orbit-attitude dynamics and the lowest nat-
ural frequencies of real extended space systems.

The complete set of non-linear differential equations, de-
scribing the coupled orbit-attitude dynamics of an extended
body in cislunar environment, is therefore the collection of
eqs. (1) to (4) denoted as f = {fx, fv, fq, fω}.

Further details on the dynamical model described in this sec-
tion, such as the complete definition of the perturbing terms, or
the numerical techniques that are exploited to find periodic so-
lution, can be found in the paper that is dedicated to describe
some preliminary results on the dynamics of extended bodies in
cislunar space5) .

3. Attitude control strategy

Naturally periodic orbit-attitude motions in cislunar environ-
ment do exist and, in some case, they are also remarkably stable.
However, an attitude control strategy can be desired to be actu-
ated on-board of an extended space structure in lunar vicinity
for a series of reasons. For instance, there might be the need to
increase the stability of a certain configurations, or to manoeu-
vre the spacecraft or even to bring the system in unstable condi-
tions with the purpose to excite some natural dynamics able to
drive large slewing manoeuvres. The constraint that should be
enforced while designing the attitude control system imposes a
strong limitation in active consumption of resources while con-
trolling the dynamics. In fact, the cislunar space station will be
operative for a long time, with limited supplies and conserva-
tive power budget, relatively to its dimensions and its tasks to
be accomplished. For these reasons, this research work focus
its attention on single-spin or dual-spin attitude control tech-
niques, which are more precisely referred to as attitude stabili-
sation techniques. Indeed, the stabilisation action with spinning
spacecraft or with constant speed momentum wheels is remark-
ably efficient in terms of energy consumption.

Spin stabilisation techniques are based on the gyroscopic ef-
fect of the angular momentum stored within the body m. In
single-spin stabilisation method, the whole spacecraft is spin-
ning and the rotating mass of the spacecraft acts as attitude
stabilising system. While, dual-spin stabilisation methods are
based on momentum wheels that are able to store an important
amount of angular momentum, needed to stabilise the system.



Nevertheless, they can have a different rotation speed with re-
spect to the main body and, thus, there is one additional degree
of freedom that can be exploited while designing the mission
operations. Furthermore, momentum wheels can be easily con-
trolled in spinning rate or direction, and this feature opens to
the possibility of attitude manoeuvres and enhanced control ca-
pabilities.

The additional stored angular momentum, which is eventu-
ally due to the presence of momentum wheels, affects the dy-
namic of the system as if the internal angular momentum were:

h = IωI
B + hw, (5)

where I is the inertia tensor of the spacecraft, which takes into
account the moments of inertia of the momentum wheels, and
hw is the angular momentum of the momentum wheels ex-
pressed in body reference frame. Assuming the presence of
three different momentum storage devices, aligned with the
principal axes of the body m, the angular momentum of the
wheels is:

hw = [I1wω1w , I2wω2w , I3wω3w ]
T, (6)

where I1w , I2w , I3w are the moments of inertia of the rotors re-
spectively aligned with b̂1, b̂2 and b̂3; ω1w , ω2w and ω3w are
the relative angular velocities of three momentum wheels with
respect to the body frame.

Therefore, eq. (4) has to be modified with the additional
terms due to the presence of the rotating momentum wheels that
can be evaluated as described in classic literature about rigid
body dynamics:

η = ωI
B × hw =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0


 I1wω1w

I2wω2w
I3wω3w .

 (7)

The three components, η1, η2 and η3 of the vector η are then
respectively divided by the moments of inertia of the body m.
The resulting terms η1/I1, η2/I2 and η3/I3 are successively sub-
tracted from the right-hand side of eq. (4). The momentum
wheels are assumed to be operated with constant spinning rate
and axis and, thus, no additional term, such as derivative of the
angular momentum of the rotors ḣw has to be included in the
present model. Moreover, the additional equations of motion
for the momentum wheels in f are trivial, being:

ω̇iw = 0←→ ωiw = const, with i = 1, 2, 3. (8)

It must be noted that the differential correction scheme de-
scribed in the previous works of the authors5) should be slightly
modified. In fact, the Jacobian of the system now contains the
terms due to the presence of the momentum wheels. Hence, the
State Transition Matrix is a bit different from the usual coupled
orbit-attitude dynamical model. On the contrary, the constraint
vector is unmodified because the periodicity is not sought in the
dynamics of the momentum wheels. All the relevant details are
thoroughly described in the cited reference.

Single-spin attitude stabilisation can be analysed with the
model described in this paper, just considering the momen-
tum wheels as non-rotating devices or as zero inertia rotors
(e.g. ωiw = 0 or Iiw = 0 with i = 1, 2, 3).
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Figure2.: Reference EML1 NRO Orbit: TNRO = 2.07 nd =
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Figure3.: Periodic librating (0-spin) attitude dynamics on the
reference EML1 NRO Orbit (fig. 2): k3 = 0.2.

4. Single-spin attitude stabilisation

The single-spin attitude stabilisation is a very simple and ef-
fective technique to increase the stability of the rotational mo-
tion. Even though the details about attitude stability will be dis-
cussed later in the paper, the general characteristics of single-
spin periodic dynamics are introduced in this section.

Periodic orbit-attitude motion in cislunar environment has to
satisfy periodicity constraints in both orbital and attitude vari-
ables and, moreover, the attitude evolution should be compat-
ible and periodic with the gravity gradient torques due to the
presence of the primaries. In fact, the effects of the gravitational
attraction on the rotational motion strongly characterises the pe-
riodic dynamics. This is true in particular for non-Keplerian
orbits with a low perilune altitude with respect to the lunar sur-
face, such as large amplitude Lyapunov orbits, elongated Halo
orbits or NROs. The latter are among the ones with the low-
est perilune passage and, therefore, experience a large gravity
gradient torque that determines a relevant angular acceleration
on the extended body, which is a source of instability for the
attitude dynamics. For this reason, a NRO around the Earth-
Moon L1 point (EML1) is used as a reference orbit to analyse
the features of single-spin attitude stabilisation. Details about
the reference NRO are reported in fig. 2.

Several attitude periodic motions are possible on the same or-
bit, but only few examples are shown here to highlight the gen-
eral features of the stabilised orbit-attitude periodic motions.
The reference dynamics is the one that is not spin stabilised,
being just librating around the equilibrium position. As can
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Figure4.: Periodic single-spin attitude dynamics on the refer-
ence EML1 NRO Orbit (fig. 2): k3 = 0.2.

be seen in fig. 3, the body m performs zero overall rotations
in synodic frame (fig. 3b) and the librational motion is due to
the gravity gradient torque of the primaries (other perturbing
phenomena are not considered in this section). The presented
solution has been obtained for a body with inertia parameter
k3 =

I2−I1
I3
= 0.2. In fig. 3a, the noticeable angular acceleration

at the perilune passage is evident in the middle of the simula-
tion. In that point, the spacecraft must be correctly oriented in
order to remain stable on the naturally periodic motion, other-
wise the large gravity gradient torque, different from the nomi-
nal one, generates the unstable dynamics. Moreover, since the
spacecraft has not stored angular momentum, a fast departure
from the reference condition is likely to happen. The angular
velocity reported in the figures is evaluated with respect to the
inertial reference frame, and the component along ẑ has an off-
set of 1 in non-dimensional units because of the rotational mo-
tion of the synodic frame with respect to the inertial one. Thus,
a velocity component ωIz = 1 nd in inertial frame is equivalent
to ωS z = 0 nd in synodic frame.

The single-spin dynamics on the reference EML1 NRO are
shown in fig. 4. These all have similar features because of the
attitude that is initialised as in the reference librating solution
and the inertia parameter of the body is k3 = 0.2. The only
difference is the spinning rate around b̂3 that, in the first case
in fig. 4a, allows one overall rotation along one orbit, while in
the other two simulations in figs. 4c and 4e determines, respec-
tively, two and three overall rotations in one orbital period. The
angular accelerations due to the gravity gradient of the Moon
is evident also in these situations, but the effect is weaker if
compared to the global magnitude of the angular velocity. Fur-

thermore, the increasing stored angular momentum makes the
spinning body less influenced by external perturbations and the
resulting attitude dynamics more stable and stiff. The increase
in attitude stability will be formally discussed in the following
but, from a general overview of the attitude evolution for in-
creasing spinning rates, presented in fig. 4, it is evident how the
attitude dynamics is less affected by the gravity gradient torque
at perilune. On the other hand, such a spinning condition, may
be problematic in terms of operations and other mission con-
straints. For example, telecommunications or docking activities
may be more complex in the case the cislunar station is rotating
with large angular rate.

Single-spinning attitude stabilisation solutions are available
also for other orbital families. For instance, single-spin attitude
solutions on DROs have been discussed in a previous works
of the authors5) , but they are not reported here because the
large stability of DROs also in the librating solution, together
with the very small gravity gradient torque generated by the
primaries, makes them not so interesting in terms of attitude
control. Nevertheless, if enhanced stability properties or dif-
ferent operational requirements are sought along DROs, single-
spin stabilisation is possible and periodic spinning solutions are
easily available.

5. Dual-spin attitude stabilisation

The operational constraints imposed by the single-spinning
attitude stabilisation methods can be easily overcome with a
separate angular momentum storage device, which can be spun
at a different angular rates with respect to the main body. Thus,
there is one additional degree of freedom that can be exploited
to stabilise the attitude dynamics without inserting additional
operational constraints. In this research work, the spinning mo-
mentum wheels mounted on the body m are used at a constant
spinning rate. The increased angular momentum of the whole
space system is the foundation for the dual-spin attitude stabil-
isation technique.

The periodic solutions shown in fig. 5 refer to three distinct
angular rates of the spinning momentum wheel, leading to as
many dual-spin attitude periodic dynamics. They have been
initialised on the reference EML1 near rectilinear orbit, start-
ing from the librating attitude solution in fig. 3 and considering
a body with inertia parameter k3 = 0.2. Hence, they all share
comparable characteristics in order to correlate the two attitude
stabilisation methods. In the analysed dual-spin solutions there
is only one spinning momentum wheel, which is the one along
the principal inertia axis b̂3. In this way, there is a direct con-
nection between the single-spin and the dual-spin with spinning
direction along the same body axis. Furthermore, an increased
angular momentum along b̂3 is the one that is needed to make
possible and stabilise the attitude dynamics for the given orbit
and initial orientation. The momentum wheel has moment of
inertia I3w =

I3
100 .

The three proposed periodic solutions differ for the spinning
rate of the momentum wheel. In the first case, fig. 5a, the wheel
is slowly spinning with ω3w = 500 nd and the stabilisation ef-
fect is not so evident, except for the additional rotational motion
around b̂2 due to the gyroscopic coupling. The dual-spin be-
haviour starts to be more evident with an higher angular veloc-



0 0.5 1 1.5 2 2.5

t [nd]

-0.5

0

0.5

1

1.5

2

2.5

ω
i
[n
d
]

ωi1

ωi2

ωi3

(a) Slow spinning wheel periodic
angular rates (ω3w = 500 nd).
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gular rates (ω3w = 50 000 nd).
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(f) Fast spinning wheel periodic Eu-
ler angles (ω3w = 50 000 nd).

Figure5.: Periodic dual-spin attitude dynamics on the reference
EML1 NRO Orbit (fig. 2): k3 = 0.2.

ity of the momentum wheel in fig. 5c. In this case, the increased
angular momentum makes the system more stiff and the gyro-
scopic coupling frequency is high, with fast oscillations around
the rotation axis of the body. The effect due to the large gravity
gradient of the Moon is mitigated and the attitude is stable in its
pulsating evolution. However, a great improvement in attitude
stabilisation is obtained further increasing the spinning rate of
the momentum wheel. In fig. 5e the momentum wheel is spin-
ning at a fast rate, ω3w = 50 000 nd, and the attitude dynamics
is greatly stabilised with limited angular acceleration at the per-
ilune. With dual-spin attitude stabilisation is therefore possible
to stabilise the attitude, limiting the effect of the gravity gradient
torque, with the body that is no more rotating in the Synodic ref-
erence frame. In fact, comparing fig. 5f and fig. 4f, a spinning
momentum wheel allows to greatly increase the performance
of the attitude dynamics, while maintaining the cislunar station
just librating around an equilibrium condition. Thus, no ad-
ditional mission constraints are imposed and the space system
can be operated more easily with respect to the case in which
the whole spacecraft is rotating with large angular rate. More-
over, the proposed stabilisation can be practically implemented
since the ω3w = 50 000 nd corresponds in dimensional units to
ω3w = 0.133 rad/s = 1.27 RPM.

6. Attitude stability

At this point, the necessity to introduce a precise definition
of attitude stability is needed. In fact, assuming the body on
its operational orbit with imposed attitude dynamics in order
to achieve a coupled periodic motion, it is interesting to quan-
tify the dynamical properties of the orbit-attitude motion. Many
consideration are possible on the coupled stability, as well as the
mutations of the dynamical behaviour along a family of orbit-
attitude periodic solution (e.g. bifurcations in the dynamical
structure of the family of periodic solutions). Additional inves-
tigations on this broad section about coupled orbit-attitude dy-
namics in non-Keplerian environments will follow the results
presented in this paper and will be presented in a separate re-
search work. By now, the stability analysis is restricted to the
periodic attitude dynamics on a certain reference non-Keplerian
orbit.

The considerations presented in this section are based on
some outcomes of the Floquet theory, similarly to what has
been already done by other authors in previous orbit-attitude
and restricted three-body problem literature6, 10) . In particular,
the first consideration is based on the fact that solutions in the
vicinity of a periodic reference are linearly approximated by the
modes of the monodromy matrix (i.e. the state transition matrix
over one period). These linear modes allow to investigate the
linear stability properties along the periodic solution.

In order to focus the analysis on the attitude stability, only the
attitude part of the monodromy matrix, M, is taken into account
(i.e. the submatrix where only attitude variables are involved):

MAttitude =

[
Mqq Mqω
Mωq Mωω

]
. (9)

It should be noted that, as explained in the reference literature,
the monodromy matrix is transformed into the synodic rotating
frame, even though the state variables are expressed with re-
spect to the inertial frame I. Linear attitude modes are therefore
associated to the eigenstructure of MAttitude, which is composed
by 6 eigenvalues λAttitudei . Those with magnitude less than one
are related to linear stable modes, while those with magnitude
greater than one correspond to linear unstable modes. Attitude
eigenvalues with

∥∥∥λAttitudei

∥∥∥ = 1 are paired to marginally sta-
ble modes. As a consequence, if

∥∥∥λAttitudei

∥∥∥ ≤ 1 for any i,
the periodic attitude solution is stable (or marginally stable)
in the linear approximation. On the contrary, if at least one∥∥∥λAttitudei

∥∥∥ > 1, the periodic solution is unstable.
Furthermore, according to what has been already introduced

by previous authors, a stability index, σ, can be defined in order
to simplify the stability analyses. In particular, this quantity is
defined as:

σ =
1
2

(
λAttitudeMax +

1
λAttitudeMax

)
, (10)

where λAttitudeMax = max
∥∥∥λAttitudei

∥∥∥ is the magnitude of the dom-
inant eigenvalue. According to this definition, σ = 1 is as-
sociated to marginally stable attitude dynamics, while σ > 1
represent unstable attitude solution and a larger stability index
can be related to a faster departure from the periodic motion.
Stable dynamics are associated to λAttitudeMax < 1.
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Figure6.: Stability index for single-spin attitude stabilisation
solutions (see fig. 4).

Analysing for example the stability index for different single-
spin attitude solutions, reported in fig. 6, it is evident the stabil-
ity improvement due to the spinning stabilisation methods. In-
deed, the stability index, which is equal to 6.81 for the librating
solution, approaches the value 1 for all the spinning dynamics.
Small deviations towards instability are possible, looking for
example at the 3−spin periodic motion, but σ is always very
close to 1, meaning that the spinning solution departs from the
periodic motion slowly.

The same analysis is possible for dual-spin attitude stabilisa-
tion. In fact, similarly to the figure for single-spin dynamics,
the attitude stability increases for an increasing stored angular
momentum due to the presence of a faster wheel. However, the
progressive evolution of σ along a family of periodic solutions
with different angular rates of the momentum wheel is more
interesting for dual-spin dynamics.

For instance, fig. 7 reports the stability index and the mag-
nitude of attitude eigenvalues for different dual-spin solutions,
ω3w ∈ [−250, 300 nd], on a reference EML1 Halo orbit, whose
details are reported in fig. 7. From fig. 7a is evident the general
increase in stability (i.e. σ decreases) for increasing angular
rate of the wheel. Moreover, the evolution of the magnitude of
λAttitudei , in fig. 7b, highlights the presence of distinct bifurca-
tion points. These points are associated with a change in the
eigenstructure of the periodic solution, as evident in fig. 7b for
ω3w ≃ −175 nd, where a saddle point appears in place of two
eigenvalues on the unit circle that disappear.

This fact opens to the possibility to facilitate the manoeu-
vres between different periodic attitude families by varying the
amount of stored angular momentum in the wheel. In prac-
tice, when the system is at a bifurcation point, a small pertur-
bation in the direction of the desired bifurcating family could
enable a variation in the attitude motion. However, it should
be noted that the stability properties of the bifurcating solution
may be not satisfactory and, thus, the system may be naturally
inclined towards the most stable dynamics. In this perspective,
the bifurcation points should be just exploited to begin a de-
sired manoeuvre, which has to be correctly driven in order to
acquire a precise periodic attitude motion. Furthermore, hav-
ing in mind that the cislunar space station will be assembled
in-orbit, through many docking and undocking operations with
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(a) Stability index, σ.
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Figure7.: Dual-spin stability analysis for attitude family on ref-
erence EML1 Halo orbit: THalo = 2.30 nd = 9.98 d, AzMax =

0.18 nd = 6.9 × 104 km, k3 = 0.2 and ω3w ∈ [−250, 300 nd].

massive modules, the inertia parameters of the system can vary
in time. Hence, bifurcating solutions may be exploited in or-
der to connect two stable periodic attitude dynamics associated
with the different inertia properties of the modular space station.

An additional analysis on the considered framework is pos-
sible looking at the stability properties of another dynami-
cal family. Figure 8 shows stability index and the magnitude
of attitude eigenvalues for several dual-spin solutions, ω3w ∈
[−300, 300 nd], on a reference DRO defined in the caption. Dis-
tant retrograde orbits are highly stable planar trajectories around
both the collinear points L1 and L2, associated to smooth and
stable periodic attitude solutions. In general, the whole orbit-
attitude dynamics on DROs is remarkably stable, as ca be also
understood looking at the stability index in fig. 8a, especially in
comparison with the stability analysis for the Halo presented in
fig. 7.

In this case, the unstable solution may be of interest with
the purpose to excite some natural dynamics able to drive large
attitude manoeuvres or fast slewing operations. In fact, when
an unstable mode exists it can be excited in order to move the
system along a natural trajectory that evolves towards a desired
final condition. Dual-spin stabilisation is effective also in this
situation, where the space system is orbiting along a DRO with
librating rotational motion in synodic reference frame. The
angular velocity of the body m associated with this particular
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Figure8.: Dual-spin stability analysis for attitude family on
reference DRO: TDRO = 3.37 nd = 14.63 d, k3 = 0.2 and
ω3w ∈ [−300, 300 nd].

attitude dynamics is, in inertial frame, ω3 = 1 nd. Hence, a
counter-spinning wheel able to cancel the stored angular mo-
mentum of the system can decrease the stability level of the
whole system. In fig. 8a, the largest stability index (i.e. the
highest instability) is at ω3w = −237 nd, because the inertia of
the rotors is I3w =

I3
237 . For this particular spinning rate of the

momentum wheel, the system has internal angular momentum
along b̂3 equal to zero and, therefore, null gyroscopic stiffness.
The resulting motion is not stable and the presence of unsta-
ble modes can be exploited for the aforementioned operative
applications. The existing instability for slow spinning momen-
tum wheel, ω3w ∈ (0, 110 nd] is due to the cross-coupling be-
tween the stored angular momentum along b̂3 and the attitude
dynamics around b̂1 and b̂2. Indeed, the slow spinning wheel is
not sufficient to spin stabilise the system, but the cross-coupling
makes the dynamics sensitive to perturbations perpendicular to
the xy−plane and, thus, slightly unstable.

7. Modular and extended space structures in cislunar en-
vironment

The analyses presented in the previous sections provides gen-
eral results that can be exploited to drive the design of modular
and extended space structures in cislunar environment. Many
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Figure9.: Periodic orbit-attitude family on EML2 Halo or-
bits with dual-spin attitude stabilisation: THalo1 = 3.35 nd =
14.57 d, AzMax1

= 0.083 nd = 3.18 × 104 km, k3 = 0.2 and
ω3w ∈ [−100, 100 nd].

dedicated analyses can be carried out with this purpose, having
in mind that the main driver while designing such a complex
mission is related to a maximum reduction of the maintenance
and station-keeping costs. Moreover, the progressive in-orbit
assembly of the modular structure must be carefully planned in
order to minimise risks and costs.

A first analysis is possible looking at a family of orbit-
attitude periodic solutions with dual-spin attitude stabilisation,
presented in fig. 9. In this case a family of EML2 Halo orbits is
generated starting from a periodic solution with orbital period
THalo1 = 3.35 nd, maximum ẑ elongation AzMax1

= 0.083 nd,
angular rate and moment of inertia of the spinning wheel re-
spectively ω3w = 100 nd and I3w =

I3
100 . The family is continued

decreasing the spinning rate ω3w down to −100 nd. At the be-
ginning of the family, the orbit closest to the Moon, associated
with the darker line in fig. 9a, and the dual-spin attitude stabil-
isation determine the convergence of the periodic solution with
a fast quaternion dynamics influenced by the gravity gradient
torque, associated to the sharp corner and the double inner loop
in the quaternion subspace (darkest line in fig. 9b). Decreasing
the spinning stabilisation, the convergence to a periodic solu-
tion is possible at a greater distance from the moon. The related
attitude dynamics is influenced by a lower gyroscopic stiffness
and a weaker gravity gradient torque, resulting in larger and



smoother loop in fig. 9b. When the family reaches the point of
momentum wheel with ω3w = −100 nd and, thus, a null gyro-
scopic stiffness, the converged periodic solution is at the largest
distance from the Moon, where the librating attitude dynamics
of the overall system is less affected by the gravity gradient.

A similar family of orbit-attitude periodic dynamics can be
obtained fixing the angular rate of the momentum wheel at a
constant value and continuing the family along the inertia pa-
rameters of the system. Therefore, a certain periodic attitude
motion, for a modular station with changing inertia properties,
can be maintained by varying the attitude stabilisation level.
Otherwise, for constant attitude stabilisation effort and differ-
ent inertia parameters, the periodic motion can be achieved on
a distinct orbit-attitude periodic solution.

The increased operational capabilities when attitude stabili-
sation techniques are exploited on extended and modular cis-
lunar spacecraft are evident in fig. 10, where a spacecraft with
k3 < 0 is considered. According to classical attitude stabil-
ity analyses,10) pitch motion is stable only for positive iner-
tia parameter k3. In fact, for the currently analysed case with
k3 = −0.2 , the resulting periodic motion in fig. 10a is ex-
tremely unstable with stability index, σ, equal to 21.5. Thus,
an attitude stabilisation method is fundamental in order to cor-
rectly operate the given space system in a EML2 South NRO
with period TS−NRO = 1.77 nd and maximum ẑ elongation
AzMax = −0.192 nd. The performance of single-spin and dual-
spin attitude stabilisation techniques are compared in figs. 10b
and 10c, with details in the relative captions. Both solutions
are effective in stabilising the spacecraft, determining a stabil-
ity index respectively equal to σsingle = 1.02 for single-spin and
σdual = 2.16 for dual-spin. The stabilised attitude evolution
is completely transformed and the resulting dynamics has some
analogies with the previously presented solution for a body with
k3 = 0.2. Therefore, for a modular space station that is progres-
sively assembled, the situation in which a large attitude insta-
bility arises can be easily managed through a proper selection
of the attitude stabilisation parameters.

Many others analyses are possible with the presented dynam-
ical model, such as the evaluation of attitude slew manoeuvres
commanded by a non-constant spinning rate of the three mo-
mentum wheels or the robustness of a determined periodic so-
lution to uncertain system parameters or perturbing phenomena
modelisation. However, the main results presented in this sec-
tion have already highlighted some preliminary drivers for the
potential implementation of an extended and modular space sta-
tion in cislunar space.

8. Final remarks

The orbit-attitude spin stabilized solutions presented in this
paper laid a foundation for the total control of modular and ex-
tended space structures in cislunar environment. The attitude
stabilisation techniques help the design of the considered space
system, broadening the space of periodic orbit-attitude solu-
tions that are stable enough to host an extended spacecraft with
minimum control effort.

Moreover, the possibility to manage situations in which the
inertia properties and the configurations of the space system
change in time, is extremely important for a modular structure
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Figure10.: Periodic orbit-attitude solutions on EML2 South
NRO with k3 < 0: TS−NRO = 1.77 nd = 7.68 d, AzMax =

−0.192 nd = −7.41 × 104 km, k3 = −0.2.

that will be assembled by means of many automated docking
and undocking operations. In particular, because this capability
is guaranteed by minor adjustment to the attitude stabilisation
parameters.

Further studies are needed to extend the range of these pre-
liminary results, and the investigation of an active control sys-
tem with variable stored angular momentum is of interest. How-
ever, while designing this kind of space missions, the main
driver that must be followed along the whole study, conception



and implementation phase is the minimisation of maintenance
and station-keeping costs. Thus, the attitude control technique
should be as simple and efficient as possible. The attitude sta-
bilisation methods presented in this paper, with single-spinning
spacecrafts or constant speed spinning devices, showed a first
positive result in this direction.

Even though the best orbit where a large space structure in
the vicinity of the Moon can be effectively operated, is far to
be completely defined, and the related coupled attitude dynam-
ics has not yet been studied enough, this paper was intended to
underline some relevant and essential conclusions in the field
of dynamics and control of extended bodies in cislunar envi-
ronment. Furthermore, the analyses were presented to empha-
size the importance in studying the fully coupled orbit-attitude
dynamics, together with the enhanced performances that can
be achieved with plain stabilization methods, while designing a
large and modular space structure in non-Keplerian orbits near
the Moon.
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