
Optimised GTO-GEO Transfer Using Low-Thrust Propulsion

By Marilena DI CARLO,1) Massimiliano VASILE,1) and Stephen KEMBLE2)

1)Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, United Kingdom
2)Airbus Defence and Space, Stevenage, United Kingdom

(Received April 17th, 2017)

This paper proposes a global optimisation of the low-thrust transfers from GTO to GEO incorporating different types of perturba-
tion. The trajectory transcription method makes use of an analytical solution of the perturbed Keplerian motion together with a simple
direct collocation of the thrust arcs. The paper will show that low-thrust GTO to GEO transfers exhibit a number of local minima with
a small but not negligible difference. The paper presents different strategies to explore the set of local minima and shows a number of
locally optimal solutions.
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1. Introduction

In this work an optimal electric propulsion transfer from
Geostationary Transfer Orbit (GTO) to Geostationary Equato-
rial Orbit (GEO) is studied. Electric propulsion has been used
since mid-1997 for the station keeping of Geostationary satel-
lites.8) More recently, in March 2015, two Boeing all-electric
satellites performed for the first time an electric-propelled orbit
raising to the Geostationary Equatorial Orbit∗. Low-thrust tra-
jectories are indeed an efficient alternative to chemically pro-
pelled ones, since they have the potential to provide increased
mass delivered to destination and smaller launch vehicles.15)

Several works in the literature have studied methods to op-
timise the transfer of spacecraft from GTO to GEO. Kluever6)

uses a direct optimisation method to solve the GTO-GEO trans-
fer. The weights to three optimal feedback control laws (for
the variation of semimajor axis, eccentricity and inclination)
are obtained as solution of a non-linear programming problem
(NLP) in which the objective is the minimisation of the time of
flight. The trajectory is propagated using orbital averaging and
including perturbations from Earth shadows, oblateness and so-
lar cell degradation. The same author also studied the GTO-
GEO transfer with variable specific impulse.7) In this case the
costates time histories are parametrised by linear interpolation
and the design variables of the NLP are the nodal values of the
costates. The objective is the minimisation of the fuel mass and
a local optimisation method is used to solve the problem. Gra-
ham studied a direct method transcribed using GPOPS-II and
solved using IPOPT, with analytical first and second derivatives
computed by means of the software ADiGator.5) These meth-
ods, and the methods traditionally used to optimise low-thrust
trajectories, are local methods. As such, they are able to find a
solution, not the best solution.2, 13) Moreover, the NLP meth-
ods require an initial guess that is not only hard to find but
that also generally causes the optimiser to converge to an op-
timal trajectory close to the initial guess (that is rarely close
to the global optimum).2) To overcome the limitation of local
optimisation methods, effective global optimisation techniques

∗ http://boeing.mediaroom.com/2015-09-10-Boeing-World-s-First-All-
Electric-Propulsion-Satellite-Begins-Operations

are required. Global optimisation of low-thrust trajectory in the
literature mainly focuses on the optimisation of interplanetary
transfers.2, 9, 16)

In this work a global optimisation technique is applied to the
GTO-GEO low-thrust transfer. The objective is the minimisa-
tion of the fuel consumption for the GTO-GEO transfer in a
given time of flight. During the transfer the thrust is applied on
two or four thrust arcs, two of which are centred at the perigee
and apogee of the transfer orbits. The control parameters are the
length of the thrust arcs and the elevation angle of the low-thrust
vector. A population-based stochastic global optimisation algo-
rithm, Multi-Population Adaptive Inflationary Differential Evo-
lution Algorithm (MP-AIDEA),3) is used to globally explore
the search space, and no user-defined initial guess is required to
start the optimisation process. The model used for the motion
of the spacecraft is an analytical propagator,17) which speeds
up the optimisation process with respect to the use of a numer-
ical one. The analytical propagator is based on non-singular
equinoctial elements and includes low-thrust acceleration and
perturbations due to Earth’s zonal harmonics J2, J3, J4, J5, at-
mospheric drag and third body gravitational perturbation from
the Sun. Preliminary results show that many local minima ex-
ist for the solution of the minimum fuel low-thrust GTO-GEO
problem. The paper starts with the description of the problem
and of MP-AIDEA in Section 2.. The optimal transfer is studied
with no perturbations in Section 3. and with the perturbations
due to Earth’s oblateness, drag and Sun gravitational attraction
in Section 4.. Section 5. concludes the paper.

2. The GTO-GEO global optimisation problem

This paper is concerned with the global optimisation of trans-
fers from GTO to GEO with initial and final orbital parameters
defined in Table 1. In Table 1, a, e, i,Ω, ω are the semimajor

Table 1. GTO and GEO orbital elements.
a [km] e i [deg] Ω [deg] ω [deg]

GTO 24505 0.725 7 0 0
GEO 42165 0 0 - -

axis, eccentricity, inclination, right ascension of the ascend-
ing node and argument of the perigee. The nominal time of



flight for the transfer is ToF = 225 days. The spacecraft has
initial mass m0 = 2000 kg and engine characterised by thrust
T = 0.5 N and specific impulse Isp = 2000 s. The thrust vector
is defined by its magnitude ε and by its azimuth and elevation
angles, α and β, in a radial-circumferential-normal reference
frame (RCN):

aR = ε cos β sinα, aC = ε cos β cosα, aN = ε sin β (1)

Initially the thrust is applied along two arcs per orbital revolu-
tion, at the perigee and apogee of each orbit.17) In the absence
of perturbations and for the initial orbital elements given in Ta-
ble 1, arcs centered at perigee and apogee represents ideal posi-
tions along the orbit to change semimajor axis, eccentricity and
inclination. Considering the Gauss’ equations expressing the
time variation of semimajor axis and eccentricity due to pertur-
bations,1) it is possible to define the point of the orbit providing
the maximum rate of change of a and e by computing:

∂

∂θ

da
dt

= 0,
∂

∂θ

de
dt

= 0, (2)

where θ is the true anomaly. The previous equations give
θa = 0 for the maximum rate of change of the semimajor axis
and θe = π for the maximum rate of change of the eccentric-
ity, showing indeed that thrusting arcs centered at perigee and
apogee provide the maximum instantaneous variation of semi-
major axis and eccentricity. Following a similar analysis, the
point of the orbit providing the maximum rate of change of i is
at true anomaly θi given by:10)

sin (θi + ω) = −e sinω (3)

Fig. 1 shows θi as a function of ω ranging from 0 to 2π. Due to
the arcsin term in Eq.(3), the optimal position to change i is at θi

and θi + π. Fig. 1 shows that when ω = 0 and no perturbations
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Fig. 1. θi providing the maximum rate of change of i as a function of ω
and for different values of e.

causes ω to change, the perigee and apogee centered thrust arcs
are ideal positions to change the inclination. However when ω
changes or its initial value is not 0 or π, the positions along the
orbit providing the maximum instantaneous rate of change of
inclination are no more at perigee and apogee. For example,
by considering the Gauss’ equation for the inclination, in the
limit case in which ω = 90 deg and ω = 270 deg, thrust ap-
plied at θ = 0 and θ = 180 deg results in zero variation of the
inclination. In these cases two additional thrust arcs are added,
for each revolution. This will be explained in Section 4.. For
the case without perturbation and with initial orbital elements
defined in Table 1, two thrust arcs are considered. The length

of the perigee arc is defined by the angle ∆Lp and the length
of the apogee arc is ∆La. The parameters defining the prob-
lem are ∆Lp and ∆La and the elevation angle at perigee and
apogee, βp and βa. The azimuth angle on the two thrust arcs
is not optimised as it follows one of the following four strate-
gies: (1) Tangential thrust on both perigee and apogee thrust
arc; (2) Tangential thrust at perigee, α = 0 at apogee;8) (3)
α = 0 at perigee, tangential thrust at apogee; (4) α = 0 on both
perigee and apogee thrust arc.8) The control parameters are dis-
cretised during the transfer by considering four nodes to model
the variation of ∆Lp, ∆La, βp and βa from t = 0 to t = ToF. A
linear interpolation is then used to define the value of the con-
trol parameters at any time during the transfer. The vector of
parameters to optimise is defined, therefore, by 16 variables:

x = [∆Lp1 ∆Lp2 ∆Lp3 ∆Lp4 ∆La1 ∆La2 ∆La3 ∆La4

βp1 βp2 βp3 βp4 βa1 βa2 βa3 βa4]T (4)

∆Lpi,∆Lai, βpi, βai represents the value of the control parame-
ters at node i. The state of the spacecraft is propagated using
an averaged analytic propagator based on a first-order expan-
sion of the perturbed equations of motion.17) The propagation
is realised using non-singular equinoctial elements. The optimi-
sation problem consists in the minimisation of the ∆V required
to realise to the transfer while constraining the final orbital el-
ements at the end of the transfer to coincide with those of the
GEO. The nonlinear constrained optimisation problem can be
formulated as:

min. f (x) = ∆V
s.t. g j(x) ≤ 0 j = 1, . . . ,m

hk (x) = 0 k = 1, . . . , l

xL
i ≤ xi ≤ xU

i i = 1, . . . , n

(5)

The equality constraints h (x) are:

h1 (x) = a (ToF) [1 − e (ToF)] − aGEO

h2 (x) = a (ToF) [1 + e (ToF)] − aGEO

h3 (x) = 10
[ √

Q1(ToF)2 + Q2(ToF)2 − tan
( iGEO

2

)] (6)

where a(ToF), e(ToF) are the semimajor axis and eccentricity
at the end of the transfer and Q1 (ToF) and Q2 (ToF) are the
third and fourth equinocital elements at the end of the transfer.
aGEO and iGEO are the semimajor axis and inclination of the
target GEO (Table 1). The constraint on the final inclination
is multiplied by 10 in order to match more precisely the final
inclination of the GEO. The disequality constraints g (x) are:

g1 (x) = R⊕ −min [a(t)(1 − e(t))]

g2 (x) = max
(
‖∆Lp(t)‖ + ‖∆La(t)‖

)
− 2π

(7)

They impose that the minimum perigee radius during the trans-
fer is higher than the Earth’s radius, R⊕, and that the maximum
sum of perigee and apogee thrust arc length is lower than 2π.
The lower and upper boundaries vectors are:

xL
i = −2π, xU

i = 2π, i = 1, . . . , 8

xL
i = −π/2, xU

i = π/2, i = 9, . . . , 16
(8)



The stochastic global optimisation algorithm used in this
study, MP-AIDEA, is not formulated to explicitly manage con-
straints. The constrained problem presented in Eq. (5) is there-
fore transformed into an unconstrained problem, applying a
penalty method. The fitness function is expressed as a com-
bination of the objective function and penalty constraints:

f ′ (x) = f (x) + w1
[
(g (x) > 0) · |g (x) |

]2
+ w2|h (x) |2 (9)

where w1 and w2 are appropriate weight coefficients. MP-
AIDEA is a population-based evolutionary algorithm for solv-
ing single-objective global optimisation problems over con-
tinuous spaces. It combines adaptive Differential Evolution
(DE),11) with the restarting procedure of Monotonic Basin Hop-
ping (MBH).14) MP-AIDEA is able to automatically adapt the
parameters of the DE and MBH during the optimisation. At
the end of the DE a local search is run from the best individ-
ual of each population, and the local search algorithm solves
the problem defined in Eq. 5. Using the restarting mecha-
nism of MBH in combination with the DE, the populations are
able to move, in a funnel structure, from one local minima to
another, until the global minimum of the problem is located.
MP-AIDEA implements also an approach to avoid multiple de-
tection of the same local minima, by restarting the population in
the entire work space when it falls within the basin of attraction
of an already detected minimum. MP-AIDEA collects in an
archive the local minima found during the exploration. It gives
therefore the possibility to evaluate different possible solution
to the GTO-GEO transfer problem, each one corresponding to
a different local minimum.

3. GTO-GEO transfer without perturbations

In this section the optimisation of the GTO-GEO transfer,
without perturbations, is presented. At first, local solutions to
the problem are found using different initial guesses, based on
a pre-defined structure for the initial guess vector x0.17) The
NLP problem presented in Eq. (5) is solved using MATLAB
fmincon-sqp. MP-AIDEA is then used to globally explore the
whole search space, using the fitness function defined in Eq.
(9). For the local optimisation method, the vector of initial
guess is:

x0 = [∆Lp1,0 ∆Lp2,0 ∆Lp3,0 ∆Lp4,0 ∆La1,0 ∆La2,0 ∆La3,0

∆La4,0 βp1,0 βp2,0 βp3,0 βp4,0 βa1,0 βa2,0 βa3,0 βa4,0]T

(10)

The initial guess is constructed using values of ∆Lai linearly
spaced from 0 to ∆La4,0:

∆Lai,0 =
∆La4,0

3
(i − 1), i = 1, . . . , 4 (11)

The initial guess of the length of the perigee thrust arcs corre-
sponding to the first three nodes is:

∆Lp1,0 = ∆Lp2,0 = ∆Lp3,0 = 0 (12)

while ∆Lp4,0 , 0. The initial guess for the elevation angles is:

βpi,0 = βai,0 = 0, i = 1, . . . , 4 (13)

Using Eq. (11), (12) and (13), the vector of initial guess x0 of
Eq. (14) can be defined using only two parameters, ∆Lp4,0 and
∆La4,0:

x0 = [0 0 0 −∆Lp4,0 0
∆La4,0

3
2∆La4,0

3
∆La4,0 0 0 0 0 0 0 0 0]T

(14)
∆Li < 0 correspond to thrust applied in the negative circum-
ferential direction. Different values of |∆Lp4,0| and |∆La4,0| have
been considered, in the range [0, 180] deg, at interval of 10 de-
grees, resulting in a total of 100 local optimisation problems for
the 4 thrusting strategies defined in Section 2.. The results are
shown in Fig. 2 to Fig. 5. Empty spaces in the plot represent
conditions where the problem did not converge to a feasible so-
lution using that initial guess. Results show that in all the
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Fig. 2. ∆V for different initial guesses of ∆La4,0 and ∆Lp4,0, Strategy 1.
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Fig. 3. ∆V for different initial guesses of ∆La4,0 and ∆Lp4,0, Strategy 2.

cases higher ∆V solutions are obtained at low values of ∆La4,0.
For all the points that converged, the solutions are all different
from each other, showing that the problem is characterised by a
high number of local minima. The results shown in Fig. 2 to 5
are obtained using an initial guess for the elevation angle equal
to zero (Eq. 13). The next step is to solve a local optimisa-
tion problem using as initial guess for ∆Lp4 and ∆La4 the initial
guess of the solution corresponding to the lower ∆V in Fig. 2 to
5, and with values of the initial guesses of the elevation angles
different from zero. The initial guess vector is now expressed
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Fig. 5. ∆V for different initial guesses of ∆La4,0 and ∆Lp4,0, Strategy 4.

as:

x0 = [0 0 0 − ∆Lmin∆V
p4,0 0

Lmin∆V
a4,0

3

2∆Lmin∆V
a4,0

3
∆Lmin∆V

a4,0

βp0 βp0 βp0 βp0
βa0

2
βa0 βa0

βa0

2
]T

(15)

where ∆Lmin∆V
p4,0 and ∆Lmin∆V

a4,0 are the parameters corresponding
to the minimum ∆V solution. Fig. 6 to 9 show the results when
changing βp0 and βa0 from 0 to π/2. Results show that the

∆ V [km/s] - Tang Peri Apo

β
a4,0

 [deg]

0 20 40 60 80

β
p
4
,0

 [
d
e
g
]

0

10

20

30

40

50

60

70

80

90

1.62

1.63

1.64

1.65

1.66

1.67

1.68

1.69
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effect of the initial guess of the elevation angle on the final so-
lution is limited with respect to the effect of the length of the
perigee and apogee thrust arcs. The minimum ∆V solutions are
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Table 2. Minimum ∆V solution for GTO-GEO transfer with no perturba-
tions.

Strategy 1 2 3 4
∆V [km/s] 1.6172 1.5645 1.6170 1.5687

summarised in Table 2 and show that the best results are given
by Strategy 2 and Strategy 4.

The results presented above are obtained solving a local min-
imisation problem and using a predefined specific expression
for the initial guess. Each solution is therefore likely to be a
local minima of the problem and might be strongly dependent
on the choice of the initial guess. In the following, the results
found using the global optimisation algorithm MP-AIDEA are
presented. The local search in MP-AIDEA is performed with



MATLAB fmincon-sqp. MP-AIDEA is run with 1 population
of 16 individuals (dimension of the problem) and for a total
of 1.5 105 function evaluations; 25 independent runs are con-
sidered in order to obtain statistically significant results. The
results are shown in Fig. 10 to Fig. 13, for the four considered
thrusting strategies. For each strategy, the minimum ∆V for
each one of the 25 runs of MP-AIDEA is represented. Three
possible values of w1 and w2 are considered: 1, 10 and 100.
The results of the local optimisation method (Table 2) are rep-
resented by the black lines. Results show that the local optimi-
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sation method outperforms MP-AIDEA when the initial guess
vector is close to the solution of the problem (Fig. 10) while
Fig. 13 shows a case in which the global search capabilites of
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MP-AIDEA are able to locate better solutions than those found
by the local optimisation method. The minimum, maximum
and mean values of the 25 runs, for each strategy, are reported
in Table 3. The minimum ∆V solutions are obtained using Strat-

Table 3. ∆V [km/s] - Results from MP-AIDEA.

w Min Mean Max

St
ra

t.
1 1 1.6558 1.7263 1.8497

10 1.6473 1.7129 1.8683
100 1.7046 1.7580 1.8551

St
ra

t.
2 1 1.5644 1.5668 1.5728

10 1.5646 1.5673 1.5746
100 1.5648 1.5685 1.5763

St
ra

t.
3 1 1.6626 1.7144 1.8424

10 1.6747 1.7342 1.8223
100 1.6833 1.7538 1.8715

St
ra

t.
4 1 1.5646 1.5665 1.5691

10 1.5650 1.5675 1.5758
100 1.5645 1.5673 1.5710

egy 2 and w = 1 and Strategy 4 and w = 100 (results in bold
in Table 3). The variation of orbital elements and the control
parameters during the transfer for these two cases are shown in
Fig. 14. rp and ra in Fig. 14 are the perigee and apogee ra-
dius. Fig. 15 shows the x-y view of the trajectory for Strategy
4. To make the plot more readable, only few orbital revolutions
are represented. The thrust arcs are represented by thick black
lines.

Each one of the 25 runs of MP-AIDEA provides different
solutions to the GTO-GEO transfer problem. As an example,
Fig. 16 shows the solutions characterised by ∆V < 1.7 km/s
found by a single run of MP-AIDEA using Strategy 4 and w =

100. Each solution correspond to different control history and
orbital elements variation to realise the GTO-GEO transfer. In
particular in this case 233 solutions are found with ∆V < 1.7
km/s, among which 120 with ∆V < 1.65 km/s and 21 with ∆V <

1.6 km/s. The orbital elements variation and control history of
the 21 solutions with ∆V < 1.6 km/s are shown in Fig. 17 and
18. A single run of MP-AIDEA can therefore find many local
optima and many possible solutions to the problem.

4. GTO-GEO transfer with perturbations

The results presented in the previous section do not consider
perturbations to the motion of the spacecraft. In this section the
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perturbations due to Earth’s potential, drag and third body are
taken into account. Only strategy 4, that together with strategy
2 provided the best results in the case without perturbations, is
considered.

4.1. Earth’s gravitation perturbations
This section starts presenting the results that justify the need

to add two thrust arcs to the control profile when perturbations
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Fig. 16. MP-AIDEA: solutions with ∆V <1.7 km/s using Strategy 4.
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Fig. 17. Orbital elements variation of the 21 solutions of MP-AIDEA
characterised by ∆V < 1.6 km/s - Strategy 4.
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Fig. 18. Control history of the 21 solutions of MP-AIDEA characterised
by ∆V < 1.6 km/s - Strategy 4.

that change ω are present, as anticipated in Section 2.. Let us
consider the minimum ∆V solution of Section 3., given by MP-
AIDEA using strategy 4 and ω0 = 0. This solution is used as
initial guess for the local optimisation of the GTO-GEO trans-
fer with the addition of the perturbation due to second zonal
harmonic of the aspheric Earth’s potential, J2. The orbital el-
ements and control history are shown in Fig. 19 and 20. The
cost of the transfer is ∆V = 1.7347 km/s. Fig. 19 shows that
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Fig. 19. Orbital elements variation, J2 and two thrust arcs.
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there is an increase of inclination during the transfer from t =

25 days to t = 68 days. The reason for this behavior is explained
in the following. At t = 25 days the argument of perigee (that
changes both because of J2 and because of the low-thrust accel-
eration) goes from ω < π/2 to ω > π/2. The Gauss’ equation
for the time variation of the inclination depends on the term
sin β cos(ω + θ); this means that in order to have a continuous
reduction of inclination with thrust applied on perigee (θ = 0)
and apogee (θ = π) centered thrust arcs, βa should be βa > 0
when ω < π/2 and βa < 0 when ω > π/2. Therefore an instan-
tanoues variation in the sign of βa should take place at t = 25
days. Due to the type of control parametrisation and number of
nodes used, the variation in the sign of βa takes place however
at t= 68 days, rather than 25 days (Fig. 20). This explains the
increase in inclination from 25 to 68 days from the start of the
transfer. At t =68 days the inclination starts to decrease again.
This behaviour shows that the control parametrisation used in
the previous section requires some changes when considering
the perturbation due to J2, if period of increase of inclination are
to be avoided during the transfer. In particular, since ω changes
during the transfer when perturbations are considered, the op-
timal point for the variation of i continuously changes during
the transfer (Eq. 3). In order to allow for a reduction of incli-

nation at any value of ω, two additional thrust arcs are added
to the control parametrisation. They are characterised by length
∆Lpa (thrust arc between perigee and apogee) and ∆Lap (thrust
arc between apogee and perigee). The angular distance between
any two arcs is constrained to be:

2π − ∆Lp − ∆Lpa − ∆La − ∆Lap

4
(16)

The elevation angles on the two additional arcs is chosen such
as to always cause a decrease of inclination, according to:

βap = βpa = −
π

2
sgn (cos(ω + θ)) (17)

The control parameters are now 24, instead of 16:

x = [∆Lp1 ∆Lp2 ∆Lp3 ∆Lp4 ∆La1 ∆La2 ∆La3 ∆La4

βp1 βp2 βp3 βp4 βa1 βa2 βa3 βa4 ∆Lpa1 ∆Lpa2

∆Lpa3 ∆Lpa4 ∆Lap1 ∆Lap2 ∆Lap3 ∆Lap4]T
(18)

The disequality constraint g2(x) in Eq. 7 is now formulated as:

g2 (x) = max
(
‖∆Lp(t)‖ + ‖∆La(t)‖‖∆Lpa(t)‖ + ‖∆Lap(t)‖

)
−2π

(19)
This new parametrisation of the control is used to solve the
GTO-GEO transfer with perturbations due to J2. As in the pre-
vious section, at first a local optimisation process is considered.
The initial guess for ∆Lp, ∆La, βp and βa are the results of the
best solution of the previous section. For ∆Lpa and ∆Lap the
value of their initial guess is taken in the range 0 to 180 deg.
The results of the local optimisation of the problem, starting
from different initial guess for ∆Lpa and ∆Lap, are shown in
Fig. 21. The minimum ∆V solution is represented in Fig. 22
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Fig. 21. ∆V for transfer with J2 perturbations for different values of the
initial guess of ∆Lap and ∆Lpa, ω0 = 0

and Fig. 23. The cost of the transfer is ∆V = 1.6848 km/s,
lower than the cost of 1.7347 km/s found with two thrust arcs,
and the inclination decreases during the entire transfer. Results
show that the additional thrust arcs have non-negligible semi-
amplitude only in the last phase of the transfer (t > 150 days)
when indeed the value of ω approaches 90 deg, and therefore
it is not efficient to change the inclination in the vicinity of the
perigee and apogee of the orbit (Fig. 23). The solution has
been validated by comparing it to the results of a numerical in-
tegration of the equations of motion using the control profile
defined in Fig. 23. The comparison between numerical and
analytic integration is shown in Fig. 24 and shows the good
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Fig. 22. Variation of orbital elements from local optimisation: J2, 4 thrust
arcs, ω0 = 0.

Time [days]

0 50 100 150 200

∆
 L

p
 [

d
e

g
]

-20

0

20

Time [days]

0 50 100 150 200

∆
 L

a
 [
d

e
g

]

40

60

80

Time [days]

0 50 100 150 200

β
p
 [

d
e

g
]

-50

0

50

Time [days]

0 50 100 150 200

β
a
 [

d
e

g
]

0

20

40

Time [days]

0 50 100 150 200

∆
 L

a
p
 [

d
e

g
]

-50

0

50

Time [days]

0 50 100 150 200

∆
 L

p
a
 [

d
e

g
]

-20

0

20

Fig. 23. Control history from local optimisation:J2, 4 thrust arcs, ω0 = 0.

Time [days]

0 50 100 150 200

a
 [

k
m

]

×10
4

2

3

4

5 Numerical Propagation

Averaged Analytical Propagation

Time [days]

0 50 100 150 200

e

0

0.5

1

Time [days]

0 100 200

i 
[d

e
g

]

0

2

4

6

8

Time [days]

0 100 200

Ω
 [

d
e

g
]

0

100

200

300

400

Time [days]

0 100 200

ω
 [

d
e

g
]

0

50

100

Fig. 24. Numerical and averaged analytical propagation.

agreement between the two models. The optimal solution to the
GTO-GEO transfer with J2 perturbation is sought also using
MP-AIDEA. In order to facilitate convergence to the feasible
region, the search space is reduced with respect to the one pre-
sented in Eq. (8). The new boundaries for the search space
are ∆Lpi ∈ [−π/4, π/4], ∆Lai ∈ [0, π/2], βpi, βai ∈ [−π/2, π/2]
and ∆Lpai,∆Lapi ∈ [−π/4, π/4]. MP-AIDEA is now run with 1
population of 24 individuals. The cost of the feasible solutions
found by one run of MP-AIDEA are shown in Fig. 25. By com-

paring Fig. 25 with Fig. 16 it is possible to see that the number
of solutions provided by a run of MP-AIDEA is now reduced
with respect to the case without perturbations. The minimum
cost solution found by MP-AIDEA is ∆V = 1.6588 km/s, lower
than the value of 1.6848 km/s found by the local optimisation
(black line in Fig. 25). With the additions of perturbations, the
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Fig. 25. ∆V of feasible solution found by MP-AIDEA for GTO-GEO
transfer with J2 perturbations and ω0 = 0.

initial value of ω of the GTO plays an important role. There-
fore the analysis presented above, valid for ω0 = 0 is realised
also for ω0 = 178 deg, the initial value of ω for the GTO of
the Ariane launcher †. Fig. 26 shows the results of the so-
lution of several local optimisation problem with initial guess
given by the solution without J2 and ω0 = 0 and using values
for the initial guess of ∆Lpa and ∆Lap in the range from 0 to π.
The minimum ∆V solution found by local optimisation is rep-
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Fig. 26. ∆V for transfer with J2 perturbations for different values of the
initial guess of ∆Lap and ∆Lpa, ω0 = 178 deg.

resented in Fig. 27 and 28 and is characterised by ∆V = 1.6668
km/s. The cost of the feasible solutions found by one run of
MP-AIDEA are shown in Fig. 29, together with a black line
representing the minimum ∆V solution found by local optimi-
sation. The orbital elements variation of the five solutions with
lower ∆V are shown in Fig. 30. The minimum cost solution
found by MP-AIDEA has ∆V = 1.6452 km/s, lower than the
solution of the local optimisation method. The minimum ∆V

† http://www.arianespace.com/wp-content/uploads/2011/07/Ariane5 Users-
Manual October2016.pdf
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transfer with J2 perturbations and ω0 = 178 deg.

solution is analysed in more detail to study the effect of addi-
tional perturbations: J3, J4 and J5. No significant difference in
∆V is evident when considering these additional perturbations
and the profile of the variation of the orbital elements remains
approximately the same. In more detail, the ∆V and orbital ele-
ments at the end of the transfers are reported in Table 4.
4.2. Atmospheric drag

In this subsection the effect of the atmospheric drag is anal-
ysed. The considered atmospheric model is a static exponential
model with zero density of the atmosphere at altitude higher
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Fig. 30. Orbital element variation of the 5 best solutions found by MP-
AIDEA for GTO-GEO transfer with J2 perturbations and ω0 = 178 deg.

Table 4. Final orbital element and ∆V - Effect of the Earth’s perturbation

J2 J2, J3 J2, J3, J4 J2, J3, J4, J5

a [km] 42166.42 42166.34 42166.32 42166.32
e 1.41e-5 1.62e-5 1.68e-5 1.67e-5
i [deg] 0.03 0.03 0.03 0.03
∆V [km/s] 1.6452 1.6452 1.6452 1.6452

than 4000 km.4, 12) No significant difference is measured when
considering the perturbation due to the atmospheric drag for
area to mass ratio of the spacecraft with typical values of 10−2

m2/kg, as shown in Table 5. Table 5 shows the final orbital el-
ements considering the optimal control profile defined in Sub-
section 4.1. and J2, J3, J4, J5 and the drag perturbation. Results

Table 5. Final orbital elements and ∆V- Effect of the drag perturbation

Parameter J2, J3, J4, J5 J2, J3, J4, J5, drag
a [km] 42166.42 42164.77
e 1.41e-5 1.44e-5
i [deg] 0.03 0.03
∆V [km/s] 1.6452 1.6452

show that, as expected, when using the control profile computed
without the atmospheric drag, the addition of the atmospheric
drag causes a reduction of the final semimajor axis. The re-
duction is however negligible and it is possible to state that the
effect of the atmospheric drag is not significant for the consid-
ered GTO-GEO transfer.
4.3. Sun’s gravitational perturbation

For the analysis of the perturbation due to the Sun, the posi-
tion of the Sun with respect to the orientation of the GTO orbit,
and therefore the initial date of the transfer, has to be taken into
account. It is assumed that the spacecraft is injected into the
GTO by an Ariane launch from Kourou. Fig. 31 shows the
right ascension of the GTO orbit at the opening and closing of
the launch windows for each day of the year.12) The GTO-GEO
transfer with J2 and Sun’s perturbation is analysed at four dif-
ferent initial dates using different values of Ω for the GTO orbit,
corresponding to the opening time of the launch windows (Ta-
ble 6). The feasible results of a single run of MP-AIDEA for

Table 6. Initial Ω at different initial dates for the transfer
Date 21 March 21 June 21 Sept. 21 Dec.
Ω0 [deg] 332.05 55.23 148.92 240.87
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different initial dates are shown in Fig. 32 . The black line rep-
resent the result of MP-AIDEA without the perturbation from
the Sun (∆V = 1.6452 km/s). The final orbital elements at the
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Fig. 32. ∆V of the solution found by MP-AIDEA for transfer with J2 and
Sun perturbation.

end of the transfer and the ∆V of the best solution found for
each one of the four considered dates are reported in Table 7.
Table 7. Final orbital elements and ∆V - Sun’s gravitational perturbation

21 March 21 June 21 Sept. 21 Dec.
a [km] 42166.26 42168.89 42165.05 42166.42
e 5.29e-5 4.12e-4 2.23e-5 1.11e-4
i [deg] 0.008 0.06 3.64e-4 0.02
∆V [km/s] 1.6403 1.6463 1.6494 1.6536

5. Conclusion

This paper presented the results of the global optimisation of
the low-thrust transfer from GTO to GEO, including different
types of perturbation. Results have shown that a global optimi-
sation method can explore the solution space and locate better
solutions than a local optimisation method, without the need to
provide an initial guess to the solution. The addition of pertur-
bations can cause differences in the results. In particular, the

main difference with respect to the Keplerian case are caused
by J2; however also the Sun’s perturbation can cause small but
non negligible difference in the cost of the transfer.
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