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Retired spacecraft and spent launch vehicle upper stages in geostationary transfer orbits (GTOs) threaten operational spacecraft

in both low Earth orbits and geostationary orbits. Atmospheric re-entry is the preferred end-of-life disposal strategy for low-perigee

GTOs. When natural decay of the GTO is not fast enough, an active de-orbiting maneuver is necessary for lowering the perigee.

Because of the eccentricity oscillation caused by luni-solar perturbations, de-orbiting maneuvers performed at different timings will

affect the GTO differently. Therefore, finding the best timing for the de-orbiting maneuver can exploit the natural luni-solar perturba-

tions to enhance de-orbiting. In this paper, the timing of a de-orbiting maneuver, which is performed at apogee to lower the perigee, is

analyzed for retired spacecraft in GTOs. Through analysis and simulations, we find and verify that the minimum point in the eccen-

tricity oscillation is the best timing for the de-orbiting maneuver. With this optimal timing, luni-solar perturbations can be utilized, and

the perigee height of the disposal orbit after maneuver will be the lowest among all disposal orbits with different de-orbiting timings.

Because of the highly sensitive dynamics introduced by the solar apsidal resonance, a lower perigee can guarantee faster decays of the

semi-major axis and eccentricity, as well as an earlier solar apsidal resonance, but cannot guarantee a shorter orbital lifetime.
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1. Introduction

Since geostationary transfer orbits (GTOs) cross regions of

low Earth orbits (LEOs) and geostationary orbits (GEOs) with

large relative velocities, space debris in GTOs pose threats to

operational spacecraft in both of these orbital regions. End-

of-life disposal measures are required, therefore, for objects in

GTOs, to control the growth of the debris population in this

orbital region.

Most GTO objects are spent launch vehicle upper stages used

to launch GEO satellites. Besides serving as transfer orbits for

GEO satellites, GTOs provide low-cost operational orbits for

small satellites, which are launched into GTOs as secondary

payloads, such as the SPIRALE GTO satellites,1) and also serve

as operational orbits for satellites studying space radiation en-

vironment, such as US CRRES spacecraft2) and Japanese Tsub-

asa satellite.3) In the future, the number of satellites operated in

GTOs will increase with the spring up of small satellites, and

their end-of-life disposal is of great importance for the space

debris mitigation.

Generally, there are two end-of-life disposal strategies for

Earth-orbiting satellites: atmospheric re-entry and transfer to

a graveyard orbit. Usually, it is not an option to move retired

spacecraft or spent upper stages from a low-perigee GTO to

a graveyard orbit, since it is fuel-consuming to raise the low

perigee to above the LEO region (>2000km) and, needless to

say, also to move the apogee away from the GEO region. How-

ever, it is much easier to lower the perigee deeper into the dense

atmosphere. Therefore, atmospheric re-entry is the preferred

end-of-life disposal strategy for GTOs with a low perigee. Most

GTOs have low perigees, and we will focus on such orbits in

this paper.

Because of the low perigee and high apogee, GTOs are af-

fected by the interaction of multiple perturbations, including

atmospheric drag, Earth’s oblateness, and luni-solar perturba-

tions, which render the dynamical evolution highly sensitive to

initial conditions and other parameters. There have been many

studies on atmospheric re-entry of GTOs, see e.g. work by

Wang and Gurfil4) for a review. As a result of the interaction of

perturbations, the solar apsidal resonance, the 1:1 resonance be-

tween the solar motion and the apsidal rotation caused mainly

by Earth’s oblateness, introduces high sensitivity into the or-

bital dynamics.5) It has been shown that the high sensitivity in

the dynamics and the system uncertainties, especially the large

intrinsic uncertainty in the atmospheric density, make determin-

istic prediction of the GTO’s atmospheric re-entry impossible.

In practice, a statistical approach is required to estimate the or-

bital lifetime of GTOs.6, 7)

The high sensitivity of orbital dynamics and large system un-

certainties raise barriers to the design of end-of-life disposal

measures, which usually requires predicting orbital lifetime.

The statistical method is only feasible for evaluating disposal

measures in some specific cases, but not feasible for the dis-

posal design, since it will be unacceptably computationally ex-

pensive to evaluate all possible cases during the design process.

Therefore, simple guidelines, which can relate the changing

trend of orbital lifetime to that of orbital elements, will be useful

for the design of end-of-life disposal measures.

There has been a simple guideline widely used in the exist-

ing end-of-life disposal measures for atmospheric re-entry from

GTOs, that is, a lower perigee height can speed up the orbital

decay through the denser atmosphere, or, in other words, a

lower perigee can increase the probability of atmospheric re-

entry within a given time limit. This fact has been shown using

statistical studies by Da Costa et al.8) and Morand et al.6) How-

ever, since the dynamics are highly sensitive, the low perigee
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may be raised by the solar apsidal resonance, so this simple

guideline is only justified in a statistical sense but not in a de-

terministic one. Nevertheless, due to the highly sensitive nature

of GTO dynamics, the compliance of orbital lifetime with space

debris regulations is actually a statistical problem.6, 7) There-

fore, this simple guideline is good enough for the design of

end-of-life disposal measures for atmospheric re-entry.

Both existing disposal strategies for an early atmospheric re-

entry from GTOs have adopted the aforementioned guideline,

reducing orbital lifetime by lowering the perigee height as much

as possible. The first disposal strategy is exploiting natural per-

turbations, especially luni-solar perturbations, to decay the or-

bit in a shorter time that is compliant with space debris regu-

lations. The simplest method is to choose a GTO with a lower

initial perigee. However, the GEO satellite will need more fuel

to reach the final orbit and will also suffer more drag and ther-

mal effects after the release.9) For a GTO with a given initial

perigee height, several studies have tried to figure out the right

initial orbital geometry with respect to the Moon and Sun, so

that luni-solar perturbations will lower the initial perigee and

then reduce orbital lifetime.6, 8, 10–12) In the recent paper,4) the

initial orbital orientation, which leads to a low perigee height,

and, consequently, a short orbital lifetime in a statistical sense,

has been determined.

The second disposal strategy for an early atmospheric re-

entry is an active de-orbiting maneuver, including the direct de-

orbiting that leads to a direct re-entry to Earth’s atmosphere and

the indirect de-orbiting that transfers the spacecraft to a disposal

orbit allowing an atmospheric re-entry in a shorter time. De-

orbiting maneuvers have been performed by upper stages of the

Japanese H-II launch vehicle by the ”idle mode burn” shortly

after the payload separation in a quasi-retrograde direction near

the GTO’s perigee.13) Bonaventure et al.1) have studied de-

orbiting maneuvers at apogee for atmospheric re-entry of the

SPIRALE GTO satellites. Through global optimization meth-

ods, Colombo et al.14) and Armellin et al.15) have designed op-

timal de-orbiting maneuvers for atmospheric re-entry of the IN-

TEGRAL mission. Although the de-orbiting maneuvers stud-

ied in these works are performed at different positions in the

orbit and along different directions, they all belong to indirect

de-orbiting. These de-orbiting maneuvers aim at lowering the

perigee as much as possible and then reducing orbital lifetime

through the denser atmosphere, but do not aim at a direct re-

entry that requires more fuel. As for the direct de-orbiting, it

will be performed by new European launch vehicle Ariane 5

ME with the new engine Vinci.∗

The straightest and also the most propellant-efficient method

to lower the perigee is to perform a retrograde delta-V maneu-

ver at apogee, as performed by the SPIRALE GTO satellites.1)

In this paper, we focus on this de-orbiting method to lower the

GTO perigee for an early atmospheric re-entry. Since luni-

solar perturbations induce the eccentricity oscillation, the de-

orbiting timing is an important issue. De-orbiting maneuvers

with the same delta-V but performed at different timings will

act on a GTO with different eccentricities, and then will have

different de-orbiting effects. By using analysis and simulations,

∗ http://www.esa.int/Our Activities/Launchers/Launch vehicles

/Adapted Ariane 5 ME

we will find the best active de-orbiting timing, at which natural

luni-solar perturbations can be exploited to the most extent, to

achieve the lowest perigee with a given delta-V.

2. Dynamical Modeling and Orbital Behaviors

2.1. Singly-averaged orbital dynamics
The dynamical evolution of GTOs is governed by orbital

dynamics subjected to the perturbations of Earth’s oblateness,

luni-solar gravity, and atmospheric drag. A singularity-free

semi-analytical orbital model in terms of Milankovitch ele-

ments was previously derived for GTOs.4) Through the single

averaging process, short-period terms associated with the mo-

tion on the GTO are eliminated and the effect of atmospheric

drag assumes a simple analytical form. The singly-averaged or-

bital model allows a multi-orbit time step and the computational

speed is improved. In the following, we give a brief description

of this model, which will be adopted in this paper.

The Milankovitch elements contains two orthogonal vectors:

the orbital angular momentum vector H with the magnitude√
μa(1 − e2), normal to the orbital plane, and the Laplace vector

b = μe, pointing towards perigee, where μ is the gravitational

constant of Earth, a is the semi-major axis, and e is the eccen-

tricity vector. These two vectors can be written in terms of the

position r and velocity u as

H = r×u, e =
1

μ
u×r×u − r

r
, (1)

where r×u = r × u and u×r×u = u × (r × u).
The singly-averaged dynamics of H and e subjected to the

perturbations of Earth’s oblateness, luni-solar gravity, and at-

mospheric drag are given by4)

Ḣ = ḢJ2
+ ḢS + ḢM + ḢAtm

= −3μJ2R2
E

2a3h5
( p̂ · h) p̂×h

+
3a2μS

2d3
S

[
5
(
d̂S · e

)
e× d̂S −

(
d̂S · h

)
h× d̂S

]
+

3a2μM

2d3
M

[
5
(
d̂M · e

)
e× d̂M −

(
d̂M · h

)
h× d̂M

]

−1

2
B

√
μ
(
1 − e2

)
2aπz

ρp0
exp

(
rp0
− rp

Hρ

)
(1 + K1) H,

(2)

ė = ėJ2
+ ėS + ėM + ėAtm

= −3nJ2R2
E

4a2h5

{[
1 − 5

h2
( p̂ · h)2

]
h× + 2 ( p̂ · h) p̂×

}
e

+
3μS

2nd3
S

[
5
(
d̂S · e

)
h× d̂S −

(
d̂S · h

)
e× d̂S − 2h×e

]
+

3μM

2nd3
M

[
5
(
d̂M · e

)
h× d̂M −

(
d̂M · h

)
e× d̂M − 2h×e

]
−B

1 + e

a
√

2πz
ρp0

exp

(
rp0
− rp

Hρ

)
(1 + K2) Hê,

(3)

where RE is the mean equatorial radius of Earth, h = H
/√
μa

is the scaled angular momentum, n =
√
μ
/
a3 is the mean mo-

tion, p̂ is Earth’s spin axis, μS and μM are gravitational con-

stants of the Sun and Moon, respectively, dS and dM are po-
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sition vectors of the Sun and Moon relative to Earth, respec-

tively, B = S CD/m is the object’s ballistic coefficient, S/m is

the area-to-mass ratio (AMR), CD is the non-dimensional drag

coefficient with a typical value of 2.2, rp = a(1 − e), z = ae
/
Hρ,

Hρ is the constant scale height in the exponential atmospheric

density model ρ = ρp0
exp
[
−
(
r − rp0

)/
Hρ
]
, ρp0

and rp0
are the

atmospheric density and the distance from Earth’s center at the

initial perigee, respectively, and

K1 =
1 + 3e2

8z
(
1 − e2

) ,K2 =
3e2 − 4e − 3

8z
(
1 − e2

) . (4)

2.2. Orbital behaviors
With a low perigee and a high apogee, the GTO is subjected

to a complex interaction of multiple perturbations. The Earth’s

oblateness causes rotations of orbital plane and apsidal line, but

on average keeps the orbital shape almost unchanged. There-

fore, it does not affect the orbital decay directly but, has indirect

effects through the luni-solar perturbations, as will be shown

later. Atmospheric drag reduces the semi-major axis and ec-

centricity gradually with perigee height nearly unchanged. It

strongly depends on the atmospheric density and the perigee

height, which oscillates due to the luni-solar perturbations.

Luni-solar perturbations depend on the relative positions of

the Moon and Sun with respect to the orbital plane and apsi-

dal line. Combining with Earth’s oblateness, luni-solar pertur-

bations induce an oscillation of eccentricity and also an oscil-

lation of perigee height. The oscillation is a superposition of

a long period, several years, and two short periods, about 14

days and 180 days (half the orbital periods of the perturbing

bodies), respectively. The long-period oscillation is induced by

the GTO’s periodic apsidal rotation caused mainly by Earth’s

oblateness, while short-period oscillations are induced by peri-

odic luni-solar motions.4)

Here, we give an example of dynamical evolution of a GTO

by propagating the averaged orbital model (2)-(3). The GTO

has the same initial orbital elements with the standard GTO

launched by Ariane 5 from Kourou,†

i0 = 6 deg, ha0 = 35943 km, ω0 = 178 deg, (5)

where ha0 is the initial apogee height, except that it has a differ-

ent initial perigee height, hp0 = 600 km, which is equal to that

of the SPIRALE GTO satellites.1) The initial right ascension of

the ascending node (RAAN) Ω0 is 140 deg. The AMR of the

GTO object S /m is 0.01 m2/kg. The epoch and time step in the

simulation are 1 Jan. 2015 00:00:00 UTC and 10000 seconds,

respectively.

Time histories of a, e, and hp for the GTO are given in Figs.

1-3, respectively. Figure 1 shows that the reduction of the semi-

major axis caused by the atmospheric drag is quite small, about

1 km per year, and then the semi-major axis is almost con-

stant before the de-orbiting maneuver. Figures 2 and 3 show

significant oscillations of the eccentricity and perigee height

caused by the luni-solar perturbations, respectively. Our goal

is to choose the best point in time of the eccentricity oscilla-

tion, at which to perform the retrograde delta-V maneuver at

† Ariane 5 User’s Manual, Issue 5, Revision 1, July 2011.

http://www.arianespace.com/launch-services-ariane5/Ariane5 users

manual Issue5 July2011.pdf

the GTO’s apogee, so that the natural luni-solar perturbations

can be utilized to enhance de-orbiting.
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Fig. 1. Time history of a for the GTO without de-orbiting with hp0 = 600
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Fig. 2. Time history of e for the GTO without de-orbiting with hp0 = 600

km.
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Fig. 3. Time history of hp for the GTO without de-orbiting with hp0 = 600

km.

3. Considerations for De-orbiting Timing

The timing of the de-orbiting maneuver at apogee has two

aspects: the immediate de-orbiting effect and the longer-term

de-orbiting effect. The former can be assessed by Gauss’ varia-

tional equations, and the latter can be assessed by analyzing the

eccentricity oscillation of the disposal orbit after the maneuver.

3.1. Gauss’ variational equations
According to the well-known Gauss’ variational equations,

the change of orbital elements caused by the retrograde delta-V

maneuver at apogee are given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Δa = −2

n

√
1 − e
1 + e

ΔV,

Δe =
2

n

√
1 − e2

a
ΔV,

(6)
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where the angular orbital elements i, ω, and Ω are unchanged.

Therefore, the change of orbital radius at perigee rp is given by

Δrp = Δa (1 − e) − aΔe = −4

n

√
1 − e
1 + e

ΔV. (7)

According to Eqs. (6)-(7) and the fact that the semi-major

axis a is almost constant before the maneuver, with the same

ΔV , if the de-orbiting maneuver is performed at the minimum

point in the eccentricity oscillation, a and e will be reduced and

increased to the most extent, respectively, and, consequently, rp

will be reduced to the most extent.

However, the perigee height of a GTO always oscillates due

to the luni-solar perturbations. Therefore, a larger Δrp cannot

guarantee a really lower perigee height after the de-orbiting ma-

neuver. The perigee height oscillations of different disposal or-

bits, whose de-orbiting maneuvers are performed at different

timings, need to be considered also. The perigee height os-

cillation is actually caused by the eccentricity oscillation. For

different disposal orbits, the different perigee height oscillations

are mainly attributed to the difference in the eccentricity oscilla-

tion, whereas the difference in the semi-major axis has a smaller

effect.

Since the orbital orientation with respect to the Moon and

Sun is unchanged after the maneuver, the phase of the eccen-

tricity oscillation caused by the luni-solar perturbations is also

unchanged. Therefore, if magnitudes of eccentricity oscilla-

tions of different disposal orbits are the same, then the minimum

point in the eccentricity oscillation mentioned above will be the

best timing for the de-orbiting maneuver. This result is true only

from the aspect of immediate de-orbiting effect. However, be-

cause different eccentricities will lead to different magnitudes

of luni-solar perturbations, these disposal orbits actually will

have different magnitudes for the eccentricity oscillation. We

will discuss this issue in the following.

3.2. Eccentricity oscillation after the maneuver
Here, we consider two candidate points for the de-orbiting

maneuver: a minimum point A and a nearby maximum point B

in the eccentricity oscillation, as shown in Fig. 4. Eccentricity

oscillations of disposal orbits A and B, whose de-orbiting ma-

neuvers are performed at minimum point A and maximum point

B, respectively, are depicted by Figs. 5 and 6, respectively.
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Fig. 4. Minimum point A and maximum point B in the eccentricity oscil-

lation.
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Fig. 5. Eccentricity oscillation of disposal orbit A with de-orbiting at min-

imum point A.
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Fig. 6. Eccentricity oscillation of disposal orbit B with de-orbiting at max-

imum point B.

According to Gauss’ variational equation (6) and the fact that

the semi-major axis a is almost constant before the maneuver,

the changes of eccentricity in Fig. 5 and Fig. 6 are given by

ΔeA =
2

n

√
1 − e2

A

a
ΔV, ΔeB =

2

n

√
1 − e2

B

a
ΔV. (8)

Since eA < eB, we have

ΔeA > ΔeB. (9)

In the same way, we have

|ΔaA| > |ΔaB| . (10)

According to the variational equation (3) of e, we can see that

the magnitude of luni-solar perturbations is larger for a more

eccentric orbit. Since ΔeA > 0, disposal orbit A has a more pro-

nounced eccentricity oscillation than the original orbit. Thus,

in Fig. 5, we have

Δe′A > ΔeA. (11)

Similarly, disposal orbit B also has a more pronounced ec-

centricity oscillation than the original orbit. Keeping in mind

that, unlike point A, point B is the maximum point in the eccen-

tricity oscillation, in Fig. 6, we have

ΔeB > Δe′B. (12)
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According to Eqs. (9)-(12), we have the following inequality

Δe′A > ΔeA > ΔeB > Δe′B. (13)

So, we have ΔeA > Δe′B. Using ΔeA > Δe′B and applying the

above rule again, we know that, after point A, disposal orbit A

has a larger eccentricity oscillation than disposal orbit B, i.e.,

Δe′A − ΔeA > Δe′′B − Δe′B. (14)

Then, using ΔeA > Δe′B again, we have

Δe′A > Δe′′B . (15)

As stated above, we have following inequalities relating dis-

posal orbits A and B: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
|ΔaA| > |ΔaB| ,
ΔeA > Δe′B,
Δe′A > Δe′′B,

(16)

which means that ⎧⎪⎪⎪⎨⎪⎪⎪⎩
aA < aB,
eA−min > eB−min,
eA−max > eB−max.

(17)

Therefore, we can conclude that from both aspects of im-

mediate and longer-term de-orbiting effects, disposal orbit A

has the lowest perigee among all the disposal orbits, whose de-

orbiting maneuvers are performed at different points in time of

the eccentricity oscillation. Consequently, point A, the mini-

mum point in the eccentricity oscillation, is the best timing for

the de-orbiting maneuver at apogee.

4. Numerical Verification

In this section, the above conclusion will be verified by nu-

merical simulations. The simulations are carried out by prop-

agating the averaged orbital model (2)-(3) numerically. We

consider the GTO in Section 2.2. with different initial perigee

heights. When the perigee height is lower than 100 km, the

spacecraft is regarded burnt and the GTO has decayed.

4.1. hp0 = 600km
In this simulation example, initial orbital elements and sys-

tem parameters are all the same as the sample GTO in Section

2.2.. Assume that the de-orbiting maneuver is to be performed

at about the end of the sixth year. To verify the conclusion

in Section 3., we compare two candidate timings for the de-

orbiting maneuver, minimum point A and maximum point B in

the eccentricity oscillation in Fig. 2. The magnitude of the de-

orbiting maneuver is chosen as ΔV = 37 m/s, the same as the

de-orbiting maneuver of the SPIRALE GTO satellites.1)

First, we do not take into account the atmospheric drag.

The perturbations are Earth’s oblateness and luni-solar gravity.

Time histories of a, e, and hp for the original GTO, and disposal

orbits A and B without atmospheric drag, are given in Figs. 7-9,

respectively.

It can be seen that the semi-major axis of disposal orbit A is

about 1.8 km smaller than that of disposal orbit B, as shown in

the zoomed lower half of Fig. 7. It can also be seen that dis-

posal orbit A has a larger eccentricity and a lower perigee than

disposal orbit B, as shown in Fig. 8 and Fig. 9, respectively.
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Fig. 7. Time history of a for the original and disposal orbits without at-

mospheric drag with hp0 = 600 km.

0 5 10 15
0.71

0.715

0.72

0.725

0.73

0.735

Time [Year]

Ec
ce

nt
ric

ity

 

 

Original Orbit
Disposal Orbit A
Disposal Orbit B

7.5 7.6 7.7 7.8 7.9 8 8.1 8.2

0.7278

0.728

0.7282

0.7284

0.7286

0.7288

0.729

0.7292

Time [Year]

Ec
ce

nt
ric

ity

 

 

Fig. 8. Time history of e for the original and disposal orbits without at-

mospheric drag with hp0 = 600 km.

The maximum difference between minimum perigee heights of

disposal orbits A and B is as large as 8 km, as shown in the

zoomed lower half of Fig. 9. Therefore, the conclusion in Sec-

tion 3. that the minimum point in the eccentricity oscillation is

the best timing for the de-orbiting maneuver has been verified.

Next, we take into account atmospheric drag to see the ef-

fects of the different perigee heights of disposal orbits on their

orbital evolution and lifetime. Time histories of a, e, and hp for

the original GTO, and disposal orbits A and B with full pertur-

bations are given in Figs. 10-12, respectively.

Due to decaying effects, the orbital evolution with full pertur-

bations is totally different from that without atmospheric drag,

5



0 5 10 15
100

200

300

400

500

600

700

Time [Year]

Pe
rig

ee
 H

ei
gh

t [K
m

]

 

 

Original Orbit
Disposal Orbit A
Disposal Orbit B

11.3 11.4 11.5 11.6 11.7 11.8

170

175

180

185

190

195

Time [Year]

Pe
rig

ee
 H

ei
gh

t [K
m

]

 

 

Fig. 9. Time history of hp for the original and disposal orbits without at-

mospheric drag with hp0 = 600 km.
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Fig. 10. Time history of a for the original and disposal orbits with hp0 =

600 km.

but the lower perigee height of disposal orbit A in the absence

of atmospheric drag is retained in the full perturbations model,

as shown in Fig. 12. Consequently, the decay rates of a and e
of disposal orbit A are larger than that of disposal orbit B, as

shown in Fig. 10 and Fig. 11, and then disposal orbit A reaches

the condition of solar apsidal resonance about 3 years earlier

than disposal orbit B, as shown in Fig. 12.
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Fig. 11. Time history of e for the original and disposal orbits with hp0 =

600 km.
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Fig. 12. Time history of hp for the original and disposal orbits with hp0 =

600 km.

However, disposal orbits A and B have different kinds of so-

lar apsidal resonances: the perigee of disposal orbit A is raised

by solar gravity to a high altitude, whereas the perigee of dis-

posal orbit B is lowered by solar gravity continuously. As a

result, disposal orbit A re-enters Earth’s atmosphere almost at

the same time as disposal orbit B, but its de-orbiting maneuver

is about half a year later than that of disposal orbit B, showing a

small advantage in orbital lifetime; but one should keep in mind

that it is impossible to predict or manage which kind of solar ap-

sidal resonance will be encountered by the GTO, and the orbital

evolution with different kinds of resonances can be totally dif-

ferent.5) Therefore, as stated in Section 1., the solar apsidal res-

onance is difficult to consider in end-of-life disposal measures

for atmospheric re-entry from GTOs. The goal of end-of-life

disposal measures is just to achieve a low perigee, without con-

sidering the final orbital lifetime directly. A low perigee can

speed up the orbital decay, guarantee an earlier solar apsidal

resonance, and increase the probability of atmospheric re-entry

within a given time limit.6, 8) The compliance of GTO orbital

lifetime with space debris regulations is actually a statistical

problem.

4.2. hp0 = 800km
To further verify the conclusion, we consider another simu-

lation example, in which the initial orbital elements and system

parameters are the same as in Section 2.2. except a higher initial

perigee hp0 = 800 km.

Assume that we want to perform the de-orbiting maneuver

circa the seventh year. As in the first example, we also compare

two candidate timings for the de-orbiting maneuver, minimum

point A and maximum point B in the eccentricity oscillation in

Fig. 13. The magnitude of the de-orbiting maneuver is chosen

as ΔV = 54 m/s, under the effect of which the perigee height

will be reduced to about 200 km.

Time histories of a, e, and hp for the original GTO, and dis-

posal orbits A and B without atmospheric drag are given in Figs.

14-16, respectively. Similar results to the first example are ob-

tained. The semi-major axis of disposal orbit A is about 2.6 km

smaller than that of disposal orbit B, as shown in the zoomed

lower half of Fig. 14. Disposal orbit A has a larger eccentricity

and a lower perigee. The maximum difference between their

minimum perigee heights is as large as 12 km, as shown in the

zoomed lower half of Fig. 16.

Next, we take into account atmospheric drag to see the effects

of different perigee heights on the orbital evolution and lifetime.

Time histories of a, e, and hp for the original GTO, and disposal
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Fig. 14. Time history of a for the original and disposal orbits without at-

mospheric drag with hp0 = 800 km.
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Fig. 15. Time history of e for the original and disposal orbits without at-

mospheric drag with hp0 = 800 km.
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Fig. 16. Time history of hp for the original and disposal orbits without

atmospheric drag with hp0 = 800 km.

orbits A and B with full perturbations are given in Figs. 17-19,

respectively.
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Fig. 17. Time history of a for the original and disposal orbits with hp0 =

800 km.
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Fig. 18. Time history of e for the original and disposal orbits with hp0 =

800 km.

It is seen that the lower perigee height of disposal orbit A in

the absence of atmospheric drag is retained in the full pertur-

bations model and, consequently, the decay rates of a and e of

disposal orbit A are much larger than that of disposal orbit B.

As a result, disposal orbit A reaches the condition of solar ap-

sidal resonance about 10 years earlier than disposal orbit B, as
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Fig. 19. Time history of hp for the original and disposal orbits with hp0 =

800 km.

shown in Fig. 19. The conclusion in Section 3. has thus been

verified in this example, as well.

Compared with the first example, the advantage of disposal

orbit A is more evident for the larger GTO in this example.

This can be attributed to the more significant luni-solar pertur-

bations for a larger GTO, which are utilized by performing the

de-orbiting maneuver at point A.

Unlike the first example, during the solar apsidal resonance

in this example, the perigee of disposal orbit A is lowered by

solar gravity continuously, whereas the perigee of disposal orbit

B was raised by solar gravity to a high altitude. As a result,

disposal orbit A re-enters Earth’s atmosphere about 15 years

earlier than disposal orbit B, showing clear advantages in orbital

lifetime. However, here one should keep in mind that the goal of

end-of-life disposal measures is to achieve a low perigee for the

disposal orbit, not a shorter orbital lifetime, which is impossible

to predict accurately due to the solar apsidal resonance.

5. Conclusions

Through analysis and simulations, it has been found and ver-

ified that, for GTOs, the minimum point in the eccentricity os-

cillation is the best timing for the retrograde active de-orbiting

maneuver performed at apogee. When the de-orbiting maneu-

ver is performed at this timing, the luni-solar perturbations can

be exploited to the most extent to enhance de-orbiting. Under

perturbations of Earth’s oblateness and luni-solar gravity, the re-

sulting optimal disposal orbit has the smallest semi-major axis,

largest eccentricity, and lowest perigee among all the disposal

orbits with different de-orbiting timings.

When the atmospheric drag is also taken into account, the

lowest perigee of the optimal disposal orbit is retained. Conse-

quently, the optimal disposal orbit has the largest decay rates of

the semi-major axis and eccentricity, and it encounters the so-

lar apsidal resonance earlier than all other disposal orbits. The

advantage of the optimal disposal orbit is more dominant for a

larger GTO. This is because a larger GTO is subjected to more

significant luni-solar perturbations, which is exactly the mech-

anism utilized by the de-orbiting timing. Since the solar apsidal

resonance, which is difficult to predict or manage, may have dif-

ferent effects on the orbital evolution, the optimal disposal orbit

with the lowest perigee does not necessarily have the shortest

orbital lifetime.
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