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This paper presents a new method of optimal trajectory design for formation flying. Under linearized assumptions and a quadratic
performance index, we consider an attractive set for optimal control based on the linear quadratic regulator theory. An attractive set is
defined as a set of all initial states to reach a desired state for a given cost. In particular, we define attractive sets for two problems: a
fixed final-state, fixed final-time problem and an infinite-time problem. The properties of the two problems are investigated by plotting
the attractive sets for each problem. Our results reveal that the L1-norm of the finite-time problem is close to that of the infinite-time
problem even though the flight time is much smaller.
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Nomenclature

A : state matrix
B : input matrix
C : a constant
J : performance index
J∗ : minimum value of performance index
n : mean motion

Q,R : weight matrices
Rc : radius vector of chaser orbit
R0 : radius vector of target orbit
T : orbital period
u : control input vector
u∗ : optimal control input vector
x : state vector

x, y, z : position
ε : acceptable error range
µ : geocentric gravity constant

Subscripts
0 : initial
f : final

conv : convergence

1. Introduction

The Hill’s equations (also known as the Hill-Clohessy-
Wiltshire (HCW) equations) are equations of relative motion of
a chaser linearized around a target.1)The Hill’s equations have
periodic solutions that are convenient for formation flying. The
rendezvous problem for a target on a circular orbit has been in-
vestigated in various ways.2) The optimal rendezvous problem
using continuous thrust is often treated as the optimal control
problem. In constructing a feedback control system for a ren-
dezvous problem, a linear quadratic regulator is often used.3, 4)

A linear quadratic regulator is a control law that minimizes a
quadratic performance index for a linear system. Once the ini-
tial and final states are specified, the optimal trajectory can be
obtained based on linear quadratic regulator theory. However,
when using this method, it is necessary to solve the two-point
boundary-value problem (TPBVP) repeatedly to determine the
optimal initial state. To solve the TPBVP for rendezvous prob-

lem, the generating functions which give the optimal control as
a function of initial and final state are used to find the optimal
initial state in Refs. 5) and 6).

We present a new method of optimal trajectory design for
formation flying. Under linearized assumptions and a quadratic
performance index, we consider an attractive set for optimal
control based on linear quadratic regulator theory. An attractive
set is defined as a set of all initial states to reach a desired state
for a given cost. Using the attractive set for optimal trajectory
design, we not only can obtain the optimal initial conditions
uniquely but also the structure behind it.

In a real mission, it is desirable to complete an orbit transfer
in finite time. Therefore, this paper reveals the relation between
the shape of an attractive set and an optimal trajectory for differ-
ent boundary conditions. First, we define attractive sets for two
optimal control problems: a fixed final-state, fixed final-time
problem and an infinite-time problem. Next, by plotting an at-
tractive set on a chaser’s initial orbit, we compare the shape of
the attractive set with the trajectory when termination time is
changed. Moreover, we evaluate the obtained trajectory using
the L1-norm of the control input and compare the L1-norm with
the rendezvous completion time tconv.

2. Equations of Motion

We consider relative motion between a target and a chaser on
a circular orbit. Figure 1 shows the chaser’s equations of motion
relative to a target assuming the coordinate system (x, y, z) as
follows:

ẍ = 2nẏ + n2(R0 + x) − µ
R3 (R0 + x) + ux (1)

ÿ = −2nẋ + n2y − µ
R3 y + uy (2)

z̈ = − µ
R3 z + uz (3)

When these equations are linearized at the origin, Eqs. (1) to (3)
become

ẍ = 3n2x + 2nẏ + ux (4)
ÿ = −2nẋ + uy (5)

z̈ = −n2z + uz (6)
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Fig. 1. Definition of coordinate system.

These equations are called Hill’s equations.1)

Let x = [x, y, z, ẋ, ẏ, ż]T and u = [ux, uy, uz]T be a state vector
and an input vector, respectively. The Hill’s equations can then
be represented by

ẋ = Ax + Bu, x(0) = x0 (7)

where

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 −n2 0 0 0


(8)

B =



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


(9)

For simplicity, we only consider in-plane motion. Solving
Eqs. (4) and (5) under x0 = [x0, y0, ẋ0, ẏ0]T, u = 0 yields

x = (−3x0 −
2
n
ẏ0)c +

ẋ0

n
s + 4x0 +

2
n
ẏ0 (10)

y =
2
n

ẋ0c + (6x0 +
4
n
ẏ0)s

+(−6nx0 − 3ẏ0)t + y0 −
2
n

ẋ0 (11)

ẋ = ẋ0c + (3nx0 + 2ẏ0)s (12)
ẏ = 2(3nx0 + 2ẏ0)c − 2ẋ0s

−3(2nx0 + ẏ0) (13)

where c ≡ cos nt，s ≡ sin nt. From Eqs. (10) to (13), in the
case where the secular term is equal to zero, a periodic solution
is obtained:

ẏ0 = −2nx0 (14)

Under this condition, Eqs. (10) to (13) express an elliptic orbit.
The velocity (ẋ, ẏ) on the elliptic orbit at any position (x, y) is

ẋ =
n
2
y (15)

ẏ = −2nx (16)

3. Problem Statement and Definition of an Attractive Set

3.1. Fixed final-state, fixed final-time problem
Consider an optimal control problem for Eq. (7) that mini-

mizes the performance index J given by

J =
∫ t f

t0
(xTQx + uTRu)dt (17)

where Q ≥ 0,R > 0 and x(t f ) = x f . The optimal control input
that minimizes the performance index is as follows:7)8)

u∗ = −R−1BT{S (t)x − U(t)W−1(t0)(UT(t0)x0 − x f )} (18)

where S , U, and W are positive-definite solutions that satisfy
the following equations:

Ṡ + ATS + S A − S BR−1BTS + Q = 0 (19)
U̇ = −(AT − S BR−1BT)U (20)
Ẇ = UTBR−1BTU (21)
S (t f ) = O, U(t f ) = I, W(t f ) = O (22)

Then the minimum value of the performance index J∗ is as fol-
lows:7)9)

J∗ = xT
0 S (t0)x0

−(xT
0 U0 − xT

f )W−1(t0)(UT
0 x0 − x f ) (23)

Equation (23) expresses an n-dimensional ellipsoid. Consider
the set of all initial state inside the n-dimensional ellipsoid J∗ =
C

A (C) = {x0 ∈ Rn | x0S (t0)x0

−(xT
0 U0 − xT

f )W−1(t0)(UT
0 x0 − x f )

≤ C} (24)

We define A (C) as the attractive set for optimal control.10) The
optimal trajectory departing from the inside of this ellipsoid is
guaranteed that the value of the performance index is less than
C.
3.2. Free final-state, fixed final-time problem

Consider an optimal control problem for Eq. (7) that mini-
mizes the performance index J given by

J = xT
0 Q0x0 +

∫ t f

t0
(xTQx + uTRu)dt (25)

where Q0,Q ≥ 0,R > 0. The optimal control input that mini-
mizes the performance index is as follows:

u∗ = −R−1BTS (t)x (26)

where S is a positive definite solution satisfying the Riccati
equation:

Ṡ + ATS + S A − S BR−1BTS + Q = 0 (27)
S (t f ) = Q0 (28)

Then the minimum value of the performance index J∗ is as fol-
lows:

J∗ = xT
0 S (t0)x0 (29)



3.3. Infinite-time problem
Consider an optimal control problem for Eq. (7) that mini-

mizes the performance index J given by

J =
∫ ∞

t0
(xTQx + uTRu)dt (30)

where Q ≥ 0,R > 0. The optimal control input that minimizes
the performance index is as follows:

u∗ = −R−1BTS x (31)

where S is a positive definite solution satisfying the algebraic
Riccati equation:

ATS + S A − S BR−1BTS + Q = 0 (32)

Then the minimum value of the performance index J∗ is as fol-
lows:

J∗ = xT
0 S (t0)x0 (33)

The attractive set for optimal control is defined as

A (C) = {x0 ∈ Rn | x0S (t0)x0 ≤ C} (34)

4. Simulation Results

We use the equations of motion where Eq. (7) is dimension-

less with R0 and T
(
=
√
µ

R3
0

)
. Namely,

A =


0 0 1 0
0 0 0 1
3 0 0 2
0 0 −2 0

 (35)

B =


0 0
0 0
1 0
0 1

 (36)

We consider a feedback control system in which the chaser
rendezvouses to a target using thruster input and two optimal
control problems that have different boundary conditions, re-
spectively: a fixed final-state, fixed final-time problem and an
infinite-time problem. The relation between the solution to the
free final-state problem given by Eq. (26) is investigated in
4.3.1. For these two optimal control problems, we draw attrac-
tive sets for the initial values on the initial periodic orbit and
compare these attractive sets. The chaser has the initial values
x0 = [1.0, 0, 0,−2.0]T on the initial periodic orbit. Let the initial
maneuver time be t0 and the termination time be t f . In fact, in
the infinite-time problem, it takes an infinite amount of time to
complete the rendezvous. However, we set the acceptable error
range ε and consider the time when it becomes less than ε as
the rendezvous completion time tconv.

ε = [1.0, 1.0, 1.0, 1.0]T × 10−3 (37)

4.1. Basic properties of attractive sets for finite-time prob-
lem

For the finite-time problem, we set x f = [0, 0, 0, 0]T，t f =

3, 6, 9. Let Q = 10qI4×4, R = I2×2, and change the weight
parameter of the state by decreasing the value of q. Figures 2 -
4 show the contour of the attractive set (24) (multicolored el-
lipses) and the optimal trajectory (red line).

First, consider the general properties of the optimal trajectory
obtained by using a linear quadratic regulator. Paying attention
to the red line in Figs.2 - 4, it is found that changing the weight
parameter of the state changes the trajectory from straight to
spiral and lengthens the route.

For the in-plane motion the attractive set is a four-
dimensional ellipsoid of position and velocity; however, on a
periodic orbit, the velocity of the chaser is a function of posi-
tion through to Eqs. (15) and (16). Hence, the intersection of
the ellipsoid and a periodic orbit is a two-dimensional ellipsoid,
and can be drawn as an ellipse on the x-y plane. By plotting this
ellipsoid on x-y plane, the value of the performance index along
a periodic orbit can be determined uniquely. Figures 2 to 4 show
that an attractive set has a distribution such that the value of the
performance index increases from the inside to the outside of
the ellipse. Moreover, Fig. 5 shows the values of J∗ correspond-
ing to the initial position on the periodic orbit for Fig. 2(c). In
Fig. 5, J∗ takes its minimum values at y = ±2. From Figs. 2(c)
and 5, it is also found that the minimum values of the perfor-
mance index are on points of contact between the periodic orbit
and this ellipse.

The advantage of plotting an attractive set is that it is not
necessary to repeat the calculation for the optimal trajectory by
changing the initial state. Once we obtain the solution of the
Riccati equation by solving Eqs. (19) to (21) (Eq. (32) in the
case of the infinite-time problem) we obtain the optimal initial
state immediately.
4.2. Basic properties of attractive sets for infinite-time

problem
Figure 6 shows the contour of the attractive set (34) of

the infinite-time problem for the different weight parameters.
The properties of the attractive set described in 4.1 hold for
the infinite-time problem. Moreover, the attractive set for the
infinite-time problem with small q has a remarkable feature. In
Fig. 6, it is observed that the contour of the attractive set con-
verges to 2:1 ellipse for Q→ 0 and overlap with periodic orbits
of Hill’s equation. This means that the value of J∗ remains al-
most unchanged wherever the chaser depart from the periodic
orbit. Moreover, Fig. 7 shows the values of J∗ by changing the
initial position on the periodic orbit corresponding to Fig. 6(c).
It is also found that the value of J∗ is almost constant on the
periodic orbit from Fig. 7. The larger the weight of the control
input, the closer the trajectory is to the solution of the Hill’s
equations, which do not use control input.

This interesting property of attractive set can also be ob-
served for different situation. Consider the attractive set for
infinite-time problem when the initial velocity of the chaser is
zero, i.e. x0 = [x, y, 0, 0]. Note that the solutions starting from
x0 = [x, y, 0, 0] has drift motion along y-axis from Eq. (11).
Figure 8 shows the contour of the attractive set for different
weight parameters. The attractive set becomes unbounded in y-
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Fig. 2. t f = 3.
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Fig. 3. t f = 6.
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Fig. 4. t f = 9.

direction for Q → 0. This is because the chaser can approach
the origin by using the drift motion along y-axis. In Fig. 8, the
optimal trajectory seems to exploit the drift motion along y-axis
for small q = −3.

From the attractive set for the two situations, it can be said
that the attractive set for small q reflect the dynamical struc-
ture of the motion since the optimal control exploits the natural
motion of the system to reduce the control effort.
4.3. Discussion of a shape of an attractive set

For the LQR problem, the weight matrices for the perfor-
mance index determine the relative importance between state
and control input. From Figs. 2 - 4 and 6, it can be seen that the
optimal trajectory and the shapes of the attractive sets depend
on the weight matrices. As q varies, the shape and direction of
the attractive set change and the optimal initial positions also
move. Then the change in the shapes converges for sufficiently
small q in Figs. 2(c), 3(c), 4(c), which concern more about con-
trol effort.

In Figs. 2(a), 3(a), 4(a), the weight on state is relative large
(q = 3) and the shape of attractive set is circle. When the weight
on state is relatively large, the optimal trajectory tends to take
a shorter path to the origin. Actually, the distance to the origin

is the shortest on the x-axis on the periodic solution of Hill ’s
equation. On the other hand, in Fig. 2(c), the attractive set for
the case with q = −3 is ellipse which takes the optimal initial
position on the y-axis. In this result, the time constraint is strong
and the drift motion along y-axis might be used in this solution.

From Figs. 2(c), 3(c) and 4(c), it can be observed that the
attractive sets converges to different shape for each t f even for
the same Q and R. Therefore, the final-time t f is also an impor-
tant factor to determine the optimal trajectory for the finite-time
problem. Moreover, from the shapes of the attractive set, the
optimal initial positions are uniquely determined from the at-
tractive set for finite-time case. Therefore it can be said that the
optimal solution is highly sensitive to the initial position for the
short final-time problem. In other words, the coast arc solution
is obtained for fixed final-time problem to reduce the control
effort while coasting arc is not important for infinite-time prob-
lem.
4.3.1. Disccusion

Comparing Figs. 2(c), 3(c), 4(c), and Fig. 6(c), it is found
that, when t f is small, the shapes of the attractive sets for the
fixed final-state, fixed final-time problem are different from that
for the infinite-time problem. When the termination time is free
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Fig. 6. t f = ∞.
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Fig. 8. The contour of the attractive set for x0 = [x, y, 0, 0].

and the final state is x f = 0, the condition of t f that minimizes
J is as follows:7)

BTW−1(t0)UT(t0)x0 = 0 (38)

UT(t0) and W−1(t0) depend on t f , so Eq. (38) is nothing but the
condition of t f .

Then u∗ and J∗ for the fixed final-state, fixed final-time prob-
lem are

u∗ = −R−1BTS (t)x (39)
J∗ = xT(t0)S (t0)x(t0) (40)

Comparing Eqs. (39) and (40), with Eqs. (26) and (29), it is
found that the fixed final-state problem coincides the free final-
state problem. Table 1 shows the magnitude of the vector given

by the left-hand side of Eq. (38) in Figs. 2 to 4. For large t f ,
the left-hand side of Eq. (38) becomes smaller. When the value
of the left-hand side of Eq. (38) is large, the second term of
Eq. (23)

−xT
0 U(t0)W−1(t0)UT(t0)x0

becomes large, which affects the shape of the attractive set.

Table 1. Values of L.H.S of Eq. (38)

Q = 103I Q = I Q = 10−3I Q = O
t f = 3 3.3711 0.8097 1.3673 1.3684
t f = 6 0.1674 0.0848 0.1695 0.1734
t f = 9 0.0083 0.0088 0.0673 0.0852
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4.4. Comparison of L1-norm and rendezvous completion
time

We evaluate the trajectory using the L1-norm, which is pro-
portional to the fuel consumption. The L1-norm is defined as
follows:

L1 =

∫ t f

t0
|u(t)|dt (41)

We compare the L1-norm with tconv by changing the weight of
the state. Figures 9 and 10 show the L1-norm versus q and tconv

versus q, respectively.
First, as a general property, it is found that the L1-norm de-

creases and tconv increases with decreasing weight of the state.
As shown in Fig. 9, the longer t f is taken, L1-norm becomes
closer to the infinite-time problem. Additionally, as shown
in Fig. 10, the rendezvous is completed in a finite time from
around q = 0 in the fixed final-state, fixed final-time problem;
in contrast, in the infinite-time problem, it does not become a
constant value, but rather monotonically increases. For exam-
ple, in Table 2 we show a summary of the L1-norm and tconv for
t f = 9 and t f = ∞ when q = −3. Although the L1-norms are
almost equal, tconv is much smaller in the fixed final-state, fixed
final-time problem. It is assumed that, if the weight of the con-
trol input is sufficiently large for t f , the fixed final-state, fixed
final-time problem is superior in terms of equivalent L1-norm
and lower tconv. Similarly, paying attention to the red square
region in Figs. 9 and 10, it is found that the fixed final-state,
fixed final-time problem is better than the infinite-time problem
as tconv is small even though L1-norm is equal.

Table 2. Comparison of L1-norm and t f when q = −3.

t f = 9 t f = ∞
L1-norm 0.63 0.62

tconv 9.0 69

5. Conclusion

This paper presents the properties of an attractive set for
optimal control for different boundary conditions using a lin-
ear quadratic regulator. The analysis using the attractive set
revealed the optimal initial state for the rendezvous problem
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under different formulation of optimal control problem. One
of the interesting property of the attractive set for the infinite-
time problem is that it reflect the natural solutions of the Hill’s
equations. It was found that the L1-norm of the fixed final-
state, fixed final-time problem is close to that of the infinite-
time problem when the termination time is large. Therefore, the
formulation using the fixed-final-state, fixed-final-time problem
leads shorter rendezvous completion time with almost the same
L1-norm.
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