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    Two non-traditional approaches for nanosatellite attitude estimation are investigated. In the non-traditional approach for 
attitude filtering the magnetometer and Sun sensor measurements are first used in the Singular Value Decomposition (SVD) 
algorithm to determine the spacecraft’s attitude. Then the attitude estimates from the SVD are fed into the Unscented Kalman 
Filter (UKF) for getting finer attitude estimates and estimating the attitude rate. In the first case, this algorithm is used without 
any further modification for sensor faults. In the second case the SVD-aided UKF is adapted against the sensor measurement 
faults. For adaptation the filter’s measurement noise covariance (R) matrix is tuned with a scale factor. The filters - the SVD-
aided UKF (SVD/UKF) and the SVD-aided Robust UKF (SVD/RUKF) - are tested in two different fault scenarios: constant 
continuous bias and measurement noise increment. Fault scenarios are repeated for both sun sensor and magnetometer. The 
results indicate the non-traditional approach is inherently robust against the sensor faults as vector measurements are first 
pre-processed in the SVD before running the UKF. 
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1.  Introduction 
 

Attitude estimation algorithms for small satellites that use 
magnetometer and sun sensor measurements have been 
designed in several studies. Kalman filtering is the most widely 
implemented algorithm for this purpose.1,2) The basic idea is to 
compare the vectors measured in the body frame with the 
known vectors in the inertial (or any other reference) frame to 
estimate the attitude of the satellite. 

The traditional approach to design a Kalman filter for 
attitude estimation uses the nonlinear measurement model.1-4) 
The measurements and states are related via nonlinear 
equations. This may be called as the traditional approach for 
attitude filtering. On the other hand, in the so called non-
traditional approach the attitude angles are first estimated by 
using the vector measurements and a suitable single-frame 
attitude estimation method.5) Then these estimated attitude 
angles are fed into a filtering algorithm as the measurements. 
The measurement model for the filter is linear in this case.6-8)  

In the non-traditional approach for attitude filtering, 
magnetometer and sun sensor measurements are used together 
with the calculated reference directions to estimate the 
spacecraft’s attitude by minimizing the Wahba’s loss 
function.9) Surely the attitude cannot be estimated by single-
frame methods when the measurement vectors are aligned 
(parallel) or one of them is missing (e.g. when the satellite is in 
eclipse and there is no sun sensor measurement). Yet the 
Kalman filter, which is used at the second stage of the attitude 
estimation scheme, can adapt its gain in such condition to 
provide attitude estimates. 

Hajiyev and Bahar proposed an integrated attitude 
determination algorithm for small satellites to estimate the 
attitude angles and angular velocities by Extended Kalman 
Filter (EKF) and algebraic method combination.10) In this 

scheme for non-traditional attitude filtering the proposed EKF 
uses the outputs of the algebraic method. The algebraic method 
estimates the attitude using two measurement vectors in the 
body frame and their corresponding reference directions in the 
orbit frame. The method works with any of the two vector 
combinations for sun sensor, magnetometer and horizon sensor.  

In our previous studies we proposed different non-traditional 
attitude filtering algorithms. We used the Singular Value 
Decomposition (SVD) method as the single-frame attitude 
estimator at the first stage of the algorithm. We investigated the 
EKF and Unscented Kalman Filter (UKF) as the attitude filter 
at the second stage of the algorithm.7, 8, 11, 12) 

In this study, we first construct the SVD-aided UKF 
(SVD/UKF) algorithm as a non-traditional filtering algorithm 
for attitude estimation. The SVD/UKF has, inherently, an 
adaptive structure since it uses the estimation covariance of the 
SVD algorithm as the measurement noise covariance (R) of the 
UKF. Secondly, we propose using R-adaptive UKF at the 
second stage of the SVD/UKF. The algorithm uses the 
measurement noise scale factor (MNSF), which is calculated 
by covariance matching, to adapt the measurement noise 
covariance matrix of the filter. The adaptation is achieved by 
multiplying the measurement noise covariance matrix with the 
MNSF and tuning the Kalman gain. Thus the filter becomes 
robust against the sensor faults. This algorithm is called 
SVD/RUKF. 

In this paper we compare the attitude estimation results of 
SVD/UKF and SVD/RUKF algorithms in case of a sensor fault. 
For this purpose, two different sensor fault scenarios are 
investigated for both the magnetometers and sun sensor. In the 
first scenario, an additional constant continuous bias is 
considered for the sensor measurements. Secondly, a scenario, 
where the sensor noise increases, is investigated.  

The structure of this paper is as follows. In Section 2, 
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mathematical models of the magnetometer and sun sensor are 
given. Section 3 introduces the SVD algorithm. The SVD/UKF 
and SVD/RUKF algorithms are explained in detail in Section 
4. The performance of the filters are investigated for different 
measurement fault scenarios in Section 5 using the simulated 
data for a hypothetical nanosatellite. Finally, Section 6 gives a 
brief summary of the obtained results and concludes the paper. 
 
2.  Sensor Models 
 

  There are magnetometer and sun sensor onboard the 

nanosatellite as the attitude sensors. The IGRF-12 model is 

used for modelling the Earth’s magnetic field and calculating 

the reference magnetic field vector, oB , in the orbital 

reference frame.13) The magnetometers measure the magnetic 

field vector in the body frame, bB , as  

( ) ( ) ( ) ( )b ok A k k kbB B v              (1) 

( )b kv is the Gaussian white magnetometer measurement noise 

and ( )A k  is the attitude matrix that represent the 

transformation from orbital reference frame to the body frame. 
  The sun direction vector in the orbital frame is modeled 
using the Julian date and the orbital parameters as input.14) The 
measurement model for the sun sensor is  

( ) ( ) ( ) ( )b o sk A k k kS S v  ,            (2) 

where ( )b kS  is the measured sun direction vector in the body 

frame, ( )o kS is the sun direction vector calculated in the 

orbital frame and ( )s kv is the Gaussian white sun sensor 

measurement noise. 
 
3.  Single-Frame Method Based on Vector Measurements: 
SVD 
 
  In the presence of two or more vector measurements the 
optimal attitude of the spacecraft can be found by minimizing 
the Wahba’s loss function9) that is given as  

 21
( ) | |

2 i i
i

L A a A ib r  . (3) 

Here ib  is the set of unit vector measurements in the body 
frame, ir  is the set of reference unit vectors in the orbital 
frame and ia  is the nonnegative weight for each measurement. 
If the loss function is rewritten as   

   0 tr TL A AZ  , (4) 

T
i i iZ a b r  ; 0 ia   ,  (5) 

The minimization problem becomes same as maximizing the

 tr TAZ . In this study, SVD method is chosen to minimize the 

loss function.15) The Z matrix has singular value decomposition 

as 

11 22 33diag   T TZ USV U S S S V  . (6) 

  The matrices U and V are orthogonal left and right matrices 

respectively, and 11S , 22S  and 33S are the primary singular 

values. The spacecraft’s attitude is found as 

diag[1 1 det( )det( )] T
optA U U V V .        (7) 

Then the attitude angles are found using the components of the 

estimated attitude matrix optA . 

  Rotation angle error covariance matrix is calculated as 

1 1 1
2 3 3 1 1 2diag[(s s ) (s s ) (s s ) ] T

SVDP U U      .  (8) 

where    1 11 2 22 3 33  an ,     detd det  s S s S s U V S   .  

  
4.  Non-Traditional Approach for Attitude Filtering using 
the UKF 
 
  The attitude angles that are estimated by the SVD are used 
as the measurements for the UKF. The SVD and UKF 
algorithms are integrated to get finer estimates for the attitude 
angle and estimate the angular velocities.  
  Two different algorithms are built. The first one, SVD/UKF, 
uses the rotation angle error covariance matrix of SVD 
algorithm ( SVDP ) as the measurement error covariance matrix 
(R) in the UKF.  The second algorithm, SVD/RUKF, uses an 
adaptive UKF instead of a regular one. In this version the R 
matrix for the UKF is determined by an adaptive rule.  
 
4.1.  SVD/UKF  
  UKF algorithm is derived for nonlinear system and linear 
measurement models. The model is expressed as 

1) ( ( ), ) ( )pk k k kx f x  (  ,          (9) 

( ) ( ) ( )mk H k ky x v  .            (10) 

Here, ( )kx  is the state vector containing the quaternions and 

angular rates of the nanosatellite, 
TT T

BIx q    ,              (11) 

( )ky  is the measurement vector and H  is the measurement 

matrix. In Eqs. (9, 10) ( )p kv   and ( )m kv  are the process and 

measurement error noises, which are assumed to be Gaussian 

white noises with the covariance matrices of  Q k  and  R k , 

respectively. 

  The initial step of the UKF algorithm is determining the 

2 1n   sigma points with a mean of  ˆ k kx   and a 

covariance of  P k k . For a n dimensional state vector, 

these sigma points are obtained by16) 
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   0 ˆk k k kx x ,            (12a)  

        ˆk k k k n P k k


x x   ,    (12b) 

        ˆn k k k k n P k k


x x    ,    (12c) 

where,  0 k kx ,  k kx and  n k kx   are sigma points, 

and  is the scaling parameter which is used for fine tuning. 

    n P k k


  corresponds to the th  column of the 

indicated matrix for 1 n   .  

  The next step of the UKF procedure is evaluating the 
transformed set of sigma points for each of the points by,   

   1 , .l lk k f k k kx x          0 2l n        (13)   

  Thereafter, these transformed values are used for calculating 

the predicted mean,  ˆ 1k kx , and covariance,  1P k k  

   
2

0

ˆ 1 1
n

l l
l

k k k kx x


   ,             (14) 

     
2

0

ˆ1 1 1
n

l l
l

P k k k k k k x x


        
     

        ˆ1 1
T

l k k k k Q k     x x .    (15) 

The weights are defined as 

0 n








;   

1

2( )l n






 1 2l n  .       (16) 

  The measurement model is linear. Thus the predicted 
observation vector is,  

ˆ ˆ( 1 ) ( 1) ( 1 )k k H k k ky x    .         (17) 

  The observation covariance matrix is determined as, 

( 1 ) ( 1) ( 1 ) ( 1)T
yyP k k H k P k k H k     .     (18) 

  The cross correlation matrix can be obtained as, 

( 1 ) ( 1 ) ( 1)T
xyP k k P k k H k    .        (19) 

  Next the update stage of the algorithm comes. The innovation 
vector for the filter is  

      ˆ1 1 1 ,k k k ky y             (20) 

  The innovation covariance is,  

     1 1 1vv yyP k k P k k R k     .      (21) 

Here  1R k  is the measurement noise covariance matrix, 

which is taken as the covariance of SVD estimates,

( 1) ( 1)svdR k P k   , as mentioned.  

  The Kalman gain is computed as, 

     11 1 1 .xy vvK k P k k P k k           (22) 

  At last, the state vector and covariance matrix are updated as, 

       ˆ ˆ1 1 1 1 1 ,k k k k K k k      x x      (23a) 

 1 1P k k       

       1 1 1 1 .T
vvP k k K k P k k K k         (23b) 

 
4.2.  SVD/RUKF  
  Specifically in case of measurement faults, we need to adapt 
the filter to make it robust against the sensor faults. Otherwise 
the faults deteriorate the estimation accuracy. In the non-
traditional approach for attitude filtering, the adaptation is also 
needed when we do not use the estimation covariance of the 
single-frame method and instead prefer having a self-tuning 
filtering algorithm. 
  Here, the adaptation rule is applied as a change in the 
covariance matrix of the innovation sequence as 

       1 1 1vv yyP k k P k k S k R k     , 
   

(24) 

where  S k is the MNSF that is calculated with the analysis of 

the innovation sequence,   1k  .  In the robust case, the 

filter gain becomes 

         
1

1 1 1 1xy yyK k P k k P k k S k R k


        . (25)               

  The gain matrix is changed when the condition of  

         1 1 1 1T
yytr k k tr P k k R k         (26) 

is satisfied.                      

  When the predicted observation vector  ˆ 1y k k  is 

reasonably different from measurement vector,  1y k  , the 

real filtration error exceeds the theoretical one. The Kalman 
gain must be adapted hereafter. To calculate the MNSF the 
following equation is used: 

         tr 1 1 tr 1 1T
yyk k P k k S k R k            . (27) 

  Eq. (27) can be rewritten as, 

         tr 1 1 tr 1 tr 1T
yyk k P k k S k R k                . (28) 

It is known that  
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        tr 1 1 1 1T Tk k k k          .      (29) 

Thus 

          1 1 tr 1 tr 1 .T
yyk k P k k S k R k                (30) 

As a result, the MNSF can be calculated as, 

 
     

 
1 1 tr 1

tr 1

T
yyk k P k k

S k
R k

     
  

 
 .    (31a) 

or equally,  

   
 

1 1 tr ( 1) ( 1/ ) ( 1)

tr 1

T Tk k H k P k k H k

R k

       
  

 
  (31b)   

  The gain of the RUKF in the SVD/RUKF scheme is adapted 
with the MNSF at every k.   
 
5.  Simulation Results and Analysis 
 
  The orbit of the nanosatellite considered in this paper is 
assumed to be a Low Earth Orbit (LEO) with a small 

eccentricity of 56.4 10e   , an inclination of 74i   and 
approximate altitude of 612 km. Algorithm runs for 6000 s and 
for 1 Hz measurement frequency for the sensors. The UKF and 
RUKF are also propagated with a sampling time of 1st  .  

  For the magnetometer measurements, the sensor noise is 
characterized by zero mean Gaussian white noise with a 
standard deviation of 300 nTm  . The standard deviation for 

the sun sensor noise is taken as 0.002s  (for unit vector 

measurements). Two different sensor faults are considered for 
both magnetometer and sun sensor: continuous bias and noise 
increment. The measurement faults occur between 4500th and 
5500th seconds. 

  Four different sensor fault scenarios are formulated as  

 
 

( ) ( ) ( ) ( ) 0.2 1 1 1

( ) ( ) ( ) ( ) 0.2 1 1 1

( ) ( ) ( ) 3 ( )

( ) ( ) ( ) 3 ( )

T

b o b m

T

b o s s

b o b

b o s

k A k k k

k A k k k

k A k k k

k A k k k





B B v

S S v

B B v

S S v

  

  


  
  

 

for 4500 5500k  .  (32) 

  In Figs. 1-3, SVD/UKF estimations are presented for 
quaternion vector components. In Fig. 1, magnetometer has the 

bias type of fault as  0.2 1 1 1
T

m  in 4500-5500s interval. 

As it can be seen from the figure, SVD/UKF has the ability to 
adapt itself in case of fault. Yet the bias in the attitude 
estimations is not completely removed.  
  In Fig. 2 (a), the quaternion estimations of SVD/UKF can be 
seen together with the actual attitude of the satellite in case of 
measurement noise increment in the magnetometer 
measurements. As can be seen the effects of the measurement 
fault on the SVD/UKF attitude estimations are not severe.  The 
quantity of the degradation in the attitude estimates is better 
seen for the estimation errors in Fig.2(b). Clearly, despite the 
fault, the estimation accuracy is still better than 0.1deg.  

 
Fig. 1.  SVD/UKF quaternion estimation errors in case of bias type of fault 

in magnetometer measurements. 

   

Fig. 2. (a) SVD/UKF quaternion estimations in case of noise increment 

type of fault in magnetometer measurements. 

 

Fig. 2. (b) SVD/UKF quaternion estimation errors in case of noise 

increment type of fault in magnetometer measurements. 

 

  In Fig. 3, the quaternion estimation errors for the SVD/UKF 
are given when the measurement noise increases for the sun 
sensor. We see that the filter is capable of decreasing the effects 
of the fault irrelevantly from its source (from which sensor the 
fault is originated).  
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Fig. 3.  SVD/ UKF quaternion estimation errors in case of measurement 

noise increment type of fault in sun sensor measurements. 

 

  In Figs. 4-6, the estimation results for the SVD/RUKF 
algorithm are given. In Fig. 4, magnetometer has the bias type 

of fault as  0.2 1 1 1
T

m  in 4500-5500s interval. The 

SVD/RUKF can adapt itself but cannot completely remove the 
bias on the estimations, similarly with the SVD/UKF. The 
results are also similar in other fault scenarios. In all cases, 
although the effect of the sensor fault on the attitude estimation 
accuracy is minimized, it is not completely removed. 
Nonetheless the attitude estimation accuracy, which is higher 
than 0.1deg, is sufficient regarding the expectations for the 
nanosatellite mission.   

 

 
Fig. 4.  SVD/RUKF quaternion estimation errors in case of bias type of 

fault in magnetometer measurements. 

   

 

Fig. 5.  SVD/RUKF quaternion estimations in case of noise increment 

type of fault in magnetometer measurements. 

 

Fig. 6.  SVD/RUKF quaternion estimations in case of noise increment 

type of fault in sun sensor measurements. 
 
  In Figs. 4-6 we see that from time to time the attitude 
estimations of the SVD/RUKF may deteriorate even when 
there is no sensor fault. This is a disadvantage of the 
SVD/RUKF algorithm. 
  In Tables 1 and 2 we present the root mean square (RMS) 
errors for the algorithms in different scenarios. The RMS errors 
are calculated in 4500-5500s interval for sensor fault scenarios. 
In the so called normal mode there is no sensor fault and the 
RMS error sampled in an appropriate interval.  
  In Tables 1 and 2 we see that in the normal mode the 
estimation error of the SVD/RUKF algorithm is slightly higher. 
This result matches with the observed trend in the Figs.4-6 
which tells us the SVD/RUKF estimations may be noisy even 
when there is no fault. On the other hand, the RMS errors in 
case of a measurement fault do not have a very clear pattern. 
The estimation errors for both the SVD/UKF and SVD/RUKF 
in case of a sensor fault is similar. Therefore we may say that 
using the SVD/UKF is more advantageous in general, mainly 
because of its slightly higher accuracy in the “normal mode” 
(when there is no sensor fault). Surely SVD/UKF is also 
advantageous in terms of simplicity as we do not need to 
calculate the adaptive factor for this filter.  
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Table 1.  RMS errors of SVD/UKF in different scenarios. 

RMSE  

SVD/ UKF 

Normal 
Mode 

Magnetometer Fault Sun Sensor Fault 

Bias 
Noise 

Increment 
Bias 

Noise 
Increment 

1q  0.0026 0.0050 0.0140 0.0047 0.0060 

2q  0.0012 0.0019 0.0053 0.0018 0.0020 

3q  0.0017 0.0040 0.0110 0.0037 0.0047 

4q  0.0022 0.0041 0.0110 0.0040 0.0050 

 
Table 2.  RMS errors of SVD/RUKF in different scenarios. 

RMSE  

SVD/RUKF 

Normal 
Mode 

Magnetometer Fault Sun Sensor Fault 

Bias 
Noise 

Increment 
Bias 

Noise 
Increment 

1q  0.0027 0.0028 0.0076 0.0027 0.0033 

2q  0.0040 0.0060 0.0068 0.0055 0.0059 

3q  0.0022 0.0033 0.0066 0.0030 0.0036 

4q  0.0030 0.0034 0.0070 0.0031 0.0036 

 
6.  Conclusion 
   

In this study, we first construct the Singular Value 
Decomposition (SVD) aided Unscented Kalman Filter (UKF) 
algorithm as a non-traditional filtering algorithm for attitude 
estimation. The algorithm, which is called SVD/UKF, has 
inherently an adaptive structure since it uses the estimation 
covariance of the SVD algorithm as the measurement noise 
covariance (R) of the UKF. Secondly, we propose using R-
adaptive UKF at the second stage of the SVD/UKF. The 
algorithm uses the measurement noise scale factor (MNSF), 
which is calculated by covariance matching, to adapt the 
measurement noise covariance matrix of the filter. The 
adaptation is achieved by multiplying the measurement noise 
covariance matrix with the MNSF and tuning the Kalman gain. 
Thus the filter becomes robust against the sensor faults. This 
algorithm is called SVD/RUKF. 

Simulation results show that both of the presented algorithms 
are robust against measurement faults. Although the fault 
cannot be removed completely, its effect on the attitude 
estimation accuracy is minimized. Further investigations show 
that, specifically in the fault-free normal mode, it is more 
advantageous to use the SVD/UKF algorithm.  
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