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In this work, the end-of-life disposal of satellites in the Galileo constellation using low thrust propulsion is studied. Indirect opti-

mization methods are employed to design transfer maneuvers to remove the satellite from its original operational orbit into previously

computed orbits leading to its natural re-entry within 100 years due to lunisolar perturbation effects. The dynamics are formulated

using the modified equinoctial elements, which allow expressing the boundary conditions in a simple way at the cost of more com-

plex equations compared to the use of Cartesian coordinates. A special focus is placed in defining an efficient and robust algorithm

for solving the two point boundary value problem arising from the first order optimality conditions, including the integration of the

analytically-derived variational equations to obtain the State Transition Matrix, and the accurate detection of thrust-switching events.

The numerical results obtained for several test cases show the practical feasibility of this end-of-life disposal approach at thrust levels

compatible with electric thrusters likely to be used by the next generation of Galileo satellites.
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Nomenclature

µ : Earth’s gravitational parameter

a : semi-major axis

e : eccentricity

ω : argument of perigee

Ω : right ascension of the ascending node

i : orbital inclination

θ : true anomaly

p : semilatus rectum

ex : modified orbital element

ey : modified orbital element

hx : modified orbital element

hx : modified orbital element

L : true longitude

t : time

λ+ : costate associated to +

s : state vector

λ : costates vector

m : mass of the spacecraft

Tmax : maximum available thrust

Isp : specific impulse

g0 : gravity acceleration at sea level

∆v : total impulse

f : thrust throttling parameter

α : thrust pointing unity vector

J : objective (cost) function

L : Lagrangian

H : Hamiltonian

Subscripts

i : initial

f : final

1. Introduction

The commercial use of space is expected to rapidly grow in

the coming years, including satellite constellations for diverse

applications such as navigation, communications, Earth imag-

ing or resource mapping. Given the increasing number of ob-

jects launched into orbit, a sustained, secure and profitable ex-

ploitation of space requires end-of-life (EoL) disposal strategies

to be applied. In the case of Medium Earth Orbit (MEO) regions

two options are available: 1) move the satellites into graveyard

orbits, 2) insert them into Earth re-entry paths. The latter shall

be preferred as it physically removes the satellite, however it

is generally associated with high ∆v and re-entry times (∼100

m/s for a re-entry in 100 years). With current chemical propul-

sion systems this solution is not practical, but the scenario will

change when fully-electric platforms will be utilized. This can

be the case of the next generation satellites in the Galileo con-

stellation.1, 18)

The proposed low thrust maneuver aims to move the satel-

lite from its original orbit into a new one leading to its re-entry,

but the particular positions at which the transfer starts and ends

need not to be fixed. Therefore, this optimal control problem is

more naturally expressed using an orbital elements-based for-

mulation, such as the modified equinoctial elements.6) How-

ever, this choice introduces additional complications compared

to the classic Cartesian coordinates when solving the prob-

lem using the indirect method. The well-known result of the

primer vector is no longer valid, and the straightforward ana-

lytical derivation of the variational equations, required to ef-

ficiently solve the associated two-point boundary value prob-

lem, becomes too cumbersome to be practical (even with sym-

bolic manipulators). A careful treatment of the state and costate

equations is then needed to derive variational equations and to

develop an efficient and robust solver.



In this work, the design of low thrust EoL disposal trajecto-

ries for satellites in the Galileo constellation is studied, using

the modified equinoctial elements to model dynamics and the

indirect method to solve the associated optimal control prob-

lem. A set of previously computed orbits that exploit the luniso-

lar perturbation forces in the MEO region to naturally achieve

re-entry times within 100 years1, 2) are considered as candidate

arrival conditions, while the departure ones are given by the ac-

tual orbits of the Galileo constellation. The use of the modified

equinoctial elements allows us to express the boundary condi-

tions in a simple way, where all the initial and final elements

are fixed except for the true longitude (determining the partic-

ular points in the initial and final orbits where the transfer ma-

neuver starts and ends respectively). This easier treatment of

the boundary conditions comes at the cost of more complex ex-

pressions for the two-point boundary value problem (TPBVP)

arising from the first order optimality conditions in the indirect

method. A careful study of these equations and their behavior is

then performed to implement an efficient and robust solver for

the TPBVP following the structure in 7), including the integra-

tion of the analytically-derived variational equations to obtain

the State Transition Matrix and the accurate detection and treat-

ment of thruster-switching events. Finally, a representative set

of test cases for different initial and final orbits is studied using

this solver.

2. Problem Statement

2.1. Galileo disposal

Galileo is the Global Navigation Satellite System currently

being developed by the European Union and the European

Space Agency.17) Once completed, it will consist of 24 satel-

lites plus 6 spares, located in three MEO planes at an altitude of

23, 222 km and an orbital inclination of 56 deg.

Recent works by Armellin et al.1, 2) have studied the pos-

sibility of leveraging lunisolar perturbation effects to achieve

the EoL disposal of Galileo satellites through a single impul-

sive maneuver placing the satellite in a new orbit that leads to

its natural re-entry within a 100 years timespan. Although ef-

fective, this strategy has the drawback of requiring ∆v levels

impractically high for the impulsive thrusters currently used in

Galileo. However, this limitation may be removed in the future

generations of Galileo satellites, which are expected to feature

electric thrusters18) such as the T6 from QinetiQ.3–5)

This work extends the previous Galileo disposal studies by

replacing the impulsive maneuver with a minimum-fuel low

thrust transfer between the operational and disposal orbits, for

values of Tmax and Isp typical of the T6 ion engine.4, 5) Note that

only the departure and arrival orbits need to be imposed, not the

actual position of the spacecraft on them. For simplicity, the de-

parture position and mass will be considered fixed from now on,

whereas their final values are set free. Because the duration of

the maneuver is very short compared to the re-entry time (tens

of days versus a hundred years), a model including only Earth’s

central attraction and the thrust acceleration is used.

2.2. Equations of motion

The dynamics are formulated using the modified equinoctial

elements (MEEs).6, 8–10) Compared to Cartesian coordinates,

these have the key advantage of allowing to express the orbit-

to-orbit boundary conditions as fixed values for some elements

of the initial and final states, rather than as nonlinear functions

of them. For a direct orbit, the MEEs can be related with the

classical orbital elements as follows

p = a
(

1 − e2
)

ex = e cos (ω + Ω)

ey = e sin (ω + Ω)

hx = tan (i/2) cos (Ω)

hy = tan (i/2) sin (Ω)

L = ω + Ω + θ

(1)

It is straightforward to check that p, ex, ey, hx and hy define the

orbit, whereas L indicates the position of the spacecraft inside

it. By introducing

s =
[

p ex ey hx hy L
]⊤
, x =

[

s m
]

,

as well as the control vector

u =
[

f α
]⊤

where f ∈ [0, 1] is the thrust throttling parameter and α the

thrust pointing unitary vector, the equations of motion, includ-

ing the mass equation, take the form

ẋ = F (x, u, t) :=
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where

c = Ispg0

A =
[
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with

W = 1 + ex cos L + ey sin L

K = hx sin L − hy cos L

s2 = 1 + h2
x + h2

y

2.3. Indirect optimization method

Indirect optimization methods are based on deriving the first

order optimality conditions for the problem using the calculus

of variations. This leads to a TPBVP in the state and its associ-

ated costates, which normally has to be solved using numerical

methods.

Although the aim of the study is to design minimum fuel

transfers, this task cannot be tackled directly. First of all, a

minimum-time solution is needed to determine the feasible re-

gion for the time of flight. The objective function for this

minimum-time problem takes the form

Ĵ =

∫ t f

ti

1 dt =

∫ t f

ti

L̂ dt . (3)



Secondly, the bang-bang structure of minimum-fuel solutions

introduces discontinuities that severely affect the performance

of numerical solvers. This issue can be addressed by following

a homotopic approach.7, 11) To this end, an objective function J

dependent on an homotopy parameter ε is defined as follows

J =
Tmax

c

∫ t f

ti

[

f − ε f (1 − f )
]

dt =

∫ t f

ti

L dt , ε ∈ [0, 1]

(4)

Note that the two limit values 0 and 1 of the homotopy pa-

rameter correspond, respectively, to the minimum-fuel and

minimum-energy. Then, the homotopic approach would consist

on solving the (easier) minimum-energy problem first, and then

performing a continuation in ε until the minimum-fuel solution

is reached.

The Hamiltonian for the minimum-energy/fuel problems is12)

H = λ · F + L (5)

where λ = [λs λm ] is the vector of costates, with λs =

[ λp λex
λey λhx

λhy λL ]. Note that the Hamiltonian for the

minimum-time problem will have the same structure, simply

replacing L with L̂. The differential equations governing the

evolution of the costates can be obtained by imposing the first

order optimality conditions derived from the calculus of varia-

tions,12) leading to:

λ̇ = −
∂H

∂x
(6)

The boundary conditions for the costate depend on the

boundary conditions imposed to the state. In particular, the ini-

tial (or final) value of a costate component will be zero if the

corresponding initial (or final) state is free, and an unknown pa-

rameter otherwise.12) Since only the final true longitude and

mass are free, the costates associated to L and m will be zero at

t f

λL

(

t f

)

= 0 , λm

(

t f

)

= 0 ,

whereas the rest will be unknowns parameters of the TPBVP.

Note that, same as with the state, the use of MEEs allows to

express the boundary conditions in a simple way.

Control variables f and α can be expressed as functions of

the state and costate by applying the Pontryagin Maximum

Principle,13) which states that the optimal control for a given

optimal trajectory is the one that leads to an extreme value (in

this case a minimum) of H over the set of admissible controls.

Gathering the terms involving control variables in Eq. (5) one

reaches

H = λs · A + f
Tmax

c

[

c

m
λsBα − λm + 1 − ε (1 − f )

]

(7)

Because f Tmax/c is always semi-positive, minimizing the

Hamiltonian with respect to α amounts to choosing its value

so that the first term inside the brackets is as small as possible.

This leads to:

α
∗ = −

B⊤ · λs

||B⊤ · λs||
(8)

This expression for the thrust orientation is notably more com-

plex than the primer vector in Cartesian coordinates,14) and con-

stitutes one of the main drawbacks of using the MEEs. Substi-

tuting α∗ back into Eq. (7) yields

H = λs · A + f
Tmax

c

[

S − ε + ε f
]

(9)

where a switching function S has been introduced as

S = −
c

m

λ
⊤
s BB⊤λs

||B⊤ · λs||
− λm + 1 (10)

It is now straightforward to analytically find the minimum of

H with respect to f by deriving and equating to zero, which

leads to f = (ε − S )/2ε. However, because f is limited to the

range [0, 1], the optimal throttling takes the form of a piecewise

function

f ∗ =



















0 for S > ε
(ε − S ) /2ε for − ε ≤ S ≤ ε
1 for S < −ε

(11)

where the value of the switching function allows determining

the operation mode for the thruster: off, intermediate, or full

on. Note that in the minimum-fuel case ε is zero and the inter-

mediate region vanishes, so leading to a bang-bang profile.

Regarding the minimum-time problem, the expression for α∗

in Eq. (8) still holds, and the Hamiltonian takes the form

Ĥ = λs · A + f
Tmax

c
Ŝ + 1

with switching function

Ŝ = −
c

m

λ
⊤
s BB⊤λs

||B⊤ · λs||
− λm (12)

Therefore, throttling factor should be 1 (full on) for Ŝ < 0, and

0 (off) for Ŝ > 0. Moreover, it is possible to check from Eq. (6)

that λm ≥ 0 for the minimum-time problem with free final mass

(because λ̇m = −∂mĤ < 0 and the free final mass condition

implies λm(t f ) = 0), leading to Ŝ < 0 for t ∈ [ti, t f ]. As a

consequence, f will always be 1 for minimum-time problems.

Additionally, the extra degree of freedom in the minimum-time

problem (t f is unknown) requires the introduction of a transver-

sality condition12) setting Ĥ
(

t f

)

= 0.

Gathering all the previous developments, the TPBVP derived

from the first order optimality conditions for the minimum-

energy/fuel problems can be stated as follows: to find the λi

that satisfies the shooting function

Z (λi) =
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= 0 , (13)

where the mappings x
(

t f ; xi, λi, ti
)

and λ
(

t f ; xi, λi, ti
)

come

from the integration of Eqs. (2) and (6) with the controls

u∗ =
[

f ∗ α∗
]

derived from the PMP in Eqs. (8) and (11). The

minimum-time problem presents the same structure, introduc-

ing an additional unknown, t f , and associated algebraic condi-

tion, Ĥ
(

t f

)

= 0, and setting f ∗ = 1 for all t.



2.4. Algorithmic implementation

The previous TPBVP is to be solved numerically using an

adequate scheme. In this work a classic multiple shooting al-

gorithm is employed, with a third-party root finder (Matlab’s

fsolve and its Trust-Region-Dogleg algorithm) and a custom

Runge-Kutta Felhberg 7(8) propagator.

One key aspect regarding the propagator is the need to ac-

curately locate the thrust switching events, that is, when the

thruster should change its operation mode according to Eq. (11).

To do this, we search for any change in the operation mode asso-

ciated to the value of S at both ends of a successful integration

step. If a change is detected it means a switching event takes

place at an intermediate point inside the step, and the zero tswitch

for the switching function is sought for using Newton’s method.

Because the convergence of Newton’s method inside the inter-

val cannot be guaranteed in general, a fall-back algorithm based

on a combination of modified regula falsi (Anderson-Björk ver-

sion) and bisection is also implemented. The initial guess for

Newton’s method is obtained using the values of S and its first

derivative with respect to t at both endpoints of the step to con-

struct a cubic Hermite interpolant, which is then solved ana-

lytically. Note that the information required to construct the

interpolant is already provided by the RKF 7(8) except for the

derivative of S at the end of the interval, so the added com-

putational cost is small. The initial guess obtained from the

interpolant is normally very close to the actual root, and the

Newton’s method takes just 2-3 iterations in most cases. It is

important to highlight that each iteration requires taking a new

RKF 7(8) step, involving 13 evaluation of the equations, so the

use of an accurate initial guess to reduce the number of itera-

tions has a noticeable impact on computational time for propa-

gations with many switching events. Once the switching time

has been determined, one RKF fixed step is taken up to tswitch,

and the propagation continues for the new value of f ∗.

The Trust-Region-Dogleg algorithm employed to solve the

TPBVP requires the Jacobian of the shooting function (or a suit-

able approximation). Although it is possible to approximate it

numerically using finite differences and BFGS updates, a more

efficient and robust algorithm can be obtained by constructing

it analytically from the State Transition Matrix (STM).7) The

STM maps small variations in the initial conditions [δxi δλi] to

variations [δx δλ] at a given time t, and its calculation requires

deriving the variational equation and integrating it together with

Eqs. (2) and (6). Because the STM is a 14x14 matrix, 196 ad-

ditional differential equations have to be added, for a total of

210 equations. However, the straightforward derivation of the

variational equations for this problem is not an easy task. Even

though the procedure is conceptually simple, the resulting ex-

pressions turn out to be too cumbersome to handle even with the

use of symbolic manipulators. This issue can be circumvented

by taking advantage of the structure of the equations, obtain-

ing general expressions for the variational equations in terms

of BB⊤, A and their derivatives up to order 2.15) The analyti-

cal derivatives for BB⊤ and A are then easy to determine with

the help of a symbolic manipulator. One last aspect to consider

regarding the STM is how to treat the discontinuities that ap-

pear in bang-bang control profiles. In this work, the strategy

propossed by Russell16) to obtain the composite STM for a tra-

jectory with several bang-bang points is used.

Table 1. Environmental, thruster and spacecraft parameters.

Parameter Value

µ [km3/s2] 398600.433

g0 [m/s2] 9.807

Isp [s] 4000

mi [kg] 675

Table 2. Departure orbital elements for all test cases.

Orb. Elems. Departure

a [km] 29598.896

e [−] 0.000173

i [deg] 54.982

Ω [deg] 203.549

ω [deg] 272.857

θ [deg] 166.269

Table 3. Arrival orbital elements for each test case.

Orb. Elems. Case 1 Case 2 Case 3

a [km] 31862.568 33006.338 33249.803

e [−] 0.071201 0.103189 0.109737

i [deg] 54.993 54.986 55.267

Ω [deg] 203.568 203.552 203.585

ω [deg] 256.033 39.376 30.013

θ [deg] − − −

∆vimp [m/s] 128.152 185.147 197.477

tre-entry [years] 98.403 76.003 68.408

Finally, the lack of information about the solution compli-

cates the task of finding an initial guess for λi falling inside

the convergence region of the solver. This can be addressed

by solving the problem for a higher value of Tmax first, and

then performing a continuation in thrust until the desired nom-

inal thrust is reached. The higher control authority increases

the convergence region, allowing to find a valid initial guess by

testing random values for λi.

Now that a robust and efficient solver for the TPBVP has

been defined, the minimum-fuel problem for given Tmax and

boundary conditions can be solved according to the following

scheme

1. The minimum-time problem is solved performing a con-

tinuation in thrust, starting from a high enough value to

ease the initial convergence of the TPBVP.

2. The minimum-energy problem is solved performing a con-

tinuation in thrust, for a final time taken longer than the

time of flight for the minimum-time problem.

3. The minimum-fuel problem is solved performing a contin-

uation in ε (starting from the minimum-energy solution),

for the desired values of Tmax and time of flight.

Under some circumstances, the continuation process may stall.

In those cases, the freedom in the choice of θi is leveraged to

restart it by updating the starting point within the departure or-

bit.

3. Test Cases

The proposed Galileo low thrust EoL disposal is now studied

for three different test cases taken from the previous works by

Armellin et al.2) The departure orbital elements, common to all

test cases, are compiled in Table 2, and the arrival orbital ele-

ments are shown in Table 3. The latter table also includes the
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Fig. 1. Minimum-fuel m f and ∆v for the three test cases, for Tmax =

230 mN and increasing times of flight ∆t. Top figure corresponds to the

physical values, whereas bottom figure is normalized with the minimum-

time solution.

re-entry time for each disposal orbit, as well as the ∆v needed to

reach it with an impulsive maneuver. Initial spacecraft mass is

set to 675 kg, to be consistent with the dry mass of about 670 kg

assumed by Armellin et al.2) when obtaining the disposal or-

bits. Two different thrust levels are considered: 150 mN and

230 mN. The former is close to the 145 mN qualified by ESA

for the BepiColombo,5) while the latter corresponds to the max-

imum achievable thrust according to QnetiQ.4) In both cases, a

conservative value for Isp of 4000 s is used. All the other rele-

vant parameters are summarized in Table 1.

Figure 1 shows the minimum-fuel maneuver m f and ∆v for

the three test cases at a maximum thrust level of 230 mN and

increasing times of flight. As expected, the values for ∆v are

appreciably higher than for the impulsive maneuver (especially

for times of flight close to the minimum-time solution), but the

high Isp of electric thrusters leads to small fuel consumptions.

It is observed that fuel consumption, corresponding to m f −mi,

is less than 5 kg in most cases for times of flight up to one and

a half months, showing the practical feasibility of this EoL dis-

posal approach. Additionally, increasing the time of flight with

respect of the minimum-time maneuver up to a factor of 3.5 can

provide reductions in the required ∆v of around 45%.

Similar results are obtained for test case 1 at a maximum

thrust of 150 mN, as shown in Fig. 2. The trajectory and throt-

tling profile corresponding to a minimum-fuel transfer with

t f = 19.009 days (1.5 times the t f for the minimum-time trans-

fer) are represented in Figs. 3 and 4, respectively. It is straight-

forward to check that each revolution consists on one or two

propelled arcs taking place around the centers of the orbit, with

coasting arc in between. This is because the imposed orbital
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t f = 19.009 days (1.5 times the t f for the minimum-time transfer), in iner-

tial reference frame. Coasting arcs are represented in gray, and propelled

arcs in black.

maneuver changes the argument of perigee, not the orbit geom-

etry,

4. Conclusion

The EoL disposal of satellites in the Galileo constellation

using low thrust propulsion has been studied, leveraging pre-

viously computed orbits leading to the natural re-entry of the

satellite due to lunisolar perturbation effects within a 100 years

timespan. The low thrust transfers between the operational and

disposal orbits have been designed using indirect optimization
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Fig. 4. Minimum-fuel throttling profile for test case 1 with Tmax =

150 mN and t f = 19.009 days (1.5 times the t f for the minimum-time trans-

fer).

methods and a MEE formulation for the dynamics. A special fo-

cus has been placed in applying different techniques to increase

the robustness and efficiency of the indirect optimization algo-

rithm, such as continuation, analytical derivation of the vari-

ational equations to propagate the STM, and precise and fast

determination of thruster-switching events during the propaga-

tion. The use of MEE has allowed to express the orbit-to-orbit

boundary conditions in a simple way, at the cost of more com-

plex state and costate equations.

Numerical results for several representative test cases show

fuel requirements of less than 5 kg for transfer maneuvers of up

to one and a half months, proving the practical interest of this

approach for the EoL disposal of future generations of Galileo

satellites featuring electric propulsion. Furthermore, this strat-

egy could be extended in future works to other constellations in

the MEO region.
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