
Open Source Implementation of A Fast and Precise N-body Low-Thrust
Propagator

By Weichen XIAO,1) Chit hong YAM,2) and Wen han CHIU1)

1)Department of Physics, The Hong Kong University of Science and Technology, Hong Kong
2)ispace inc., Tokyo, Japan

(Received April 24th, 2017)

Predicting the trajectory of a spacecraft accurately is essential to the design and operation of all space missions. We develop
an open source numerical propagator in hope that it can become the standard benchmark software of high precision propagator. We
demonstrate that this program has the merit of both high precision and high speed, and is highly customizable as well. We are also
modifying it to support non-inertial reference frames for more convenient input and output by doing Chebyshev interpolations to the
non-inertial central body.

Key Words: Numerical propagator, Low thrust, High speed, High precision

1. Introduction

Predicting the trajectory of a spacecraft accurately is essen-
tial to the design and operation of all space missions, particu-
larly for missions that involves multiple bodies and precise con-
trol. However to this date, there is no high precision propagator
available to the research and industrial community as a bench-
mark. In this paper we introduce a numerical propagator which
aims to fill in this gap.

We demonstrate with a simple low-thrust trajectory that the
precision of our program is very high, so that it is capable of
practical use in mission design. Compared to another MAT-
LAB version of numerical propagator, it also has the advantage
of higher speed as it is written in C++, which is a compiled
language. In addition, the use of the NAIF SPICE toolkit to-
gether with the boost-odeint library makes our program highly-
customizable. We are also modifying the program to handle
non-inertial frames by doing Chebyshev interpolation of the
non-inertial central body.

We are willing to make the program free and open source to
share it among the community of astrodynamics academia and
industry. We hope that it will become a standard benchmark
software of high precision propagator in the future.

2. Mechanism of the Propagator

2.1. The mathematical problem
The purpose of this program is to numerically calculate the

trajectory of a spacecraft in a n-body gravitational field, taking
into account the low thrust of the spacecraft and other force
exerted on it, solar radiation pressure for example. To achieve
this we have to solve the ordinary differential equations

x′′i (t) =
∑

j

GM jxi(t)

| ~x(t) − ~r j(t)|
3
2

+
Ti

m(t)
+ ai (1)

m′(t) = −
|~T |
ueq

(2)

in which ~x(t) is the position of the spacecraft at time t in terms of
kilometres and xi(t) are the spatial components of it. GM j and
~r j(t) are the gravitational parameters and the positions(in km) of

celestial bodies at time t. The celestial bodies to be considered
should be listed in a file as an input to the program. Ti is the
spatial components of the thrust of the spacecraft, m(t) is the
mass of it and ueq is the equivalent engine exhaust velocity. ai

represents the acceleration caused by other factors, such as the
solar radiation pressure on the space craft.
2.2. Ephemerides

To find the gravitational parameters and positions of celestial
bodies, we use the CSPICE toolkit developed by NAIF, NASA.
One should follow the instructions on the website of the toolkit
to install it, and declare it when compiling the program.

The ID of the celestial bodies to be considered are read from
a text file, and the bodvrd c command of CSPICE reads the GM
values from the ephemerides given the ID. Similarly, given the
time and the ID, the positions are also found using the spkezr c
command during integration.

It is up to the user to choose the ephemerides to be used with
the furnsh c command. The benchmarking in the following sec-
tions will be based on de423.bsp, de430.bsp, naif0010.tls.pc,
pck00010.tpc and de-403-masses.tpc.
2.3. Finding numerical solutions to the ODE

The program solves the equations of motion of the spacecraft
using the boost-odeint library. To make use of this feature one
should install the boost library first. As the user inputs the ini-
tial state, the thrust and the flight time in a text file, the program
solves the equations numerically with the integrate adaptive
function of the odeint library. In the following sections the inte-
gration method is chosen to be the 5th order Runge-Kutta Cash-
Karp method. The step size, precision requirements(absolute
and relative tolerance) and integration method are again cus-
tomizable.

Fig. 1. The test orbit with duration of 1440 days

Table 1. Difference between results of the C++ propagator and the MAT-
LAB propagator

Duration(days) | ~rdi f f erence| (km) | ~vdi f f erence| (km/s)
90 1.45065e-06 6.51478e-13
180 1.34675e-05 3.19821e-12
360 1.74936e-05 1.83252e-12
720 1.67313e-05 1.07238e-12
1440 2.49389e-04 4.2622e-11

3. Benchmarking

3.1. Precision
Our propagator has the advantage of high precision. To

demonstrate this, a simple low-thrust trajectory in the J2000
frame was used as a test case. Figure 1 shows the trajectory with
duration of 1440 days. Starting from a point about 100000km
from the Earth, the spacecraft has a constant low thrust point-
ing towards the +z direction, eventually end up in an orbit of
radius at the same magnitude as the Earth’s. The gravity of the
Sun, all the planets as well as Pluto and the Moon was taken
into account. The orbit was integrated for durations of 90, 180,
360, 720 and 1440 days, with absolute and relative tolerance
set to be 10−14. A same test was also done with a MATLAB
propagator for comparison.

The results of the two programs are compared in Table 1.
Another method to check the precision of the propagators is

to integrate an orbit forward in time first, and use the final state
as the initial state for a backward integration. The results of
the backward integration are to be compared with the original
initial state given.

This test is performed for both of the propagators, as shown
in Table 2.

The two tests above indicates that our C++ propagator agrees
with the existing MATLAB version. Moreover, its precision is
very high, such that the error is less than 1 meter for an integra-
tion of 8 years in duration(4 years forward, 4 years backward).
3.2. Speed

Another advantage of this propagator is its high speed. The
program is written in C++ which is a compiled language that
runs faster than interpreted languages. For the test case men-
tioned in the previous section, the runtime of the C++ propa-

Table 2. Comparison between the original initia state and the results of
the backward integration

Duration(days) | ~rdi f f erence| (km) | ~vdi f f erence| (km/s)
90(C++) 3.29119e-06 1.00799e-12
90(MATLAB) 7.40899e-06 2.90201e-13
180(C++) 1.31978e-05 3.12783e-12
180(MATLAB) 1.46025e-05 1.98345e-12
360(C++) 8.00936e-05 1.56245e-11
360(MATLAB) 6.5907e-05 1.32222e-11
720(C++) 0.000290803 5.72099e-11
720(MATLAB) 0.000113308 2.07391e-11
1440(C++) 0.000983651 1.92833e-10
1440(MATLAB) 4.11109e-06 2.5371e-12

Table 3. Runtime comparion of the low-thrust trajectory test trajectory

Duration(days) C++ Runtime(sec) MATLAB Runtime(sec)
90 0.095 0.614
180 0.155 0.755
360 0.283 0.941
720 0.537 1.346
1440 1.061 2.044

Fig. 2. A section of the Jupiter-Saturn transfer orbit with lower curvature

gator and the MATLAB propagator was also recorded in Table
3.

Table 3 indicates that the C++ propagator is 2-6 times faster
than the MATLAB version. In addition, its speed advantage
becomes more apparent when it comes to shorter durations.

Moreover, the C++ propagator takes even less time to run
for trajectories with less curvature, since less iterations will be
needed to numerically solve the ODE given the tolerance. Fig-
ure 2 shows a section of transfer orbit from Jupiter to Saturn
which was used for demonstration. The time it takes to integrate
this trajectory for both of the programs is recorded in Table 4
with respect to duration.

For the same duration, it takes both of the programs less time
to integrate this trajectory than the previous one. Again the C++

propagator has a larger speed advantage for shorter durations.
Hence, our program may be best suited for search algorithms
and optimizers that requires repeated integration of trajectories
in small time intervals.

Table 4. Runtime comparion of the transfer orbit test trajectory

Duration(days) C++ Runtime(sec) MATLAB Runtime(sec)
90 0.080 0.501
180 0.092 0.541
360 0.112 0.648
720 0.196 0.850
1440 0.244 1.089

Table 5. Comparison of stepper types

Stepper Type Position error (km) Runtime (sec)
Cash-Karp 54 0.000983651 1.061
Dormand-Prince 5 0.000296106 1.128
Fehlberg 78 2.7163e-05 0.232

3.3. Integration Methods
The use of odeint in this propagator makes it available for

the user to customize the integration method. This is done by
defining the stepper type at the beginning of the program. In the
previous sections we have been using the Cash-Karp method
54. Here however, we would like to compare three different
steppers: the Cash-Karp 54, the Dormand-Prince 5, and the
Fehlberg 78. The test case used here is again the 1440 days
forward and backward integration in Section 3.1.

Table 5 shows the difference between the integration methods
in terms of error and runtime. In this particular test case, the dif-
ference in error is too small to be significant, but the Fehlberg
78 method does have a huge advantage in efficiency. The user
should choose the integration method according to practical sit-
uations, and a few test runs are advised to determine the most
suited integration method.

The users are also free to turn on the theoretical error esti-
mation function of odeint. One should refer to the tutorial of
odeint for more details.

4. Non-inertial Frame and Chebyshev Interpolation

Currently our program accepts input states with respect to the
inertial frame(SSB) only. However it is sometimes more conve-
nient to use a non-inertial frame instead, for example using the
Earth frame to study the trajectory of a spacecraft close to the
Earth.

The most straightforward way to modify the propagator to
be able to deal with non-inertial frame is simply doing the co-
ordinate transformation. We modify the program to transform
coordinates in the non-inertial frame into those with respect to
SSB, do the integration, and then transform the results back
to the non-inertial frame. However the coordinates in SSB
may be of several orders larger than those in the non-inertial
frame(consider a satellite in the low Earth orbit for example),
which is a potential source of error when the integration is car-
ried out.

The other way is to do the integration directly in the non-
inertial frame. In this case we have to know the acceleration
of the non-inertial frame relative to the SSB. Unfortunately the
ephemerides available provides only the position and velocity,
but not the acceleration of the planets. To compute the accel-
eration we plan to do a Chebyshev interpolation of the orbit of
the planet.

The Chebyshev polynomials can be expressed as

T0(x) = 1 (3)

T1(x) = x (4)

Tn+1(x) = 2xTn(x) − Tn−1(x) (5)

and their derivative

T ′0(x) = 0 (6)

T ′1(x) = 1 (7)

T ′n+1(x) = 2TN(X) + 2xT ′n(x) − T ′n−1(x) (8)

While the Chebyshev coefficients and the interpolation func-
tion being

c j =
2
N

N∑
k=1

f (cos(
π(k − 1

2)
N

))cos(
π j(k − 1

2)
N

) (9)

and

f ′(x) ≈
N−1∑
k=0

ckT ′k(x) (10)

in which N is the number of Chebyshev nodes, and x runs
from -1 to 1.

Therefore by rescaling the time from -1 to 1 and finding out
~v(t) at each Chebyshev node, we can interpolate the velocity of
the non-inertial central body, hence finding out its acceleration
at each time.

The code of Chebyshev interpolation has already been fin-
ished and the benchmarking is ongoing.

5. Getting the Program

The propagator is going to be made free and open source. Its
source code is to be posted on GitHub as a public project soon.

6. Conclusion

In this paper we introduced a numerical propagator written
in C++ with the help of the boost-odeint library and the NAIF
SPICE toolkit. We demonstrated that the propagator has the ad-
vantage of precision and speed, and being highly customizable
in terms of ephemerides and integration methods. We are also
modifying the program to deal with non-inertial frames by do-
ing the Chebyshev interpolation of the central body. We would
like to make the propagator free and open source, hoping that
it can fill the gap and become the standard program among the
astrodynamics community.

References

1) Yam, C. H. and Kawakatsu, Y.: GALLOP: A Low-Thrust Trajectory
Optimization Tool for Preliminary and HighFidelity Mission Design,
pp.1–5.

2) Acton, C., Bachman, N., Liukis, M., Semenov, B. and
Wright, E.: Dynamical Systems, The SPICE Toolkit, The
NASA Planetary Science Division’s Ancillary Information System,
https://naif.jpl.nasa.gov/naif/toolkit.html (accessed April 24, 2017).

3) Ahnert, K. and Mulansky, M.: ”odeint tutorial,”,
http://headmyshoulder.github.io/odeint-v2/doc/index.html, (accessed

April 24, 2017).
4) ”HORIZONS Web-Interface”, https://ssd.jpl.nasa.gov/horizons.cgi,

(accessed April 24, 2017).
5) ”WebGeocalc”, The NASA Planetary Science Division’s Ancillary

Information System, https://naif.jpl.nasa.gov/naif/webgeocalc.html.,
(accessed April 24, 2017).

6) Weisstein, E. W.: Chebyshev Approximation For-
mula, From MathWorld–A Wolfram Web Resource,
http://mathworld.wolfram.com/ChebyshevApproximationFormula.html
(accessed April 24, 2017).

	Introduction
	Mechanism of the Propagator
	The mathematical problem
	Ephemerides
	Finding numerical solutions to the ODE

	Benchmarking
	Precision
	Speed
	Integration Methods

	Non-inertial Frame and Chebyshev Interpolation
	Getting the Program
	Conclusion

	ISTSProgramNumber:
	0:
	9034087766330874: ISTS-2017-d-115／ISSFD-2017-115

