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    A two-stage differential corrector is applied to finding optimal low-thrust trajectories, both with two-body dynamics and 
with the circular restricted three body problem (CRTBP) dynamics. The first stage of the differential corrector ensures that 
dynamics are followed, and the second stage finds the least squares solution to minimize the sum of delta-v squared. Then, a 
homotopic approach is used with indirect multiple shooting to transition the delta-v squared solution to the minimum fuel 
mass solution, with constrained thrust. The approach is found to be robust to poor initial guesses, even converging when the 
initial guess consists of points pulled from a random distribution, with the constraint that the endpoints and time of flight 
must remain fixed. This robustness to initial guess is highly desirable especially for transfers in three-body dynamics, when 
it can be difficult to find a good initial guess.  
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Nomenclature 
 

𝑟 :  position vector 
𝑣 :  velocity vector 
𝑎 :  acceleration vector 
𝑢 :  control vector 
𝛿𝑟 :  position error vector 
𝑡 :  time 
𝐽  :  Jacobian matrix 
𝜇 :  gravitational parameter 
𝜆 :  Lagrange multiplier 
𝑋 :  “dualized” state and costate 

 Subscripts 
0 :  initial 
𝑓 :  final 
𝑖 :  index i 
𝑢 :  due to control 

Superscripts 
𝑔𝑖𝑣𝑒𝑛 :  fixed, given value 
𝑝𝑟𝑜𝑝 :  value from numerical propagation 

 
1.  Introduction 
  Electric propulsion (EP) is an enabling technology for many 
missions because it allows a greater total change in velocity 
(𝛥𝑣) than chemical propulsion for the same or less propellant 
mass. EP systems can have exhaust velocities (or equivalently, 
specific impulse) an order of magnitude higher than chemical 
systems. However, the tradeoff is that the thrust generated by 
such systems is much lower. To change orbits with EP, the 
thrust may need to remain on for days or even months at a time. 
Chemical maneuvers in many cases can be accurately modeled 
as single impulsive changes in velocity, whereas low-thrust 
maneuvers are long-duration continuous thrust arcs. 
Optimizing these low-thrust transfers is a great deal more 
complex than optimizing impulsive-burn trajectories. Most 
optimization tools require a “good” initial guess of the transfer 

in order to converge, but such an initial guess is not always 
available.  
  A sizable body of work exists in the literature transcribing 
these optimal trajectory problems into nonlinear programming 
(NLP) problems.1–6) The typical approach is to hand the NLP 
problem to an industry-standard “black-box” NLP solver such 
as IPOPT7) or SNOPT.8) Implementations vary mostly in terms 
of the transcription of the optimal control problem and the 
enforcement of dynamics constraints.  
  For many trajectory optimization problems, the experience 
of the authors is that the vast majority of computational time is 
spent in the iterative linear algebra of the NLP solver. This 
work calls the NLP solver into question, using instead a 
different problem formulation and an ordinary least squares 
solution. The strategy employed here is to iteratively use a 
simple least squares solver to find optimal, feasible trajectories 
given only the endpoints and time of flight.  
   
2.  The Optimal Control Problem 
  The optimal control problem is defined as: minimize the 
Lagrange performance index 

 𝐽 = 𝐿 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡
9:

9;
	 (1)  

subject to differential constraints due to the system dynamics 
 𝑥 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 ,		 (2)  

path constraints (such as limiting thrust) 
 ℎ> ≤ ℎ 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 ≤ ℎ@,		 (3)  

and endpoint constraints (such as constraining the initial and 
final orbits)  

 𝑒> ≤ 𝑒 𝑥 𝑡A , 𝑢 𝑡A , 𝑥 𝑡B , 𝑢 𝑡B , 𝑡A, 𝑡B ≤ 𝑒@. (4)  
 
3.  Circular Restricted Three Body Problem 
  The circular restricted three body problem (CRTBP) model 
assumes that the spacecraft is massless in comparison to the 
two primaries (here, the Earth and Moon). The primaries orbit 
their barycenter in a circular orbit.  
  Dimensionless units are used so that all state variables are on 
the order of 1. One distance unit (DU) is equal to the mean 
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distance between Earth and Moon, or 384747.962856037 km. 
The non-dimensional mass ratio 𝜇  is equal to 
0.012150585609624. A synodic reference frame is used such 
that the Earth is fixed at the point −𝜇, 0, 0 E, and the Moon is 
fixed at the point 1 − 𝜇, 0, 0 E . This reference frame is 
illustrated in Fig. 1.  

 
Fig. 1. The Earth-Moon synodic reference frame, with libration points L1 
through L5 labeled.  
 
The equations of motion for the system in this rotating frame are 
given by 

 
𝑥 = −

1 − 𝜇
𝑟GH

𝑥 + 𝜇 +
𝜇
𝑟JH

𝑥 − 1 + 𝜇

+ 2𝑦 + 𝑥 + 𝑎M,N 
(5)  

 

 𝑦 = −
1 − 𝜇
𝑟GH

𝑦 +
𝜇
𝑟JH
𝑦 − 2𝑥 + 𝑦 + 𝑎M,O (6)  

 

 𝑧 = −
1 − 𝜇
𝑟GH

𝑧 +
𝜇
𝑟JH
𝑧 + 𝑎M,Q. (7)  

  The use of simplified dynamical models here is justified 
because the algorithm’s effectiveness would not be affected by 
higher-fidelity perturbations.  
 
4.  Direct vs. Indirect Methods  
  The main difference between direct and indirect methods is 
in how the control is parameterized. For direct methods, the 
control is specified as one or many optimization variables. For 
indirect methods, the control is chosen to satisfy the first-order 
optimality conditions derived from Pontryagin’s minimum 
principle.  
  There are two objective functions that we are interested in. 
Both are related to the integrated control effort:  

 𝑐𝑜𝑠𝑡 = 𝐿 𝑑𝑡 = 𝑢 T 𝑑𝑡. (8)  

Ultimately, we want to minimize the propellant mass used, for 
which 𝑝 = 1. As an intermediate step, we will minimize the 
cost according to the 𝑝 = 2 problem. The 𝑝 = 2 solution is 
sometimes referred to as the “minimum energy” solution, but 
that terminology is not accurate here.  

  We will derive the control law for two-body dynamics. For 
other dynamics, the control law has the same relationship with 
the primer vector 𝜆U, but the dynamics of the costates change 
accordingly. For two-body dynamics, the Hamiltonian is given 
by 

 𝐻 = 𝑎M T + 𝜆E
𝑣

−
𝜇
𝑟H
𝑟 + 0H

𝑎M
, (9)  

which can be simplified to  

 𝐻 = 𝜆E
𝑣

−
𝜇
𝑟H
𝑟 + 𝑎M 𝑎M TWG + 𝜆UE𝑎M . (10)  

From Pontryagin’s minimum principle, we know that an 
optimal control law minimizes the Hamiltonian. Differentiating 
Eq. (10) with respect to control and setting equal to zero yields 

 𝑝 𝑎M TWG + 𝜆U ∙ 𝑎M = 0. (11)  
Looking back at Eq. (10), we can see from inspection that to 
minimize 𝐻, we should always choose the control direction 
𝑎M = −𝜆U. The magnitude of control acceleration is found by 
solving Eq. (11) for 𝑎M . Now the complete control law as a 
function of the primer vector 𝜆U is 

 𝑎M = −
1
𝑝
𝜆U

G
TWG

𝜆U (12)  

for 1 < 𝑝 ≤ 2 . If 𝑝  is exactly equal to 1, we make a 
modification to the control law by inspection of Eq. (10).  

 𝑎M =
0H 𝑖𝑓			𝜆U < 1

−𝑢Z[N𝜆U 𝑖𝑓			𝜆U > 1
indeterminate 𝑖𝑓			𝜆U = 1

 (13)  

where 𝑢Z[N  is the maximum possible control magnitude. 
Results in the literature9–11) and the authors’ own experience 
find that the radius of convergence is much larger when 𝑝 = 2 
than when 𝑝 = 1. Thus, a helpful strategy to solve optimal 
control problems is to start with the 𝑝 = 2  solution, then 
gradually reduce 𝑝  down to 1, with several intermediate 
values in between. At each step, the converged solution from 
the prior step is used as the initial guess. 
  The evolution of the Lagrange multipliers is found with 
Pontryagin’s minimum principle.  

 𝜆 = −
𝜕𝐻
𝜕𝑥

 (14)  

where 𝑥 is the state vector (here, position and velocity). For 
brevity, the derivatives are not written here.  
 
5.  Multiple Shooting  
  We use multiple shooting to transcribe the optimal control 
problem as a nonlinear programming (NLP) problem. In the 
direct formulation, the optimization variables traditionally 
consist of the state and control at each node.  
  As implemented here, the direct formulation has a two-stage 
differential corrector. The first stage chooses the control to 
perfectly follow the dynamics, and the second stage chooses the 
states to minimize the required control effort. This is described 
in greater detail in Section 6.  
  Indirect multiple shooting is very similar to direct multiple 
shooting in general, with the main difference being that control 
is computed according to the control law derived, instead of 
being specified explicitly as optimization variables.  
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6.  Solution Method  
  In this work, we use the simplest optimization strategy 
possible: an ordinary least squares solver. We begin by solving 
a problem with a large radius of convergence (the 𝑝 = 2 
problem with direct method) and gradually modify the solution 
until we have the more interesting problem, which has a small 
radius of convergence (the 𝑝 = 1  problem with indirect 
method). By solving progressively harder problems, the 
optimization is much more efficient than traditional 
implementations involving NLP solvers.  
  The direct method is set up to have an “inner loop” and an 
“outer loop”. The inner loop enforces the dynamics constraints, 
and the outer loop minimizes the cost.  
  This inner/outer loop formulation can be described in the 
language of a two-stage differential corrector. This technique is 
commonly used to find three-body periodic orbits in high-
fidelity dynamics simulations.12) The traditional 
implementation does not allow thrust, so the velocity and 
position are required to match at each node. In the present work, 
we do have some limited thrust available. Position is required 
to match, and the discontinuity in velocity represents a small 
impulsive maneuver. If these maneuvers are small enough and 
close enough in time, a trajectory modeled in this way can 
approximate a continuous-thrust maneuver. The Sims-
Flanagan transcription, famous for its implementation in the 
software tool MALTO,13) is a common example of 
approximating a continuous-thrust maneuver as a series of 
small impulsive maneuvers.  
  In the inner loop, a shooting method is implemented to find 
the velocities at each endpoint, given the positions and the time 
of flight between them. For two-body point-mass dynamics, 
this is equivalent to solving Lambert’s problem, albeit less 
computationally efficient. For any arbitrary force model, a 
simple algorithm is implemented as follows.  
  For the initial guess, assume that the trajectory follows a 
straight line between 𝑟f and 𝑟fgG. Then, the velocity guess at 
the first node is:  

 𝑣f
hMijj =

𝑟fgG
hfUik − 𝑟f

hfUik

𝑡fgG − 𝑡f
. (15)  

The state defined by 𝑟f, 𝑣f  is propagated via numerical 
integration from time 𝑡f  to time 𝑡fgG , using a fixed-step 
integrator. A fixed-step integrator is chosen over an adaptive 
integrator for two reasons. First, if an intermediate solution 
comes near a singularity, a variable step integrator will become 
very slow. Although a fixed-step integrator is inaccurate near a 
singularity, we generally want to avoid flying a spacecraft too 
close to any massive body anyway. Once a low-fidelity solution 
has been found, we can simply add more nodes where needed 
to meet integration accuracy requirements. The other reason to 
use a fixed-step integrator is that the finite-differenced partial 
derivatives are more consistent. It was found that adaptive-step 
integration methods add numerical noise to the approximate 
derivatives, which significantly impairs convergence.  
  The position error to be removed is then given by  

 𝛿𝑟fgG = 𝑟fgG
hfUik − 𝑟fgG

TlmT. (16)  
  Finite differencing is used to compute the Jacobian 𝐽fkkil  
of position error 𝛿𝑟fgG with respect to the initial velocity 𝑣f. 

The least squares update to velocity is then 
 𝑣f = 𝑣f

hMijj − 𝐽fkkil WG𝛿𝑟fgG. (17)  
  Once the velocity departing and arriving at each node has 
been found in the inner loop, the impulsive 𝛥𝑣f is simply the 
difference between the velocity going into node 𝑖  and the 
velocity leaving node 𝑖. The outer loop minimizes the sum of 
the squared 𝛥𝑣f	∀	𝑖.  
  For the outer loop, finite differencing is again used to 
construct the Jacobian matrix. Now, the Jacobian is the partial 
derivative of each 𝛥𝑣f element with respect to each position 
𝑟f element.  

 𝐽mM9il =
𝜕 𝛥𝑣f
𝜕𝑟o

. (18)  

In this work, the initial and final position vectors are held fixed, 
and time of flight is also fixed. The outer loop Jacobian is a 
sparse matrix; each position vector 𝑟f  influences three 𝛥𝑣 
vectors: 𝛥𝑣fWG, 𝛥𝑣f , and 𝛥𝑣fgG. The size of the Jacobian is 
3𝑁  rows (corresponding to the 𝛥𝑣) by 3 𝑁 − 2  columns 
(corresponding to the 𝑟, without the endpoints).  
  After converging on a solution to the 𝑝 = 2 problem with 
direct multiple shooting, homotopy with indirect multiple 
shooting is used to find the nearby solution to the 𝑝 = 1 
problem. As implemented here, indirect multiple shooting is a 
single stage (as opposed to the two stages used for direct 
multiple shooting). At every node, the state and costate are 
defined as optimization variables. The “dualized” state is 
constructed from its parts. 

 𝑋f = 𝑟fE, 𝑣fE, 𝜆l,fE , 𝜆U,fE
E
 (19)  

  The objective with the indirect multiple shooting step is to 
simultaneously enforce the dynamics for the states and costates. 
The dualized state 𝑋f  is propagated to time 𝑡fgG , giving us 
𝑋fgG
TlmT. The error in dynamics is then  
 𝜖fgG = 𝑋fgG − 𝑋fgG

TlmT. (20)  
Using finite differences, the Jacobian of all the 𝜖f terms with 
respect to all the dualized states 𝑋f  is computed. Ordinary 
least squares is then used iteratively to bring all 𝜖f below some 
small tolerance.  
 
7.  Examples & Results  
  The two standout features of this work are that viable 
solutions for many problems are found with an extremely poor 
initial guess, and that specialized optimization packages are not 
required. The following two examples will demonstrate this.  
  For the purposes of this paper, mass is assumed to be a 
constant 1000 kg. While we acknowledge this is not accurate, 
we note that trajectories found with this assumption are still 
valid – modeling the mass loss from propellant consumed 
would simply give the spacecraft greater control authority as 
time goes on.  
 
7.1.  Earth-Mars low-thrust rendezvous 
  A simple example is to design the trajectory followed by a 
spacecraft with electric propulsion to transfer from Earth to 
Mars. Two-body dynamics are used, with the Sun as the sole 
gravitational attractor. The trajectory is assumed to start at 
Earth with zero relative velocity and end at Mars with zero 
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relative velocity. Earth departure state is at 21 July 2020, and 
Mars arrival state is at 14 September 2022. For problems like 
this with simple dynamics, it is relatively straightforward to 
design a “good” initial guess intuitively. However, for the 
purpose of demonstrating the flexibility of the algorithm, the 
worst possible initial guess was used – each element of each 
position vector was drawn from a random normal distribution.  
  In the indirect formulation, the thrust available (and 
maximum control acceleration) is assumed to be constant. In 
reality, the acceleration available varies as a function of 
distance from the Sun, solar panel degradation, spacecraft mass, 
and other factors. These are neglected here because they are not 
necessary to demonstrate the algorithm.  
7.1.1  Optimization of p=2 problem for Earth-Mars 
  The first step in optimizing is to use the direct multiple 
shooting method described in Section 6. It was found that this 
approach generally can converge from a random initial guess 
with about 10-15 iterations. In some cases, the algorithm can 
converge on solutions that are clearly suboptimal – for instance, 
becoming retrograde for a portion of the orbit. These 
suboptimal alternative families of solutions exist for most 
orbital transfers and are local optima of the solution space 
which satisfy the first-order optimality conditions. To mitigate 
the risk of getting “stuck” in a poor local optimum, several 
different random initial guesses can be used, selecting the best 
result afterward. If a decent initial guess is available, the 
iterative method will be guided to a better local optimum and 
converge more quickly.  
  Figures 1-4 show the progress of the direct multiple shooting 
method from a random initial guess to a converged solution in 
12 iterations. The view is of the solar system from “above” – 
the +Z axis of the ecliptic plane.  
  The computation time is largely driven by the cost to 
numerically integrate the trajectory. Since each multiple-
shooting leg is independent of the others, these can be 
efficiently parallelized. In addition, since a fixed-step 
integrator is used, we know that the computational effort of 
each leg is identical. 

 
Fig. 2. The initial guess is completely random, with points drawn from a 
normal distribution roughly the same scale as the problem.  
 

 
Figure 3. After a single iteration of the direct multiple shooting algorithm 
with least squares, some structure is apparent.  
 

 
Figure 4. After 3 iterations, the current iteration is clearly in the family of 
the final solution.  
 

 
Figure 5. After 12 iterations, the problem has fully converged.  

 
  In the current implementation, a parallel for-loop is used in 
MATLAB, which takes about 1-2 seconds per iteration 
(depending on the number of legs used). Future 
implementations could easily distribute the propagation effort 
on a GPU (graphics processing unit), which we expect would 
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be 1-2 orders of magnitude faster than the MATLAB 
implementation.  
7.1.1.  Homotopy to 𝒑 = 𝟏 problem for Earth-Mars 
  When the first step described above converges, it has found 
an optimum state and control history for the 𝑝 = 2 problem, 
with the continuous-thrust trajectory approximated as a series 
of small impulsive maneuvers. We now feed this solution into 
an indirect multiple shooting algorithm to improve the quality 
of the solution. By using an indirect method, we can naturally 
describe the trajectory with truly continuous thrust. The thrust 
limit is also naturally introduced by limiting the control law 
output. Finally, the indirect implementation allows us to change 
from the 𝑝 = 2 solution (minimum “energy”) to the 𝑝 = 1 
solution (minimum propellant used).  
  The costates 𝜆f at each node can simply estimated by back-
solving the control law for the costates. We have the discretized 
control history from the direct method. Assuming the direct 
method did fully converge, a good estimate for the costates is 
given by:  

 𝜆U,f = −𝑝𝑎M,f (21)  

 𝜆l,f =
𝜆U,fgG − 𝜆U,f
𝑡fgG − 𝑡f

 (22)  

 

 
Fig. 6. Evolution of optimal thrust profiles as the cost function is changed 
from the 𝑝 = 2  problem to the 𝑝 = 1  problem, for the Earth-Mars 
transfer problem. As 𝑝 is reduced, the thrust on/off times become steeper, 
until becoming perfectly vertical at 1. Note that the algorithm could not 
converge for 𝑝 exactly equal to 1, but it can reach arbitrarily close to 1. 
 
  Thrust is limited to 0.3 N, which corresponds to acceleration 
of 3x10-4 m/s2. As a reference point, the Dawn spacecraft had a 
maximum acceleration at beginning of life of 2.3x10-4 m/s2.14)  
 
7.2.  Earth-Moon DRO to L2 halo transfer 
  This example uses the CRTBP dynamics to transfer between 
two 3-body orbits: a distant retrograde orbit (DRO) about the 
Moon to a halo orbit about Earth-Moon L2. The DRO is defined 
such that when crossing the x-axis in the +y direction, the x-
component of position is 0.9 DU, and all motion is in the xy-
plane. The DRO has a period of approximately 5.55 days and 
the Jacobi constant is approximately 3.0251. The halo orbit has 
a period of approximately 14.02 days and a Jacobi constant of 
approximately 3.0803.  

7.2.1.  Optimization of 𝒑 = 𝟐 problem for DRO to L2 

  As with the Earth-Mars transfer problem, the first step is to 
optimize the 𝑝 = 2 problem using direct multiple shooting. A 
random initial guess was used to demonstrate the robustness of 
the algorithm. Figures 7-10 show snapshots of the optimization 
progress from the initial guess to the converged solution. These 
figures are generated in the synodic reference frame, with 
dimensionless units. Both bodies are plotted to scale. The time 
of flight used in this example is 20 days.  

 
Fig. 7. The initial guess is random noise. 

 

 
Figure 8. After a single iteration, some structure is apparent. 

 

 

Figure 9. After 3 iterations, there is a smooth trajectory. The path is not 
optimal yet, though. 
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Figure 10. The solution converged in 10 iterations in this case. 

 
  As with the Earth-Mars transfer, this method is extremely 
robust when the endpoints and time of flight are held fixed. The 
rapid convergence rate lends itself well to parametric design 
studies, where many solutions to similar trajectories must be 
found. As an example, Fig. 11 shows departing the DRO and 
arriving on the L2 halo orbit at the same positions, but with 
different times of flight. This could be helpful to determine 
phasing maneuvers in 3-body dynamics, or to understand the 
trade space better.  

 
Fig. 11. An example of six trajectories from the same family with different 
times of flight. Time of flight here varies from 15 days to 40 days.  
 
7.2.1.  Homotopy to 𝒑 = 𝟏 problem for DRO to L2 

  Again, we can use a homotopy approach to gradually move 
from the 𝑝 = 2  “minimum energy” solution to the 𝑝 = 1 
minimum fuel solution, with indirect multiple shooting. It was 
found that between 10-20 intermediate values of 𝑝  were 
necessary for convergence. Each intermediate value will either 
converge or diverge within 5-10 iterations.  
 
8.  Conclusion  
  We show that the new approaches presented compare 
favorably to existing methods. In comparison to the traditional 
approach of plugging the problem into a “black-box” NLP 
solver, the methods shown converge even when given no 
knowledge of the solution at all. This robustness to initial guess 
is a compelling feature, as three-body orbit transfers are 
challenging to design with intuition alone. Of course, if a high-
quality initial guess is available, the methods shown are still 
valid.  
 

 
Fig. 12. Evolution of optimal thrust profiles as the cost function is changed 
from the 𝑝 = 2 problem to the 𝑝 = 1 problem, for the DRO-L2 transfer 
problem.  
 
  The major limitation of this least-squares approach is that the 
endpoints and time of flight must remain fixed, or the problem 
will diverge. Future work will explore how the endpoint 
constraints can be opened up while still permitting convergence.  
  The other limitation is that the random initial guess strategy 
tends to lead to solutions with at most two orbital revolutions. 
While that is satisfactory for many missions, spacecraft with 
less capable propulsion systems may need to spiral for several 
revolutions to complete a transfer. To meet tighter constraints 
on thrust, a more intelligent initial guess can be used which 
includes more revolutions.  
 
Acknowledgments 
  This work was supported by a NASA Space Technology 
Research Fellowship.  
 

References 
 
1) Sims, J., Finlayson, P., Rinderle, E., Vavrina, M., and Kowalkowski, 

T., “Implementation of a Low-Thrust Trajectory Optimization 
Algorithm for Preliminary Design,” AIAA/AAS Astrodynamics 
Specialist Conference and Exhibit, 2006, pp. 1–10. 

2) Herman, J. F. C., Improved Collocation Methods to Optimize Low-
Thrust , Low-Energy Transfers in the Earth-Moon System, 2015. 

3) Mingotti, G., Heiligers, J., and Mcinnes, C., “Optimal Solar Sail 
Interplanetary Heteroclinic Transfers for Novel Space Applications,” 
AIAA/AAS Astrodynamics Specialist Conference, 2014, pp. 1–26. 

4) Mingotti, G., Topputo, F., and Bernelli-Zazzera, F., “Numerical 
Methods to Design Low-Energy, Low-Thrust Sun-Perturbed 
Transfers to the Moon,” 49th Israel Annual Conference on Aerospace 
Sciences, 2009. 

5) Betts, J. T., “Very Low Thrust Trajectory Optimization Using a 
Direct SQP Method,” Journal of Computational and Applied 
Mathematics, vol. 120, 2000, pp. 27–40. 

6) Betts, J. T., “Using Direct Transcription to Compute Optimal Low 
Thrust Transfers Between Libration Point Orbits Runge-Kutta 
Methods,” 2016, pp. 1–23. 

7) Wachter, A., and Biegler, L. T., “On the implementation of an 
interior-point filter line-search algorithm for large-scale nonlinear 
programming,” Mathematical Programming, vol. 106, 2006, pp. 25–
57. 

8) Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP 



 

 

 

7 

Algorithm for Large-Scale Constrained Optimization,” SIAM Journal 
on Optimization, vol. 12, 2002, pp. 979–1006. 

 9) Haberkorn, T., Martinon, P., and Gergaud, J., “Low thrust minimum 
fuel orbital transfer: a homotopic approach,” Journal of Guidance, 
Control, and Dynamics. 

10) Guo, T., Jiang, F., and Li, J., “Homotopic approach and 
pseudospectral method applied jointly to low thrust trajectory 
optimization,” Acta Astronautica, vol. 71, 2012, pp. 38–50. 

11) Haberkorn, T., Martinon, P., and Gergaud, J., “Low Thrust 
Minimum-Fuel Orbital Transfer: A Homotopic Approach,” Journal 

of Guidance, Control, and Dynamics, vol. 27, 2004, pp. 1046–1060. 
12) Parker, J. S., and Anderson, R. L., “Low-Energy Lunar Trajectory 

Design,” 2013. 
13) Sims, J. A., and Flanagan, S. N., “Preliminary design of low-thrust 

interplanetary missions,” Jet Propulsion. 
14) “NASA Space Science Data Coordinated Archive” Available: 

https://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=2007-
043A. 

 
 

 


	ISTSProgramNumber: 
	0: 
	7951264527202454: ISTS-2017-d-113／ISSFD-2017-113




