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Libration point orbits, in particular those in the Earth-Moon system, have been attracting attention for science and future human
space exploration. EQUULEUS is a CubeSat planned to be launched by the NASA’s SLS EM-1 vehicle and aims to reach and stay
around the Earth-Moon L2 point with a purpose of scientific observation. As EQUULEUS is a piggyback spacecraft with various
potential launch trajectories given by the primary payload (Orion spaceship), we need to prepare a variety of science orbits with many
orbit insertion epochs beforehand, which is a unique problems to piggybacked spacecraft. We have developed a systematic way to
generate a large set of quasi halo orbits with estimated stationkeeping cost in a multi-body dynamics model. This paper introduces the
systematic approach and shows current results of the science orbit design for EQUULEUS.
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1. Introduction

Libration point orbits, in particular those in the Earth-Moon
system, have been attracting attention for science and future hu-
man space exploration. Exploring these orbits via micro space-
craft will contribute to high-frequency, low-cost visits to the
cislunar space. EQUULEUS, a 6U CubeSat being developed
by the University of Tokyo and JAXA, will target the second
Earth-Moon Lagrange point (EML2), with purposes of engi-
neering demonstration and scientific observation.1)

Trajectory design for micro-spacecraft has two limitations to
be taken into consideration: 1) given launch conditions deter-
mined by the primary payload and 2) limited delta-V capability.
For the EQUULEUS, a number of possible launch trajectories
and the chaotic dynamics around the libration point orbit can
produce a countless number of potential orbit insertion con-
ditions in terms not only of orbit energy but also of insertion
epochs. In other words, we have to generate libration point or-
bits of various initiation times. Trajectory design for the transfer
phase is presented in Oshima et. al.2) Since the solar gravity and
lunar orbit eccentricity are time-dependent and non-negligible
perturbation, designing the libration point orbits with various
insertion epochs needs to use a multi-body gravitational model.
In addition, in light of the limited delta-V capability, fuel con-
sumption for stationkeeping around the science orbits will be
a critical factor of mission sustainability. When designing the
whole trajectory by connecting transfer orbits and science ones,
the stationkeeping cost should be taken into consideration. The
cost would be also affected by the time-dependency of the per-
turbation; thus we need to estimate it in the same multi-body
dynamics as in the orbit generation. Therefore, in the science
orbit design, we have to prepare a pool of various potential des-
tination orbits in a multi-body dynamics with each stationkeep-
ing cost.

Trajectory design and stationkeeping around libration points

in the EML region have been mostly investigated along with
mission analysis of the first EML libration point mission:
ARTEMIS.3, 4) Different from the case of our mission analy-
sis, the ARTEMIS mission did not need various libration point
orbits beforehand because the spacecraft was already in orbit
when designing the transfer orbits.5) An existing approach to
the quick design of libration point orbits is to prepare a cat-
alog of the orbits made in the circular restricted three-body
problem (CRTBP).6, 7) In the procedure, with given mission re-
quirements, appropriate orbits in CRTBP are picked up from
the catalog and converted into multi-body-dynamics ones by
using the differential corrector method.8) While this approach
would be beneficial in case the designer can choose launch con-
ditions for the selected science orbits, it cannot provide orbits
of various initiation epochs because of the dynamics model the
catalog is based on (i.e., not n-body dynamics but CRTBP).
As for the stationkeeping analysis, several strategies have been
proposed thus far, including unstable mode canceling (Flo-
quet mode approach)9) and target point method.10) Although
several studies have investigated stationkeeping cost by using
these approaches,11–13) they do not analyze the potential time-
dependency of stationkeeping cost.

This paper introduces a strategy of designing various libra-
tion point orbits in terms of size, period, and, importantly, in-
sertion time, with stationkeeping cost in a multi-body dynam-
ics model. The proposed method systematically computes the
science orbits in a multi-body model and performs their time-
continuation, which expands the orbits along the time-axis.
Taking advantage of the generated orbits as reference trajecto-
ries, a computationally efficient Monte Carlo routine is devised
for estimation of each stationkeeping cost. The science orbit de-
sign for EQUULEUS demonstrates the capability of the whole
proposed procedure.



Fig. 1. A conceptual figure of EQUULEUS spacecraft.

Fig. 2. Delta-V budget for the current baseline.14)

2. Background

2.1. EQUULEUS mission
EQUULEUS will be the first 6U CubeSat to explore the

EML2, planned to be launched by NASA’s Space Launch Sys-
tem (SLS) Exploration Mission-1 (EM1). The mission aims
to demonstrate trajectory control technology in the EM region
via CubeSat and to perform scientific observation assessing the
flux of meteors impacting on the lunar dark side. A concep-
tual figure is illustrated in Fig. 1. We cannot choose the launch
conditions based on our mission analysis results, as the launch
trajectory of EQUULEUS is determined for the sake of the pri-
mary payload Orion vehicle.

Delta-V amount of the spacecraft is limited due to the small
body. A Delta-V budget table for the current baseline trajec-
tory is shown in Fig. 2, which indicates that the annual delta-V
cost for stationkeeping is assumed 20 [m/s] when considering
the balance of fuel consumption throughout the whole mission.
With possible errors in orbit determination (OD), orbit inser-
tion (OI), and maneuver execution, we need to find reasonable
solutions within the limited delta-V capability.
2.2. A trajectory optimization tool: jTOP

The trajectory optimization in a multi-body dynamics model
is performed by a trajectory optimization tool jTOP, which has
been successfully employed in several applications including
mission analysis and trajectory design for the world first deep-
space micro spacecraft PROCYON.15) In the process, the opti-
mization problems are converted into forms efficiently solved
by a commercial non-linear programming software SNOPT.16)

Our investigation exploits the optimization robustness and com-
putational speed of the jTOP (see Ref.15) for detail).

Fig. 3. Generation procedure of a family of quasi halos in n-body dy-
namics.

3. Quasi halo generation

This section introduces a systematic method that computes
quasi-halos of various properties and initiation epochs for the
preparation of the science orbits. We currently plan to choose
the quasi-halo orbits around the EML2 as science orbits. The
science orbit design is roughly divided into I: generation of
various halo types in terms of size and shape and II: time-
continuation of the halos. Each type of generated halos in the
procedure I is called a family in this paper, and all these fam-
ilies are expanded along the time axis by the procedure II to
meet the all potential orbit insertion epochs. Since the dynam-
ical system is the time-dependent n-body problem, quasi halo
orbits are time-dependent and do not have the same trajectory
even in the same family.

3.1. Outline of procedure
The procedure that systematically computes a family of

quasi-halos is outlined in the following as well as indicated in
Fig. 3. Each procedure is detailed in the following subsections.

1. Halo Generation in CRTBP
A halo in CRTBP is generated, which represents a family.

2. Quasi Halo Generation: CRTBP to N-body Dynamics
The CRTBP halo orbit is optimized in the n-body problem.

3. Family Generation: Time Continuation
(a) Two points per a revolution extracted as nodes from

an optimized n-body quasi halo
(b) Coordinate change: inertial→ earth-moon rotational
(c) Time shift of initial epoch
(d) Coordinate change: earth-moon rotational→ inertial
(e) Optimization in n-body dynamics
(f) Return to 3 (a) (used as a new reference orbit)

3.2. Halo generation in CRTBP
Halo orbits in CRTBP are created by the differential correc-

tor method shown in Howell (1984), where we choose arbitrary
size and number of revolutions.8) The size represents a family
and here we use the x-position of the perilune as a representative
parameter of a family. As these halo orbits are non-dimensional,
dimensionalization is performed next. Two points per a revolu-
tion, both of whose y position are equal to zero (perilune and
apolune), are selected as nodes for the dimensionalization and
the jTOP optimizer routine. Dimensionalization and optimiza-
tion are explained in the next subsection.
3.3. Quasi halo generation: CRTBP to n-body dynamics

This subsection introduces the generation procedure of the
first-quasi halo orbit in n-body problem. This orbit also be-



Fig. 4. A CRTBP initial guess for quasi halo orbit optimization. The blue
and red lines respectively show the backward and forward propagation in
the jTOP optimization.

comes the first reference orbit of the family generation. A non-
dimensional CRTBP halo orbit, which is the initial guess in this
procedure, is dimensionalized and optimized to become a bal-
listic trajectory.
3.3.1. Dimensionalization

The dimensionalization units of distance and time are re-
spectively lunit = lEM (the distance between the earth and the

moon at the time of the node) and tunit =

√
l3EM/µ, where

µ = G(mE + mM) is sum of the gravitational constants of the
earth and the moon. It is assumed that the time between one
node and the next node is the same (periodic) and it is a half pe-
riod of the halo orbit dimensionalized by time unit at the time
of the first node. An example figure of a dimensionalized initial
guess in this procedure is shown in Fig. 4.
3.3.2. Optimization in n-body dynamics

We generate quasi halos in a n-body problem (also a refer-
ence for family generation) by optimizing initial guesses shown
in the previous section by use of the jTOP. The objective func-
tion is the total delta-V along a whole orbit, which becomes
zero after optimization if there exists a quasi halo orbit for the
initial guess.

The optimization process imposes two kinds of constraints.
The first one is that the apolune nodes are in the x-z plane in
the rotational frame and their z positions are within a certain
range determined by the family type. The second one is the
additional constraints on both ends of the trajectory that their
velocities are perpendicular to the x-z plane. These constraints
maintain the quasi-halo-like trajectory before and after the both
ends. Note here that the perilune nodes are not constrained,
which contributes to robust convergence of the optimization.

An example figure of an optimized quasi halo orbit is shown
in Fig. 5, which indicates that the initial guess made in CRTBP
is accurate enough to generate a quasi halo orbit. At the same
time, it can be seen from the figure that certain difference exists
between n-body quasi halos and CRTBP solutions.
3.4. Family generation: time continuation

This subsection indicates a systematic way of family gener-
ation, that is, time continuation of quasi halo orbits. Member

Fig. 5. A CRTBP initial guess (blue, red) and an optimized quasi halo
(green, magenta). The green and magenta lines respectively show the back-
ward and forward propagation after optimization in the jTOP.

Fig. 6. An initial guess for time-continuation.

orbits of a family are repeatedly computed by optimizing initial
guesses that are created by shifting the initial epoch of quasi
halo orbits.
3.4.1. Shift of initial epoch

The initial guess in the procedure is generated by shifting
initial epoch of a reference orbit of the family. An orbit already
optimized in the previous trial is used as the reference.

Here note that the time shift should be performed in the rota-
tional frame. Shifting the epochs of orbits in the inertial frame
does not provide good initial guesses, due to the eccentricity
of the lunar orbit around the earth. Thus the coordinate frame
of nodes is transformed from the inertial frame to the earth-
moon rotational frame. Supposing the shifting time is δt, the
δt is uniformly added to the epochs of each node without any
change in the positions and velocities. The time-shifted orbit is
re-converted into the inertial frame, which becomes the initial
guess of the family generation procedure. An example of the
time-shifted quasi halo is shown in Fig. 6. This figure indicates
that the initial guess in the time-continuation procedure is bet-
ter than that in the single quasi-halo generation in terms of the
discontinuity of the orbits (Fig. 4).



Fig. 7. Overview of stationkeeping simulation procedure

3.4.2. Optimization in n-body dynamics
Orbit optimization method in time-continuation procedure is

same as that in the single quasi-halo generation. The better ini-
tial guess of the optimization allows us to optimize families of
orbits (i.e., many orbits) with less computation cost and higher
convergence robustness.

4. Stationkeeping analysis

This section expresses a systematic way of performing sta-
tionkeeping analysis on many generated quasi-halos in a multi-
body dynamics model.

4.1. Outline
To obtain reliable stationkeeping cost estimation results,

Monte-Carlo simulation of 10,000 cases is performed with re-
spect to each reference orbit generated in the procedure in Sec-
tion 3.. The Monte-Carlo simulation is performed under in-
fluence of possible uncertainty of error in orbit insertion (OI)
εOI , orbit determination (OD) εOD, and maneuver execution
εexec, all of which are modeled subject to Gaussian distribution
with zero mean, i.e., εOI ∼ N(0, σ2

OI), εOD ∼ N(0, σ2
OD), and

εexec ∼ N(0, σ2
exec). The stationkeeping maneuvers are con-

ducted with every certain interval, namely ∆tDV , and every OD
is terminated before each maneuver at Cut-off time, whose du-
ration is termed as ∆tc (i.e., each OD duration is ∆tDV − ∆tc).
In this study, the stationkeeping maneuver planning is assumed
to target two downstream points (∆t1,∆t2 downstream from the
OD initiation) to maintain the orbit (i.e., M = 2 in Eq. 5). Fig-
ure 7 illustrates an overview of the stationkeeping simulation
settings.

An outline of the analysis procedure is as follows:

1. Preparation of STM
Re-generate a science orbit using stacked nodes and obtain
the STM computed along with the reference orbit

2. Parameter Setting
Set parameters: target point ∆ti, weighting scholar Ri, and
case number N

3. Monte-Carlo Simulation
Run Monte-Carlo simulation shown in Algorithm 1

4. Parameter Change and Repeat
Change the parameters ∆ti and Ri and repeat the procedure
3. for prescribed patterns of the two parameters

5. Post Processing
Return values of the mean and standard deviation of total
delta-V over the N cases for the optimal set of the param-
eters (∆ti,R) in terms of delta-V

Through this procedure, we obtain an expected mean value of
stationkeeping cost throughout a reference halo and its standard
deviation with the optimal set of the parameters ∆ti and Ri in
terms of delta-V.
4.2. Stationkeeping analysis algorithm

The algorithm employed in this analysis is introduced. To
estimate the stationkeeping cost, this paper devises a compu-
tationally efficient Monte-Carlo simulation algorithm based on
Target Point Method first introduced by Howell and Pernicka.10)

The Target Point Method is summarized in Appendix A.
The constructed algorithm for the Monte-Carlo simulation is

described in Algorithm 1. In the algorithm, thrust vectors for
the stationkeeping maneuvers are calculated using the following
equation (for derivation and detail, see Appendix. A):

∆Vplan =

2∑
i=1

αie + βi p,

xT
est = [pT , eT ],

αi = −[I3×3 + RiBT
ti,tDV

Bti,tDV ]−1 · Ri · BT
ti,tDV

Bti,tc ,

βi = −[I3×3 + RiBT
ti,tDV

Bti,tDV ]−1 · Ri · BT
ti,tDV

Ati,tc .

(1)

This algorithm computes, for a reference orbit, necessary delta-
V amount for stationkeeping in N cases in terms of the ran-
dom variables (εOI , εOD, and εexec) by one run (N=10,000 in
this paper). Note that, in this algorithm, εOI j is OI error of
j-th particle ( εOI j = [εOIx , εOIy , εOIz , εOIvx , εOIvy , εOIvz ]

T
j , where

εOIk ∼ N(0, σ2
OIk

), k = x, y, z, vx, vy, vz). εOD j , εexec j are also
similarly OD error and execution error ratio of j-th particle, re-
spectively.

Algorithm 1 Monte-Carlo for stationkeeping cost estimation
1: function SKMC(Φ,∆tDV ,∆tc,∆t1, σOI , σOD, σexec,R,N)
2: t ← 0
3: Generate EOI = [εOI1 , εOI2 , ...εOIN ](∈ R6×N)
4: OI: δxtrue ← EOI

5: while t < tend do . tend: terminal time of the orbit
6: tc ← t + ∆tDV − ∆tc
7: δxtrue ← Φtc , t δxtrue

8: Generate EOD = [εOD1 , εOD2 , ...εODN ](∈ R6×N)
9: OD: δxest ← δxtrue + EOD

10: t1 ← t + ∆t1
11: tDV ← tc + ∆tc
12: DV plan: ∆Vplan ← αe + βp (Eq. 1)
13: δxtrue ← ΦtDV , tc δxtrue

14: Generate Eexec = [εexec1 , εexec2 , ...εexecN ](∈ R3×N)
15: ∆Vexec ← ∆Vplan + ∆Vplan � Eexec . � represents

the Hadamard product.
16: DV exec.: δxtrue ← δxtrue + ∆Vexec

17: t ← tDV

18: end while
19: end function



Fig. 8. Families of generated quasi halos.

5. EQUULEUS science orbit design

This section introduces current results of the science orbit
design for EQUULEUS mission. In this analysis the following
planets and barycenters (BCs) are considered as gravitational
force sources (point masses, DE430): Sun, Earth, Moon, Mer-
cury, Venus, Mars BC, Jupiter BC, Saturn BC, Neptune BC, and
Pluto BC.

5.1. Quasi halo family database
To prepare various type properties of science orbits, we gen-

erate quasi halo orbits of 8 families shown in Fig. 8 and Table
1. Each halo’s revolution number is determined so that the total
duration of orbits becomes about 180 days. Fig. 8 shows that
halos of large x-position have widely spread trajectories, which
implies that families close to the Moon is more stable and may
need less stationkeeping cost.

To be ready for various potential orbit insertion epoch, quasi-
halos in each family are expanded along the time axis by time-
continuation. Figure 9 illustrates the database concept and po-
tential halo insertion epoch expected by the current transfer
orbit design.2) In light of unfixed launch epochs (2018/10/07
15:39 (UTC) is currently provided) and various possible inser-
tion epochs, every halo’s initial epoch is set to 6 hours interval
each, ranging from 2018/09/01 0:00 to 2019/10/31 18:00, which
means that 1704 orbits are prepared in each family. Note that
databases are prepared in the same way with respect to each of
the eight families in Fig. 8, which implies that in total 13,632 of
quasi-halos are generated in the same n-body dynamics model
in this case.
5.2. Stationkeeping analysis results
5.2.1. Operation constraints and errors

Here indicates the assumed values of operational con-
straints/conditions (Table 2) and navigation/execution errors
(Table 3) in this analysis as well as those in ARTEMIS analy-
sis.11) The values assumed in this analysis are preliminary ones
given by other subsystems (attitude control system, propul-
sion system, orbit determination team, etc). The values in

Fig. 9. Quasi halo database for science orbit design. Same databases are
prepared with respect to each of families.

Table 1. Properties of generated quasi halo families

Family x at apolune N or S rev. no. rev. period [day]

1 1.040 North 23 7.6
2 1.040 South 23 7.6
3 1.120 North 14 12.3
4 1.120 South 14 12.2
5 1.160 North 12 13.6
6 1.160 South 12 13.6
7 1.177 North 12 14.1
8 1.177 South 12 14.1

ARTEMIS analysis are used to confirm the validity of the ob-
tained cost estimation results, as it is reported that the station-
keeping cost estimation in ARTEMIS mission analysis is com-
patible with actual cost on orbit.17)

5.2.2. Baseline results
Table 4 indicates a portion of baseline results with constraints

and errors of EQUULEUS case. With the assumed operational
constraints and errors, stationkeeping of the families of 7 and 8
was infeasible (i.e., too large deviation occurred). As inferred
in the subsection 5.1., this result indicates that the stationkeep-
ing cost becomes worse as the x-position at the apolune of a
family increases. This result implies that selecting the families
of 1 ∼ 4 would be better, as far as possible, in terms of fuel con-
sumption. It should be noted that this result also implies that
the assumption of impulsive thrust burn is reasonable because
the amount of delta-V magnitude for one execution is less than
0.8 [m/s], which can be achieved only by an hour burn with 3
[mN] thruster planned to be installed on EQUULEUS.

Table 2. Operational constraints

Constraint EQUULEUS ARTEMIS

DV interval (∆tDV ) [day] 7.0 3.8, 7.3, 14.9, 15.2
OD cut-off (∆tc) [day] 2.0 -

Table 3. Standard deviation of navigation/execution error

Standard deviation EQUULEUS ARTEMIS

σODx , σODy , σODz [km] 0.47, 0.47, 1.27 1.0, 1.0, 1.0
σODvx , σODvy , σODvz [cm/s] 0.87, 1.07, 1.80 1.0, 1.0, 1.0
σOIx , σOIy , σOIz [km] 0.47, 0.47, 1.27 1.0, 1.0, 1.0
σOIvx , σOIvy , σOIvz [cm/s] 0.87, 1.07, 1.80 1.0, 1.0, 1.0
σexecx , σexecy , σexecz [-] 5%, 5%, 5% 1%, 1%, 1%



Table 4. Baseline results of stationkeeping cost (Halo initial epoch:
2018/12/31)

Family Mean annual DV [m/s] Std. dev. of annual DV [m/s]

1 12.65 4.00
2 13.35 4.78
3 14.60 2.32
4 14.62 2.32
5 28.80 7.33
6 29.00 7.82
7 - -
8 - -

Table 5. Results of stationkeeping cost with ARTEMIS condition (Halo
initial epoch: 2018/12/31)

Family Mean annual DV [m/s] Std. dev. of annual DV [m/s]

1 11.15 3.60
2 11.34 3.84
3 11.40 1.66
4 11.41 1.66
5 18.65 2.27
6 18.54 2.25
7 32.06 4.05
8 32.12 4.04

Table 5 indicates a portion of baseline results with constraints
and errors of ARTEMIS case. This result is compatible with
that of mission analysis for the ARTEMIS,11) which confirms
the validation of this analysis procedure.
5.2.3. Time dependence: cost comparison within a family

Taking advantage of the large pool of time-expanded halos,
we can also analyze the potential time-dependency of station-
keeping cost with respect to various initiation epochs of quasi-
halos. As an instance, a result of time-dependency analysis for
family 1 is shown in Fig. 10. In the analysis, mean annual
delta-V is computed for orbits in the same family with various
initiation time, following the same procedure discussed above.

The figure clearly shows that the annual delta-V varies de-
pendent on the initial epochs (orbit insertion time), which im-
plies that the time-dependency of stationkeeping cost should be
paid attention as well as the other factors such as size and pe-
riod. The time-dependency may be due to the time-dependent
perturbation caused by the solar gravity and lunar orbit eccen-
tricity. In order to realize such cost estimation, time-expansion
of quasi-halos in multi-body dynamics is indispensable, which
emphasizes the importance of this work.

6. Conclusion

This paper introduced a systematic way of generating quasi-
halos with stationkeeping cost estimation analysis in multi-
body dynamics model. Science orbit design for EQUULEUS
demonstrated its capability of computing many halos not only
of various sizes or periods but also of different orbit insertion
times. The stationkeeping analysis also revealed an important
fact that stationkeeping cost for the libration point orbits in the
EML region can have, in addition to orbits’ size or period, non-
negligible dependence on orbital insertion epochs, which may
be due to its time-dependent dynamical structure. As EQU-
ULEUS mission analysis, we can readily discuss various trade-

Fig. 10. Time dependence of stationkeeping cost for a Halo family 1.
Horizontal and vertical axes represent quasi halo initial epoch and annual
delta-V necessary for stationkeeping, respectively. Each plot shows the
mean value and standard deviation of delta-V.

offs in higher levels of mission design, including stationkeep-
ing cost and operation frequency, orbit determination frequency,
and refinement of execution accuracy. The presented procedure
could generally contribute to mission design of micro spacecraft
to explore EML region by providing a large set of potential des-
tination orbits with stationkeeping cost labels.

Appendix A. Target point method

The target point method algorithm provides optimal delta-
V computed as a solution of linear-quadratic regulator (LQR)
problem that minimizes weighted sum of magnitude of delta-V
and that of position deviation from a reference orbit at a few
target points downstream. By using a state transition matrix
(STM) computed along with the reference trajectory, the fu-
ture position deviation are approximated. Taking advantage of
an analytical solution of the LQR problem, 10,000 of station-
keeping simulations are performed to evaluate the navigation
and maneuver execution errors, which are assumed subject to
normal distribution, with respect to several cases of weighting
scalars.

Assuming the number of the target points is set to M, objec-
tive function to be minimized J is expressed as follows:

J = ∆Vc(tc)T∆Vc(tc) +

M∑
i

RimT
ti mti , (2)

where ∆Vc(tc) is trajectory correction delta-V at time tc, Ri is a



weighting scalar with respect to the i-th target point, and mti is
a predicted position deviation from a reference orbit at the i-th
target point. By using STMs Φ:

Φ(t2, t1) =

[
A21 B21
C21 D21

]
, (3)

the future prediction of the deviation can be approximated as:

mt1 ≈ Bt1t0e(t0) + Bt1t∆Vc(t) + At1t0 p(t0) (4)

where e(t0) and p(t0) are velocity and position perturbation at
time t0, respectively. Then the LQR problem is solved and the
optimal delta-V is:

∆Vc(tc) = −

M∑
i

(αie + βi p),

αi = [I3×3 + RiBT
ti,tc Bti,tc ]

−1 · RiBT
ti,tc Bti,t0 ,

βi = [I3×3 + RiBT
ti,tc Bti,tc ]

−1 · RiBT
ti,tc Ati,t0 .

(5)
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