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In the analysis on two-point boundary value problem of low thrust trajectories, solutions usually cannot be solved analytically.
Rather the problem can only be analyzed through large amount of numerical optimization. We would like to seek for a shortcut to
determine the solution of the trajectory under complex thrust profile. This report presents a new method to solve the 2D low thrust
trajectories with multiple segments of thrust by combining solutions of single segment with constant thrust. This method has been
applied to several test cases and the solutions are compared with raw data generated from grid search. The results have been found to
be well matching with the raw data. This method may potentially be implement as standard method to include low-thrust trajectories
in Lambert algorithm.
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Nomenclature

~r : Position vector
~v : Velocity vector
µ : Standard gravitational parameter = GM
T : Time of flight

~u[...](t) : Thrust profile
n : Number of segment of thrust profile
U : Thrust magnitude
~uk : Thrust vector during segment (tk−1, tk)
U : Set of thrust vector
V : Set of feasible velocity vector
~δ : Position deviation from Lambert solution
~δv : Velocity deviation from Lambert solution
~∆ : Error compared with grid search result

Subscripts
i : Initial
f : Final
0 : Lambert solution

x, y : Derivative in x, y direction
[...] : correspond to thrust profile [...]

1. Introduction

In celestial mechanics, the ballistic two-point boundary value
problem, i.e. the Lambert Problem,1) can be solved analytically
for a given transfer time, initial and final positions. The solu-
tions to the Lambert problem are often expressed as the initial
and final velocities. When generalizing the problem to low-
thrust trajectories, one needs to search a range of feasible veloc-
ities of instead of discrete point solutions with computationally
intensive approaches such as grid searches.2)

Previously a linearized method has been suggested to quickly
compute the ranges of feasible velocities for low-thrust trajec-
tories.3) However such method fails in long duration orbits. In
this paper, we have developed a new method to approximate the
feasible velocity ranges of a low-thrust trajectory with complex

thrust profile using solutions of trajectories with simple thrust
profile. Firstly the problem is formulated as follow: (1) The
thrust profile ~u(t) is parametrized to a sum of constant pulse
function, indicating the thrust direction on each segment of the
trajectory. (2) The pulse on each segment can be turn on or off.
Then the feasible velocity ranges can be spanned via grid search
of all combination of thrust direction and magnitude.

However such method is very time consuming. To reduce the
number of computations, we explore patterns in the solutions
generated from grid search - the feasible range of trajectories
with multiple thrust-ed segments can be approximated by sum
of the feasible ranges of trajectories with single thrust-ed seg-
ment, i.e. a superposition of solutions to simpler thrust profile
yields the solution of more complex thrust profile. This approx-
imation scheme has been applied to several test cases and suc-
cessfully reproduces the feasible range in long orbit predicted
by grid search. The analytical basis of this method will also be
discussed briefly.

Solving the two-point boundary value problem of low-thrust
trajectories efficiently can be very useful for the design of future
low-thrust missions. Mapping the final velocity range of the
current orbit with initial velocity range of the next orbit allows
faster and more accurate prediction during a large scale tree
search of multi-leg trajectories and can result in better solutions
consuming less propellant. With the succeed of this approx-
imation method, we can improve the efficiency of low-thrust
trajectory design by reducing number of computation from or-
der O(Nk) to O(kN). It also allows extension to the standard
ballistic Lambert algorithm to include low thrust trajectories.

2. Problem Statement

2.1. Lambert Problem
In orbital mechanics, the ballistic two-point boundary value

problem is often referred as the Lambert Problem. The problem
requires one to find the specific trajectory ~r(t) from the given
initial position~ri, final position~r f and transfer time T . For sim-



plicity, we only consider the trajectories in 2D which surround
a central body at (0, 0) with standard gravitational parameter µ.
The equation of motion of such trajectory can be solved from
the equation of motion under Newtonian gravitation

d2

dt2~r(t) = −
µ∥∥∥~r(t)
∥∥∥3~r(t) (1)

together with a given boundary conditions

~r(0) = ~ri

~r(T ) = ~r f
(2)

The solution to the Lambert problem is often expressed in the
form of the pair of initial velocity ~v(0) = ~v0i and final velocity
~v(T ) = ~v0 f . The analytical method to the solution can be found
in many textbook on trajectories design.
2.2. Low Thrust Trajectories

In low thrust trajectory, Eq.(1) is modified by adding the
thrust profile ~u(t) to give Eq.(3).

d2

dt2~r(t) = −
µ∥∥∥~r(t)
∥∥∥3~r(t) + ~u(t) (3)

The thrust profile at different time interval are usually cho-
sen to be different function. Denoting the thrust function in
time interval (tk−1, tk) to be ~uk(t), so that the indexing of a spe-
cific thrust profile on the whole trajectory can be displayed as
[~u1(t), ~u2(t), ...~un(t)]. By these notations, the complete thrust
profile as a function of time can be expressed as

~u(t) = ~u[12...n](t) =

n∑
k=1

~uk(t)
(
H((t − tk−1) − H(t − tk)

)
(4)

where H(t) is the Heaviside function,4) defined by

H(t) =

0 if t ≤ 0
1 if t > 0

(5)

Similar to ballistic Lambert problem, the solution is also
commonly expressed in the form of initial and final solution.
Suppose we choose each ~uk(t) from a finite set of function
U (e.g. the set of all thrust function with a particular con-
stant magnitude U) to form all combination of thrust profile.
The solutions to the low thrust trajectory of all these possible
thrust profiles are expected to form the sets of feasible velocities
(Vi,V f ), denoting initial and final velocity sets respectively.5)

These sets of feasible velocities are expected to map out a range
around the solution to the Lambert problem, as shown in Fig.1.

Solving Eq.(3) will give us the wanted low thrust trajectory
and hence the initial and final velocity. However in most of the
cases, there are no analytical solution and numerical methods
are required. Therefore mapping out the complete, accurate sets
of feasible velocity requires grid search on all combination of
thrust profiles and is rather inefficient.

Fig. 1.: Schmetic to low thrust boundary value problem in tra-
jectory design. The two light blue regions represent the set of
feasible initial and final velocity respectively.

2.3. Method of Superposition
2.3.1. Idea

In our analysis, we would like to suggest a new method to
approximate the solution to low thrust trajectories with com-
plex thrust profile by combining those with simple thrust pro-
file. To demonstrate, we work on two dimensional trajectories
with magnitude of the thrust profile

∥∥∥~u(t)
∥∥∥ = constant. This is

because the effectiveness of the approximation highly depends
on the magnitude of the control.

The method of superposition makes use of the property of the
Heaviside function and approximates the solution based on the
Lambert solution. First, rewrite Eq.(3) in terms of x-y coordi-
nate to give



d2

dt2 x(t) = ux −
x(t)(

x(t)2 + y(t)2
)3/2

d2

dt2 y(t) = uy −
y(t)(

x(t)2 + y(t)2
)3/2

(6)

where ~r(t) = (x(t), y(t)) is the coordinate of the low thrust
trajectory. As we can see from Fig.1, under small thrust, the
low thrust trajectory (dotted blue lines) can be approximated
from the Lambert trajectory (solid blue line) by adding a small
deviation. Therefore we may write ~r(t) = ~r0(t) + ~δ(t) =(
x0(t) + δx(t), y0(t) + δy(t)

)
, where (x0(t), y0(t)) is the coordi-

nate of the Lambert trajectory. Then expand Eq.(6) upon
(x0(t), y0(t)) to give



d2

dt2 δx = ux +
(
Fxδx + Fyδy

)
+

1
2

(
Fxx(δx)2 + 2Fxy(δx)(δy) + Fyy(δy)2

)
+{higher order terms}

d2

dt2 δy = uy +
(
Gxδx + Gyδy

)
+

1
2

(
Gxx(δx)2 + 2Gxy(δx)(δy) + Gyy(δy)2

)
+{higher order terms}

(7)

where



F = −
x0

(x2
0 + y2

0)3/2
, G = −

y0

(x2
0 + y2

0)3/2
(8)

are time-dependent function solely depend on the Lambert tra-
jectory.

Suppose we bisect the trajectory by transfer time, so that the
thrust profile contains only two components [~u1, ~u2]. Notice
that from the defined control function from Eq.(4), the control
function ~u[12] to the thrust profile [~u1, ~u2] can be written as the
sum of the control function ~u[1] from profile [~u1, 0] and con-
trol function ~u[2] from profile [0, ~u2] due to the property of the
Heavisde function, as shown in Fig.(2).

We denote the trajectory deviation under thrust profile ~u[1]

as (δx[1], δy[1]), ~u[2] as (δx[2], δy[2]) and ~u[12]c as (δx[12], δy[12]).
Substituting to the x-equation in Eq.(7) yields



d2

dt2 δx[1] = ux,[1] +
(
Fxδx[1] + Fyδy[1]

)
+

1
2

(
Fxx(δx[1])2 + 2Fxy(δx[1]δ[1] + Fyy(δy[1])2

)
+{higher order terms}

d2

dt2 δx[2] = ux,[2] +
(
Fxδx[2] + Fyδy[2]

)
+

1
2

(
Fxx(δx[2])2 + 2Fxy(δx[2]δy[2]) + Fyy(δy[2])2

)
+{higher order terms}

d2

dt2 δx[12] = ux,[12] +
(
Fxδx[12] + Fyδy[12]

)
+

1
2

(
Fxx(δx[12])2 + 2Fxy(δx[12]δy[12]) + Fyy(δy[12])2

)
+{higher order terms}

(9)
From the definition of thrust profile in Eq.(4), ux,[12] = ux,[1] +

ux,[2] by the property of step function. This hints that we may
add the first two differential equations in Eq.(9) to construct a
similar differential equation to the third one. Therefore it is
possible that we may take δx[12] ≈ δx[1] + δy[2], and similar
in y direction. Such approximation is expected to work well
if quadratic and higher order terms of the differential equations
can be neglected.

Differentiating ~δ[12] ≈ ~δ[1] + ~δ[2], we can then deduce that
the deviation of the feasible initial and final velocities from the
Lambert solution would also be similar: by obtaining the so-
lution ~δv[1] and ~δv[2] corresponding to the thrust profile [~u1, 0]
and [0, ~u2], we can quickly approximate the solution ~δv[12] cor-
responding to the thrust profile [~u1, ~u2] by ~δv[12] ≈ ~δv[1] + ~δv[2].

In general, such approximation can be extend to n segment
cases. i.e. for the solution δ from the thrust profile [~u1, ~u2, ...~un]
can be approximated by ~δv[12...n] ≈ ~δv[1] + ~δv[2] + ...+ ~δv[n]. This
approximation scheme is thus called the method of superposi-
tion.
2.3.2. Criterion

The criterion that we may linearize the differential equation
is that (2nd order terms) � (1st order terms). Calculating all
the 1st and 2nd order terms from Eq.(8):
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Fig. 2.: Plot of control functions against time for thrust profiles:
(a):(u1, 0), (b):(0, u2) and (c):(u1, u2). Notice the control func-
tion from (u1, u2) be written as the sum of that of (u1, 0) and
(0, u2).


Fxδx =

2x2
0 − y

2
0

‖r‖4

(
δx
‖r‖

)
Fyδy =

3x0y0

‖r‖4

(
δy

‖r‖

) (10)



Fxx(δx)2 =
9x0y

2
0 − 6x3

0

‖r‖5

(
δx
‖r‖

)2

Fyy(δy)2 =
3x0(x2

0 − 4y2
0)

‖r‖5

(
δy

‖r‖

)2

Fxyδxδy =
3y0(y2

0 − 4x2
0)

‖r‖5

 √δxδy
‖r‖

2

(11)

where‖r‖ =

√
x2

0 + y2
0. We can show that the higher order terms

form a series of
(
δ
‖r‖

)
. Therefore the criterion for the approxi-

mation is O
(
δ
‖r‖

)
� 1

We may then constrain the size of δ from the differential
equation. As δ � ‖r‖ is likely valid only if the control func-
tion acts as a “perturbation force” to the gravitational force (see
Eq.(1)), i.e.

∥∥∥~u∥∥∥ � µ

‖~r‖
2 . It suggests that the approximation for

a control function with constant magnitude is better when the
orbit is closer to the central body.

3. Numerical Examples

To demonstrate the effectiveness of the method of superpo-
sition, we have run many test cases using superposition and
compared the mapped feasible velocity range to the results from
grid search, and only some of them are shown here as examples.



We have chosen bvp4c from Matlab to approximate each solu-
tion of the two-pint boundary value problem. We only compare
the results to trajectories divided up to 3 segments, and only
demonstrate examples of two dimensional problems since this
approximation scheme can be easily extended to more-segment
cases and three dimensional problems.

For the grid search, we exhaust all the combination of thrust
profile [~u1, ~u2, ...~un]. Each ~uk = (uk,x, uk,y) are chosen to be (0, 0)
or (U cos( 2π

20 i),U sin( 2π
20 i)) with i = 1, 2, ...20, i.e. for each seg-

ment, there is either zero thrust or a constant thrust with magni-
tude U and angle 2π

20 i, total 21 possibilities. Then for a trajectory
divided into n segments, the number of total possible combina-
tion of thrust profile would be 21n. The plot of the results from
grid search for all of these thrust profile are expected able to
trace out the shape of the feasible velocities ranges.

In all of the trials, we have taken µ = 1, ~vi = (10, 0),
U = 10−4 �

µ

‖~r‖
≈ 10−2. Transfer time is expressed in unit

of T = 2π
√

103

µ
≈ 198.69 which is the time for traveling one

complete circle of radius 10. Such transfer time is chosen so
that the trajectories have low eccentricity and thus the method
of superposition is always valid. On each plot of the feasible
ranges, each feasible solution from one of the combination of
thrust profile is displayed as one data point. The Lambert solu-
tion is displayed as a black cross, so each ( ~δvx, ~δvy) is visible as
the distance between each data point and the black cross.

In the following sections, we demonstrate two cases: (i) ~v f =

(−2, 8), T = 1
3 T ; (ii) ~v f = (−1,−9), T = 2

3 T .

3.1. n = 2
The feasible velocity ranges plot for both cases (i) and (ii) are

shown in Fig.3 and Fig.4 respectively.
Observe that for case (i), the solutions to the profile type

[~u1, 0] (i.e. ~δv[1])are distributed as a blue ellipse, while solu-
tions to the profile type [0, ~u2] (i.e. ~δv[2]) are distributed as a
red ellipse around the Lambert solution. Solutions to the pro-
file type [~u1, ~u2] (i.e. ~δv[12]) are shown as the green data points,
which form a lot of small ellipse surrounding the Lambert solu-
tion. The pattern is less obvious for case (ii), although outlining
all the small green ellipses is possible.

By further checking, in the plot of feasible initial velocity
range, we can observe that the dimensions of the green ellipses
are approximately equal to the red ellipse, and its center is ap-
proximately lying at one of the blue dot. Therefore we may
trace out the outline of the feasible velocity ranges by: 1. Use
the dimension of blue ellipse to trace out the locations of the
center of green ellipses; 2. “Superposition” the center of red
ellipses on the edge of the blue ellipse; 3. Translate the red el-
lipse around the blue ellipse to get the outline of the range. For
the plot of feasible final velocity range, the procedure is simi-
lar except we superposition the blue ellipse onto the red ellipse
instead.

This is in fact the results from the method of superposition:
Dimensions of the blue ellipse are from the set of ~δv[1], while
those of the red ellipse are from the set of ~δv[2]. Therefore all of
their combination give the approximation to the the location of
all green dots ~δv[12], i.e. ~δv[12] ≈ ~δv[1] + ~δv[2].

We can verify the effectiveness of the method of superposi-
tion by calculating the error ~∆ = ~δv[12] − (~δv[1] + ~δv[2]). The

results are plotted in Fig.5 and Fig.6. The errors for the two
cases are found to be

∥∥∥∥~∆∥∥∥∥ < 5 · 10−5 and
∥∥∥∥~∆∥∥∥∥ < 5 · 10−4 respec-

tively.
3.2. n = 3

The feasible velocity ranges for n = 3 to the two cases are
plotted in Fig.7 and Fig.8. The situation is similar to n = 2
except that there are three layers of ellipses instead of two: So-
lutions to the profile type [~u1, 0, 0] (i.e. ~δv[1])are distributed as a
blue ellipse; Solutions to the profile type [0, ~u2, 0] (i.e. ~δv[2]) are
distributed as a red ellipse; Solutions to the profile type [0, 0, ~u3]
(i.e. ~δv[3]) are distributed as a green ellipse; Solutions to the pro-
file type [~u1, ~u2, ~u3] (i.e. ~δv[123]) are shown as the yellow data
points.

The coverage of the yellow area by smaller ellipses is not
obvious due to too many data points. Yet the superposition
~δv[123] ≈ ~δv[1] + ~δv[2] + ~δv[3] is still applicable. The error
~∆ = ~δv[12] − (~δv[1] + ~δv[2] + ~δv[3]) are also plotted in Fig.9 and
Fig.10 for the two cases respectively. The magnitude of the er-
ror is found to be

∥∥∥∥~∆∥∥∥∥ < 5 · 10−6 and
∥∥∥∥~∆∥∥∥∥ < 5 · 10−4 respectively.

3.3. n > 3 and Extension of usage
Although we cannot work out the the solution for all combi-

nation for case n > 3 due to limitation of computational power,
we can predict results of grid search for n > 3 by observing the
behavior of n = 1 to 3.

From Fig.11 and Fig.12, we can see that the outline of the
feasible velocity ranges can be roughly approximate by the re-
sults using n = 1. For larger n, there are extra solution lying
at the peak of the elongated shape of the range, but the incre-
ment tends to converge. We expect that superposition for cases
of larger n can still over the increment as it works in the cases
n = 1, n = 2, and n = 3.

As the number of segment increases, we can use the control
function ~u[12...n] to approximate continuous functions. It means
that for any given control function (not necessary written in the
form of Eq.(4)), we can first approximate it into a summation
of Heaviside functions and use method of superposition to find
its corresponding initial and final velocity. This suggests that
we can have a larger freedom of choice of control functions in
trajectory design.

4. Conclusion

In this paper, we have introduced the approximation scheme
“method of superposition”. This method allows us to reduce
amount of computation greatly to map out the feasible veloci-
ties set for the two-point boundary value problem of low thrust
trajectory: Instead of applying grid search to all combination of
thrust profile in the form of [~u1, ~u2, ..., ~uk], we can span the com-
plete feasible velocity ranges by approximation using solutions
to profiles [0, ...0, ~ui, 0, ...0]. For pratical usage, we usually set
the number of choice of thrust angle to 20 ∼ 30, while num-
ber of segment as ∼ 10. Thus The implement of the method
of superposition could reduce the number of computation from
∼ 1014 to ∼ 300, which is highly efficient. However the calcu-
lation also showed that this approximation is expected working
particular well only when

∥∥∥~uk

∥∥∥ � − µ

‖~r‖
, i.e. when the trajectory

is close to the central body.
The inclusion of this approximation scheme into the standard



ballistic Lambert algorithm can accelerate the search of multi-
leg trajectories in low thrust mission design: feasible velocity
ranges of legs can be computed more efficiently and used to
determine smoothness at transfer between legs. Future work
may focus on improving the approximation scheme so that it
works for mission involving far orbits.
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(a) (b)

Fig. 3.: Feasible initial (left) and final (right) velocity ranges for case (i): ~v f = (−2, 8), T = 1
3 T with n = 2.

(a) (b)

Fig. 4.: Feasible initial (left) and final (right) velocity ranges for case (ii): ~v f = (−1,−9), T = 2
3 T with n = 2.

(a) (b)

Fig. 5.: Error between ~δv[12] and ~δv[1] + ~δv[2] for Case (i) at n = 2. Left: Initial velocity range; Right: Final velocity range.



(a) (b)

Fig. 6.: Error between ~δv[12] and ~δv[1] + ~δv[2] for Case (ii) at n = 2. Left: Initial velocity range; Right: Final velocity range.

(a) (b)

Fig. 7.: Feasible initial (left) and final (right) velocity ranges for case (i): ~v f = (−2, 8), T = 1
3 T with n = 3.

(a) (b)

Fig. 8.: Feasible initial (left) and final (right) velocity ranges for case (ii): ~v f = (−1,−9), T = 2
3 T with n = 3.



(a) (b)

Fig. 9.: Error between ~δv[123] and ~δv[1] + ~δv[2] + ~δv[3] for Case (i) at n = 3. Left: Initial velocity range; Right: Final velocity range.

(a) (b)

Fig. 10.: Error between ~δv[123] and ~δv[1] + ~δv[2] + ~δv[3] for Case (ii) at n = 3. Left: Initial velocity range; Right: Final velocity range.

(a) (b)

Fig. 11.: Comparing feasible initial (left) and final (right) velocity range for case (i) for n = 1 (blue), n = 2 (red) and n = 3 (green).



(a) (b)

Fig. 12.: Comparing feasible initial (left) and final (right) velocity range for case (ii) for n = 1 (blue), n = 2 (red) and n = 3 (green).
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