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    Eccentricity control in Low Earth Orbits is typically achieved by selecting the eccentricity vector close to the frozen 
eccentricity. In the vicinity of this stability point the long-periodic variations of the eccentricity vector are dominated by the 
Earth’s Potential and the Solar Radiation Pressure perturbations. It has been proven that the combined effect of these two 
perturbations introduces an eccentricity vector variation analogous to the field of velocities of a rigid body in planar 
motion1). This paper presents an innovative analysis of this interesting fact, where the known properties of this type of 
motion are applied to understanding the eccentricity behaviour and the design of control strategies. Planar rigid body 
motion is defined as the movement of a rigid body with respect to a fixed frame, where the free drift motion of the 
eccentricity vector can be represented as the trajectory of a point attached to the moving body, as seen from the fixed 
reference frame. Inherent properties of this type of motion, such as the preservation of distances within a rigid body, or the 
curves known as the moving and fixed centrodes for the Instant Centre of Rotation, have a direct application in the 
implementation of efficient eccentricity control techniques. Besides, the rigid body interpretation offers an elegant approach 
to the ever more challenging altitude control requirements of future missions. The work presented in this paper includes as 
well practical applications to the operational eccentricity control of real Earth observation spacecraft. 
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Nomenclature 
 

ICR :  Instant Centre of Rotation 
LEO :  Low Earth Orbit 
SRP :  Solar Radiation Pressure 

  
1.  Introduction 
 
  Efficient eccentricity control is the key to achieve tight 
altitude control, which is of paramount importance in Earth 
observation missions. The study presented in this paper is 
focused on eccentricity control of low Earth orbits, controlled 
in the vicinity of the Frozen Eccentricity point, which is 
located at an argument of latitude close to 90 degrees. The 
results presented in the paper cover therefore a wide range of 
the orbits typically used for Earth observation missions. 
However, the study can also be expanded to other orbit types, 
such as geostationary missions, or orbits with similar 
dynamics in the motion of the eccentricity vector. 
  In LEO the eccentricity vector is primarily affected by the 
Earth’s potential and the SRP perturbations. The Earth’s 
potential perturbation alone leads to a stable circular motion 
of the eccentricity vector at constant angular velocity around 
the frozen eccentricity point.6) 7) On the other hand, the 
combined effect of these two perturbations induces an 
eccentricity vector change rate analogous to the field of 
velocities of a rigid body in planar motion.1) The dynamic 
model used to derive this result is a first order, analytical 
approximation of the effect of the Earth’s potential and SRP 
forces using perturbations theory (Gauss planetary equations). 

All other perturbations have been neglected. Although some 
of them may have a visible effect, the accuracy achieved by 
this dynamic model is sufficient to properly model the 
behaviour of the eccentricity vector. For instance, the 
oscillating effect due to the solid Earth tides is clearly visible 
(but not significant) when comparing the results of this 
dynamic model against full-force numerical propagations. 
  The study is focused on the long-periodic perturbations in 
the eccentricity vector. Thus, the effect of oscillations that 
take place along an orbit revolution, or fluctuations due to the 
differences in Earth’s potential as the geodetic longitude of 
the equatorial nodes changes, are not considered in this study. 
Usually, the orbit control of Earth observation missions is 
implemented following a reference orbit, which includes these 
short-periodic variations. The comparison of the eccentricity 
vector against one such reference orbit reproduces the 
long-term behaviour that is tackled in this study. The 
graphical representation of these long-term variations in the 
eccentricity vector can be achieved in two ways: 
 

1. Average eccentricity over a given time interval, 
usually an orbit repeat cycle. For orbits without a 
repeat cycle, accurate results can also be obtained by 
selecting averaging intervals finishing at similar 
longitudes. 

2. Computation of the eccentricity vector with respect 
to a reference orbit, evaluated at equivalent geodetic 
locations (e.g. ascending node and same longitude). 
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  The plots that are shown throughout this paper have been 
generated using the second method, that is by evaluating the 
eccentricity vector at the ascending node against the reference. 
Furthermore, the mean eccentricity vector of the reference 
orbits is assumed to be the frozen eccentricity point, that is, at 
the stability point for the eccentricity vector taking into 
account only the Earth’s potential perturbation. 
  As shown in Ref. 1), the long-term behaviour of the 
eccentricity vector under the combined action of the Earth’s 
potential and the SRP perturbation can be modelled as the 
differential equation shown in Eq. 1, where the eccentricity is 
expressed as a vector relative to the frozen eccentricity (Eq. 3). 
This is the equation, which describes the motion of the 
eccentricity vector. The term due to the contribution of the 
SRP (Eq. 4) is a function of the orbit characteristics 
(Semilatus Rectum, angular momentum), the length of the 
eclipses and SRP force, which is modelled using the 
cannonball SRP model.2) The derivative of the eccentricity 
vector given by Eq. 1 represents the field of velocities of a 
planar rigid body motion at constant angular velocity, since Ω��⃗  
is a constant vector. The angular velocity is a function at a 
larger scale of the semi-major axis and the orbit 
inclination.1) 6) 7) Alternatively, the eccentricity vector change 
rate can also be expressed as a function of its position with 
respect to the ICR (Eq. 2) by means of vector �⃗�𝜌 defined in 
Eq. 5, with the ICR position given by Eq. 6. 
 

�̇�𝑟 = Ω��⃗ × 𝑟𝑟 + 𝑣𝑣𝑆𝑆𝑆𝑆𝑆𝑆               (1) 
 

�̇�𝑟 = Ω��⃗ × �⃗�𝜌                     (2) 
where: 

𝑟𝑟 = 𝑒𝑒 − 𝑒𝑒𝐹𝐹𝐹𝐹                    (3) 
 

𝑣𝑣𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑣𝑣𝑆𝑆𝑆𝑆𝑆𝑆(𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜,∆𝜃𝜃, �⃗�𝛾𝑆𝑆𝑆𝑆𝑆𝑆 , … )        (4) 
 

�⃗�𝜌 = 𝑟𝑟 − 𝑟𝑟𝐼𝐼𝐼𝐼𝑆𝑆                   (5) 
 

𝑟𝑟𝐼𝐼𝐼𝐼𝑆𝑆 = 𝛺𝛺��⃗ ×𝑣𝑣�⃗ 𝑆𝑆𝑆𝑆𝑆𝑆
𝛺𝛺2

                  (6) 

  If the position of the eccentricity vector with respect to the 
frozen eccentricity (Eq. 3) is large compared against the 
position of the ICR (Eq. 6) (e.g. eccentricity control carried 
out far away from the frozen eccentricity or 𝑟𝑟𝐼𝐼𝐼𝐼𝑆𝑆 small due to 
a small value of the SRP force) then the motion of the 
eccentricity vector approximates that of a pure rotation around 
the frozen eccentricity, as in the case when the Earth’s 
potential perturbation alone is considered. The cases of 
interest are those where 𝑟𝑟 and 𝑟𝑟𝐼𝐼𝐼𝐼𝑆𝑆 are comparable in size, 
as shown in Eq. 7. 
 

|𝑟𝑟|~ |𝑣𝑣�⃗ 𝑆𝑆𝑆𝑆𝑆𝑆|
Ω

                     (7) 

  During the preparation of this study, Ref 3) has been used 
as main reference for classic mechanics, in particular for the 
area of planar rigid body motion. However, the available 
literature on this topic is quite ample, see for example Ref 4) 

and Ref 5). 
 
2.  Planar rigid body motion 
 
  Planar rigid body motion is defined as the motion of a 
moving rigid body with respect to a fixed reference frame. 
The motion takes places within a plane, that is, all velocities 
are parallel to a given reference plane and the angular velocity 
vector of the moving body is always orthogonal to that 
reference plane. 
  Due to the intrinsic properties of a rigid body, such as the 
non-deformation of points contained in the rigid body, the 
motion can be described as that of a moving reference frame 
with respect to a fixed one. Therefore, the terms moving and 
fixed body and moving and fixed frame shall be used 
interchangeably. 

Fig 1.  Definition of the fixed and moving frames. 

 
𝑥𝑥 = 𝑥𝑥0 +  𝜉𝜉𝜉𝜉𝑜𝑜𝜉𝜉𝜃𝜃 − 𝜂𝜂𝜉𝜉𝑜𝑜𝜂𝜂𝜃𝜃            (8) 

 
𝑦𝑦 = 𝑦𝑦0 +  𝜉𝜉𝜉𝜉𝑜𝑜𝜂𝜂𝜃𝜃 + 𝜂𝜂𝜉𝜉𝑜𝑜𝜉𝜉𝜃𝜃            (9) 

 
  Eq. 8 and 9 provide the transformation function between 
points in the fixed frame (x, y) and points in the moving frame 
(ξ, η), as it can be deduced from Fig. 1. The fixed frame can 
be chosen to coincide with the (ex, ey) reference frame, with 
the x axis pointing in the direction of the line of nodes and the 
y axis perpendicular to the previous one and contained within 
the orbital plane. The advantage presented by this frame is 
that, given a change in the eccentricity vector due to an orbit 
control manoeuvre in the velocity direction ∆𝑒𝑒����⃗ , the argument 
of latitude at which the manoeuvre took place can be directly 
measured as the angles from the x axis. In the moving frame 
this is not trivial and angles are linked by means of Eq. 10 
where ϕ  represents the argument of latitude and the rest of 
the angles as defined in Fig. 1. However, the transformation 
function for angles from the moving to the fixed frame is 
relatively simple due to the constant angular velocity of the 
motion. 
 

𝜑𝜑 = 𝛼𝛼 + 𝜃𝜃 =  𝛼𝛼 + Ω𝑜𝑜 − 𝜃𝜃0            (10) 
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  The motion of the eccentricity vector can be understood as 
the trajectory followed in the fixed frame of a point attached 
to the moving frame. If the spacecraft eccentricity vector is 
unchanged (i.e. in free drift) the motion described by the 
eccentricity vector can be represented by just one single point 
in the moving frame. Should the spacecraft undergo an 
eccentricity change (e.g. an orbit control manoeuvre) the point 
representing the eccentricity motion changes to another one in 
the moving frame, and the trajectory described by the 
eccentricity vector, as seen from the fixed frame, also changes 
to a different one. Figure 2 illustrates the duality between 
points in the moving frame and curves described by the 
eccentricity vector in the fixed frame. Given an initial position 
for the eccentricity vector at t=t0, represented by point P in 
the moving frame, the eccentricity vector describes a 
trajectory in the fixed frame represented by curve p. At t=t1 an 
eccentricity manoeuvre is executed changing the eccentricity 
vector to point Q in the moving frame, as a consequence of 
that the motion of the eccentricity vector in the fixed frame is 
changed to a different trajectory, q. At t=t2 a second 
eccentricity manoeuvre is executed, which sets the 
eccentricity vector back to the original P point in the moving 
frame. This allows returning to the original p curve in the 
fixed frame at a later stage. 
 

 

Fig 2.  Duality between points and trajectories in the moving and fixed 
frames. 

 
  Perhaps the most evident property of rigid body motion is 
the preservation of distances within a rigid body, consequence 
of the non-deformation of a rigid body. Given a number of 
different points attached to the moving frame, each one 
representing the free drift eccentricity motion of the same 
spacecraft, the relative positions between them are preserved. 
The eccentricity vector evolution of each of these spacecraft 
follows a different trajectory, as seen from the fixed frame. 
However, since their trajectories are the consequence of the 
movement of the moving body with respect to the fixed frame, 
their relative distances (not the directions) are preserved at 
any given time. The spacecraft do not necessary need to be the 

same, as long as they share the same characteristics from the 
dynamic point of view of this problem: same orbit 
(semi-major axis, inclination, local time) and the SRP 
perturbation is the same (same SRP coefficient, same 
reference surface, etc.). Figure 3 illustrates this fact by 
depicting the eccentricity vector evolution resulting from three 
different full-force model propagations with different initial 
conditions on their eccentricity vectors. This characteristic is 
useful when planning the eccentricity control of Earth 
observation constellations. Given a constellation of N 
spacecraft, following the same ground track, with a delay in 
the overflight of a given geographical area dti (i=1,..,N-1), the 
altitude difference at which observations are taken by each 
one of the spacecraft can be minimized by selecting 
eccentricity vector offsets between them appropriately, such 
that their eccentricity vector is as close as possible to that of 
the other spacecraft when they overfly the geographical area 
in question. 

 

Fig 3.  Preservation of distances between eccentricity vectors. Full-force 
propagation. 

3.  Fixed and moving centrodes 
 
  One of the characteristics of planar rigid body motion is the 
existence of an Instant Centre of Rotation. At any given time 
the motion of the moving frame can be expressed as a pure 
rotation around this point.3) 4) 5) The ICR is a free point in the 
motion, i.e. it is not attached to neither the fixed nor the 
moving frame. An observer in each one of the frames will see 
a different trajectory described by the ICR. The loci of 
positions occupied by the ICR in the fixed and moving frames 
receive the names of fixed and moving centrodes respectively. 
At all times, both centrodes are tangent to each other at the 
position of the ICR, and the field of velocities of the motion is 
originated by the rolling without sliding of the moving 
centrode on the fixed centrode. These two curves completely 
determine a given planar rigid body motion. 3) 
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  The representation of the fixed and moving centrodes is of 
paramount importance in the design of the eccentricity control 
strategy of a mission. The curve can be obtained in the fixed 
frame by finding the point of zero velocity (ICR position1)) as 
a function of time, by solving Eq. 1 equal to zero. Defining a 
reference point in the moving frame and knowing its 
trajectory in the fixed frame (x0, y0), the moving centrode can 
be computed via the transformation function given by Eq. 8 
and 9. 

Fig 4.  Fixed and moving centrodes for a sun-synchronous spacecraft 
with local time of descending node at  6:00 (Sentinel-1). Time span 
represented: 1 year. 
 
  Figure 4 and 5 provide the representation of the fixed and 
moving centrodes for two different sun-synchronous 
spacecraft. Namely a dawn-dusk orbit (Sentinel-1), and an 
orbit with a local time of descending node at 10:30 
(Sentinel-2). The fixed centrodes of these two orbits are not 
symmetric with respect to the x axis, but slightly more 
elongated in the upper part, since both orbit inclinations are 
close to 98 degrees. The 10:30 local time of descending node 

orientation can be noticed in the shift of the fixed centrode of 
Fig. 5 towards the negative values of the x axis. The position 
of the moving centrodes within the moving plane is arbitrary 
and depends on the selection of a reference point and the 
initial orientation of the plane. Both fixed centrodes in Fig. 4 
and 5 start and finish at the same point after a time span of 
one year. This occurs due to the SRP force having the same 
magnitude and direction with respect to the orbital plane after 
one year. After the same time span, the moving centrode 
returns almost to the same starting point, this leads to a 
quasi-periodic motion of the eccentricity. 

Fig 5.  Fixed and moving centrodes for a sun-synchronous spacecraft 
with local time of descending node at 10:30 (Sentinel-2). Time span 
represented: 1 year. 

  Figure 6 depicts the fixed and moving centrodes of a 
non-sun-synchronous spacecraft in a polar orbit (CryoSat-2). 
Contrary to what happens in the case of a sun-synchronous 
spacecraft the fixed centrode does not close after a given time 
span. This is due to the fact that the apparent motion of the 
sun with respect to the equator, 1 year period and amplitude 
given by the obliquity of the ecliptic, is not synchronized with 
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the motion of the line of nodes, which takes in this case 
approximately 483 days to complete a revolution in local time. 
Therefore, after 1 year, the Sun is in a different geometry 
leading to a different value for 𝑣𝑣𝑆𝑆𝑆𝑆𝑆𝑆. 

 

Fig 6.  Fixed and moving centrodes for a non-sun-synchronous polar 
spacecraft (CryoSat-2). Time span represented: 3 years. 

 
4.  Configurations for convergence and divergence of the 
eccentricity vector 
 
  As already introduced in the previous section the fixed and 
moving centrodes determine completely a planar rigid body 
motion. The different scenarios that can be faced regarding 
eccentricity control are many, depending on the orbit, SRP 
force and of course the requirements of each particular 
mission. However, there are some general conclusions that 
can be drawn from the motion of the eccentricity vector. In 
many cases the objective shall be to keep the eccentricity 
deviation as small as possible, or within predefined bounds, 
with respect to a reference. This endorses the study of the 

monotonicity of the function describing the norm of the 
eccentricity vector, and the assessment in general terms of 
configurations that favour the convergence to (or the 
divergence from) the reference eccentricity.  

 
𝑢𝑢�⃗ 𝑟𝑟 ∙ �̇�𝑟 = 𝑢𝑢�⃗ 𝑟𝑟 ∙ (Ω��⃗ × �⃗�𝜌) = Ω��⃗ ∙ [𝑢𝑢�⃗ 𝑟𝑟 × (𝑟𝑟𝐼𝐼𝐼𝐼𝑆𝑆 − 𝑟𝑟)]    (11) 

 
where: 

𝑢𝑢�⃗ 𝑟𝑟 = 𝑟𝑟
𝑟𝑟
                       (12) 

 
�̇�𝑟 = Ω��⃗ ∙ (𝑢𝑢�⃗ 𝑟𝑟 × 𝑟𝑟𝐼𝐼𝐼𝐼𝑆𝑆)             (13) 

 
  As shown in Eq. 11, multiplying both sides of Eq. 2 by a 
unitary vector in the radial direction (Eq. 12) leads to the 
result expressed in Eq. 13. Since the angular velocity is a 
constant vector, the monotonicity of r depends on the cross 
product at the right hand side of Eq. 13. It can be inferred that 
the maximum values for the derivative of r are reached with a 
phase difference of 90 degrees between the unitary vector in 
the direction of the eccentricity vector and the ICR position. 
The ICR position depends on the orbit characteristics and the 
magnitude of the SRP force on the spacecraft. Therefore, for a 
given orbit and spacecraft this parameter cannot be influenced. 
The position of the eccentricity vector can be changed via 
orbit control manoeuvres. However, these manoeuvres are in 
general rather small, so that in most of the cases it will not be 
possible to relocate the eccentricity vector at any given phase 
with respect to the ICR. 
  An example of this behaviour can be seen in the free drift 
of the eccentricity vector in an orbit like the one proposed for 
the NASA/CNES mission SWOT. The orbit characteristics of 
this spacecraft are namely 890 km of altitude and a 77.6 
degrees inclination of the orbital plane. The variable local 
time of this orbit leads to a fixed centrode with a high 
circulation around the frozen eccentricity. Besides, this local 
time drift is in magnitude very similar to the angular velocity 
of the moving frame: Ω. This means that if at a given epoch 
𝑢𝑢�⃗ 𝑟𝑟 and 𝑟𝑟𝐼𝐼𝐼𝐼𝑆𝑆 are at a phase close to 90 degrees with respect to 
each other this configuration is kept for a long time period. As 
it can be seen in Fig 7 the evolution of the eccentricity vector 
starting from the frozen eccentricity leads to a divergence 
from this point. An eccentricity control law for this kind of 
orbit aiming at steering the eccentricity vector to the reference 
can be in some scenarios not the most adequate strategy. A 
possible solution to this problem could be to control the 
eccentricity vector following a circumference, and aiming 
orbit control manoeuvres not only at reducing r, but also at 
controlling the phase with respect to the ICR. 
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Fig 7.  Evolution of the eccentricity vector in a SWOT-like orbit. 

 
5.  Application to the inter-solstice eccentricity control of 
Sentinel-1. The γ trajectory 
 
Ref. 1) provides an outline of the eccentricity control strategy 
implemented for the Sentinel-1 mission. The fixed centrode of 
Sentinel-1 is similar to the one depicted in Fig. 6. During the 
summer and winter solstices the ICR is located at the top and 
bottom of the fixed centrode respectively. The time span in 
which the ICR is close to the summer solstice position is 
relatively long: 3 months, whereas the ICR stays close to the 
winter solstice position for about 1 month. This implies that 
the motion of the ICR is relatively slow for the time periods 
close to the solstices. On the other hand, during the transition 
period between solstices the ICR moves rapidly towards the 
position at the next solstice. The time that it takes to the ICR 
to translate from the top to the bottom (and vice versa) of the 
fixed centrode is approximately 4 months. 
  The eccentricity control requirements for Sentinel-1 are 
strict: the eccentricity vector has to be controlled inside a 
threshold of 8.4E-6 units of radius (blue circumference in Fig. 
8), which is equivalent to maintaining the altitude deviations 
due to eccentricity error lower than 60 metres with respect to 
the reference orbit. During the summer solstice the ICR is 
located outside this threshold. As a consequence of this, the 
eccentricity control during the summer solstice is performed 
close to the upper end of the control area in order to avoid a 
fast eccentricity vector drift.1) In September the ICR enters the 
control area on its way towards the bottom of the fixed 
centrode. The objective for the eccentricity control is to find a 
suitable point to set the eccentricity vector in order to follow 
the ICR on its way to the bottom of the fixed centrode. If the 
objective is to move naturally downwards, together with the 
ICR, notice that setting the eccentricity vector exactly at the 
ICR position is not a good strategy, since the ICR is a zero 

velocity point. The incentive to find a satisfactory solution to 
this problem is the existence in planar rigid body motion of a 
point of equipollent velocity3): at any given time there is a 
point of the moving rigid body with the same velocity as the 
ICR translation velocity. 
  Eq. 1 and 2 have been integrated numerically in order to 
find initial conditions for a trajectory solution suitable for the 
transition period between solstices. The solution has been 
called γ-trajectory, named after the shape described by the 
eccentricity vector as seen from the fixed frame. The 
γ-trajectory is acquired in September at the top right of the 
eccentricity control area, close to the area where the 
eccentricity control is performed during the summer period. 
Once acquired, the eccentricity vector moves naturally 
towards the bottom of the eccentricity control area and returns 
automatically in April to the top left of the control area, where 
the summer solstice control of the following season can be 
started. In Figure 8 the eccentricity control carried out 
operationally for the Sentinel-1 mission has been depicted for 
the period September 2016 till April 2017, following the 
γ-trajectory. Small eccentricity corrections need to be done in 
order to compensate for: weekly in-plane orbit control 
manoeuvres, in-plane components of out-of-plane orbit 
control manoeuvres, collision avoidance manoeuvres (notice 
the effect of a collision avoidance manoeuvre in the large, 
one-time deviation from the nominal trajectory at the bottom 
of Fig 8), imperfections in the SRP modelling and higher 
order effects in the eccentricity motion. However, the 
γ-trajectory enables an almost effortless eccentricity control 
during the period between one summer solstice and the next. 

 

Fig 8.  Sentinel-1 eccentricity vector following the γ-trajectory for the 
time period from September 2016 till April 2017. 
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6.  Conclusion 
 
  Understanding the behaviour of the eccentricity vector 
under the effect of its main perturbing forces, the Earth’s 
potential and the SRP, is fundamental for the development of 
efficient eccentricity control strategies in LEO missions. It 
allows the reduction of costs associated to the eccentricity 
correction, but also enables the compliance of even more 
challenging eccentricity control requirements. 
  The work presented in this paper introduced known 
elements of planar rigid body kinematics, which are of direct 
application to the eccentricity control of LEO spacecraft. The 
behaviour of the eccentricity vector has been studied for a 
wide range of LEO missions, and the examples presented are 
considered to be representative of the ideas intended to be 
transmitted. The approach presented in this paper can be taken 
as a recommendation for the analysis of the eccentricity 
control of other spacecraft, emphasizing the importance of 
studying the motion in both, the fixed and the moving frame, 
as well as the representation of the fixed and moving 
centrodes in the design of eccentricity control strategies for 
LEO spacecraft. 
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