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A general mathematical framework is presented to treat low thrust trajectory optimization problems using the indirect method and

employing a generic set of orbital elements (e.g. classical elements, equinoctial, etc.). An algebraic manipulation of the optimality

conditions stemming from Pontryagin Maximum Principle reveals the existence of a new quadratic form of the costate, which governs

the costate contribution in all the equations of the first order necessary optimality conditions. The quadratic form provides a simple

tool for the mathematical development of the optimality conditions for any chosen set of orbital elements and greatly simplifies the

computation of a state transition matrix needed in order to improve the convergence of the associated two-point boundary value

problem. Objective functions corresponding to minimum-time, minimum-energy and minimum-fuel problems are considered.
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Nomenclature

r : position vector in Cartesian coordinates

v : velocity vector in Cartesian coordinates

s : state vector

m : mass

x : vector of s and m

λ : vector of costates associated to s

λm : costate associated to m

y : vector of state, mass and costates

p : vector of perturbing accelerations

f : vector of thrust acceleration

f : thruster throttling parameter

α : thrust pointing unity vector

u : control vector [ f α]

Tmax : maximum thrust

c : thruster exhaust velocity

J : objective (cost) function

H : Hamiltonian

L : Lagrangian

ψ : vector of terminal constraints

g : vector of path constraints

ε : homotopy parameter

S : switching function

Subscripts

i : initial

f : final

l : lower bound

u : upper bound

Superscripts

∗ : optimal solution

1. Introduction

One of the greatest challenges when designing optimal tra-

jectories using indirect methods is the treatment of the costate.

These variables, introduced by the two point boundary value

problem (TPBVP) derived from the first-order necessary opti-

mality conditions and linked to their corresponding state vari-

ables, lack a physical interpretation in general. This compli-

cates the task of finding an initial guess for the solution of the

TPBVP, required if it is to be solved using iterative numerical

algorithms. Furthermore, the introduction of the costate into the

state equations through the control term increases their com-

plexity and makes it more difficult to derive variational equa-

tions for the accurate integration of the state transition ma-

trix, essential to increase the performance of numerical shooting

methods. When dynamics are formulated using Cartesian coor-

dinates, these issues are alleviated by the well known result of

Lawden’s primer vector theory.1) By applying Pontryagin Max-

imum Principle (PMP), it is possible to verify that the direction

of thrust is given by a vector whose components are the costate

variables associated to velocity. This leads to a fairly simple

expression of the control involving only the costate, while also

providing some physical sense for at least part of the costate.

However, there are practical cases where formulations for the

dynamics other than Cartesian may be more convenient. For in-

stance, using orbital elements allows one to express constraints

in a natural way as fixed initial and final values of the state

when moving from one orbit to another without specifying the

specific departure and arrival points. Unfortunately, when the

system dynamics are parametrized through orbital elements the

classical primer vector result is not preserved and the optimal

thrust orientation becomes a function of both state and costate.

This fact greatly complicates the computation of partial deriva-

tives and the derivation of an STM in analytical form as re-

quired in order to improve the convergence of the associated

TPBVP.4, 6)

In this article, we show that by carefully manipulating the

equations derived from the first order optimality conditions it

is possible to write them in a compact and more convenient

way, partially isolating the different contributions of state and

costate and leading to a unified, efficient formulation of the in-

direct equations for trajectory optimization that can be applied

to any set of generalized orbital elements or orbital parametriza-

tion. In the first section of the article we rewrite the neces-

sary optimality conditions of a generic optimization problem

to highlight the existence of a quadratic form of the costate



whose partial derivatives directly provide the contribution of

the costate to all the OCP equations (including the variational

ones). The computation of the partial derivatives is simplified

thanks to the separation of the state and costate contributions

in the quadratic form. In the subsequent section we proceed to

the derivation of the state transition matrix terms applicable to

a generic formulation. Finally, we derive the partial derivatives

of the Lagrangian and thrust throttling factor corresponding to

minimum-time, minimum-energy and minimum-fuel problems.

One application example is cited and conclusions are drawn.

2. Indirect Optimal Control Problem Formulation

A generic formulation for orbital dynamics with an n-

dimensional state vector s and independent variable t (from now

on considered a “generalized time”) can be expressed in the

form

ds

dt
= F (s,m, u, t) = B (s, t) p (s,m, u, t) + A (s, t) , (1)

together with the mass equation

dm

dt
= Fm (u, t) = −Tmax

c
f , (2)

where u =
[

f α
]

is the control vector formed by the thruster

throttling parameter f and pointing unity vector α, A is an n×1

vector and B a n×3 matrix. Without loss of generality, it is pos-

sible to assume that the thrust acceleration is the only perturbing

action

p = f = f
Tmax

m
α

leading to

F = f
Tmax

c
B · α + A . (3)

Note that this expression holds even if there are additional per-

turbing accelerations, simply by redefining A as A + B (p − f).

In general, an Optimal Control Problem (OCP) can be de-

fined as minimizing (or maximizing) an objective function of

the form,3)

J = φ
(

x f , t f

)

+

∫ t f

ti

L (x, u, t) dt (4)

where x = [s m], for a given set of constraints of the state and

control imposed at the terminal points ti and t f

ψil ≤ ψi (xi, ui, ti) ≤ ψiu

ψ f l ≤ ψ f

(

x f , u f , t f

)

≤ ψ f u

and along the trajectory (also known as path constraints)

gl ≤ g (t, x (t) , u (t)) ≤ gu

xl ≤ x (t) ≤ xu

ul ≤ u (t) ≤ uu

Indirect optimization methods make use of the calculus of vari-

ations to derive the first order optimality conditions correspond-

ing to this OCP,3) leading to a TPBVP which is normally solved

with numerical algorithms such as shooting methods. The num-

ber of equations (both differential and algebraic) and unknowns

will depend on the number and nature of the constraints, but in

all cases a set of costate variables λ and λm associated to s and m

are introduced (along with the differential equations describing

their evolution). A detailed treatment of the different types of

constraints falls beyond the scope of this work. For simplicity,

in the following it is assumed that there are no path constraints,

and that the terminal constraints can be expressed as fixed of

free values of x.

The Hamiltonian associated to the OCP can be written as:

H = λ⊤ · F + λmFm +L (5)

where the evolution of the costates is given by the Euler-

Lagrange equations derived from the first order optimality con-

ditions using the calculus of variations:3)

λ̇ = G = −∂H
∂s

(6)

λ̇m = Gm = −
∂H
∂m

(7)

An expression for the optimal control u∗ =
[

f ∗ α∗
]

as a func-

tion of x, λ, λm and t can be obtained by applying the PMP,2)

which states that the optimal control for a given optimal trajec-

tory is the one that leads to an extreme value of H over the set

of admissible controls. For the minimization case, the PMP can

be written in mathematical form as follows

u∗ = arg min
u∈U

H (

x∗, λ∗, λ∗m, u; t
) ∀t ∈

[

ti, t f

]

where

U =
{

α ∈ R3/||α|| = 1
}

∪ { f ∈ R/ f ∈ [0, 1]}

is the allowable set for the control. Substituting Eqs. (2) and (3)

into Eq. (5) and rearranging terms one reaches:

H = Tmax

m
f
[

λ⊤ · B · α
]

+ λ⊤ · A − λm

Tmax

c
+ L

Because (Tmax/m) f is semi-positive the term in brackets should

be negative and as large (in absolute value) as possible, leading

to an expression for α∗

α∗ = − B
⊤ · λ

||B⊤ · λ| | . (8)

This expression is a generalization of the well-known result of

the primer vector in Cartesian coordinates,1) which takes the

simple form α∗ = −λv/λv. However, for an arbitrary formula-

tion of the dynamics α∗ can be a complex expression of both

the state and the costate; this is one of the main drawbacks of

using element formulations to solve OCPs with indirect meth-

ods. On the other hand, the application of the PMP to determine

f will depend on the particular expression of L for each OCP,

so a general solution cannot be derived. In the following, it is

assumed that f ∗ is a known function of state, mass and costate.

Plugging the expression for α∗, Eq. (8), back into Eq. (3)

yields:

F = − f ∗
Tmax

m

B · λ
√
λ⊤ · B · λ

+ A (9)

where B = BB⊤ is a square matrix of dimension n×n. This ma-

trix is, by construction, symmetric and positive (semi-)definite.

Consequently, λ⊤ · B · λ represents a quadratic form of λ, where



the coefficients of the quadratic form are in turn functions of s.

Introducing

Ψ =
√
λ⊤ · B · λ (10)

as the square root of the quadratic form, it is possible to express

F in a more compact way:

F = − f ∗
Tmax

m

∂Ψ

∂λ
+ A (11)

as well as the Hamiltonian:

H = − f ∗
Tmax

m
Ψ + λ⊤ · A − λm f ∗

Tmax

c
+L. (12)

SubstitutingH into Eqs. (6) and (7) and operating, the ordinary

differential equations (ODEs) describing the time evolution of

λ and λm are reached (for clarity, the equations are written using

Einstein notation):

(

λ̇
)

l
= λ̇l = (G)l =

∂ f ∗

∂sl

Tmax

m
Ψ + f ∗

Tmax

m

∂Ψ

∂sl

−λ j

∂A j

∂sl

+
∂ f ∗

∂sl

λm

Tmax

c
+
∂L
∂sl

(13)

λ̇m = Gm =
∂ f ∗

∂m

Tmax

m
Ψ− f ∗

Tmax

m2
Ψ+
∂ f ∗

∂m
λm

Tmax

c
−∂L
∂m

(14)

with

∂Ψ

∂sl

=
1

2

λ j
∂B jk

∂sl
λk

Ψ
(15)

being A j and B jk the elements of A and B, respectively.

Gathering the previous results, the ODE system describing

the evolution of s, m, λ and λm can be written in a compact

form as:

d
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where the expressions for F, Fm, G and Gm are given in

Eqs. (11), (2), (13) and (14), respectively.

2.1. Variational equation and STM

A typical approach for solving the TPBVP associated to the

OCP is using shooting methods, which require the Jacobian of

the shooting function (or a suitable approximation). Although

it can be approximated numerically using finite differences and

BFGS updates, more efficiency and robustness can be achieved

by constructing it analytically from the State Transition Matrix

(STM) of the problem.4)

The STM maps small variations of the initial conditions,

δyi = [δsi δmi δλi δλmi], into small variations of y at a given

time t, δy = [δs δm δλ δλm]. The STM is calculated through the

integration of the variational equation:

Φ̇ (ti, t) = DyR Φ (ti, t)

where DyR is the Jacobian of R, and the initial value

for Φ corresponds to the identity matrix of dimension

2(n + 1) × 2(n + 1).

Although computing the Jacobian for R entails no intrinsic

challenges from a conceptual point of view, its practical imple-

mentation may become rather burdensome. As previously in-

dicated, α∗ can be a complex function involving both the state

and the costate, and the derivatives of R may rapidly become

too cumbersome to handle even with symbolic manipulators.

However, it is relatively simple to derive general expressions for

any formulation leveraging the structures previously revealed in

the equations. The Jacobian will then be expressed as a set of

problem-independent algebraic relations involving B, A, f ∗, L
and their derivatives, which will be problem-dependent.

Following this approach, the Jacobian can be written as:

DyR =
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with
(

∂F

∂s

)

jk

=
∂F j

∂sk

= −Tmax

m

∂Ψ

∂λ j

∂ f ∗

∂sk

− f ∗
Tmax

m

∂2Ψ

∂sk∂λ j

+
∂A j

∂sk

(

∂F

∂m

)

j

=
∂F j

∂m
= −∂ f ∗

∂m

Tmax

m

∂Ψ

∂λ j

+ f ∗
Tmax

m2

∂Ψ

∂λ j

(

∂F

∂λ

)

jk

=
∂F j

∂λk

= −Tmax

m

∂Ψ

∂λ j

∂ f ∗

∂λk

− f ∗
Tmax

m

∂2Ψ

∂λ j∂λk

(

∂F

∂λm

)

j

=
∂F j

∂λm

= − ∂ f ∗

∂λm

Tmax

m

∂Ψ

∂λ j

(

∂Fm

∂s

)

j

=
∂Fm

∂s j

= −∂ f ∗

∂s j

Tmax

c

∂Fm

∂m
= −∂ f ∗

∂m

Tmax

c

(

∂Fm

∂λ

)

j

=
∂Fm

∂λ j

= −∂ f ∗

∂λ j

Tmax

c

∂Fm

∂λm

= − ∂ f ∗

∂λm

Tmax

c

(

∂G

∂s

)

jk

=
∂G j

∂sk

=
∂2 f ∗

∂s j∂sk

Tmax

m
Ψ +

Tmax

m

∂ f ∗

∂s j

∂Ψ

∂sk

+

Tmax

m

∂Ψ

∂s j

∂ f ∗

∂sk

+ f ∗
Tmax

m

∂2Ψ

∂s j∂sk

−

λl

∂2Al

∂s j∂sk

− ∂
2L
∂s j∂sk

+ λm

Tmax

c

∂2 f ∗

∂s j∂sk

(

∂G

∂m

)

j

=
∂G j

∂m
=
∂2 f ∗

∂s j∂m

Tmax

m
Ψ − ∂ f ∗

∂s j

Tmax

m2
Ψ+

∂ f ∗

∂m

Tmax

m

∂Ψ

∂s j

− f ∗
Tmax

m2

∂Ψ

∂s j

− ∂
2L
∂s j∂m

+ λm

Tmax

c

∂2 f ∗

∂s j∂m



(

∂G

∂λ

)

jk

=
∂G j

∂λk

=
∂2 f ∗

∂s j∂λk

Tmax

m
Ψ +
∂ f ∗

∂s j

Tmax

m

∂Ψ

∂λk

+

Tmax

m

Ψ

∂s j

∂ f

∂λk

+ f ∗
Tmax

m

∂2Ψ

∂s j∂λk

− ∂Ak

∂s j

−

∂2L
∂s j∂λk

+ λm

Tmax

c

∂2 f ∗

∂s j∂λk

(

∂G

∂λm

)

j

=
∂G j

∂λm

=
∂ f ∗

∂s j∂λm

Tmax

m
Ψ +
∂ f ∗

∂λm

Tmax

m

∂Ψ

∂s j

−

∂2L
∂s j∂λm

+
Tmax

c

∂ f ∗

∂s j

+ λm

Tmax

c

∂2 f ∗

∂s j∂λm

(

∂Gm

∂s

)

j

=

(

∂G

∂m

)

j

∂Gm

∂m
=
∂2 f ∗

∂m2

Tmax

m
Ψ − 2

∂ f ∗

∂m

Tmax

m2
Ψ + f ∗

2Tmax

m3
Ψ−

∂2L
∂m2
+ λm

Tmax

c

∂2 f ∗

∂m2

(

∂Gm

∂λ

)

j

=
∂Gm

∂λ j

=
∂2 f ∗

∂m∂λ j

Tmax

m
Ψ +
∂ f ∗

∂m

Tmax

m

∂Ψ

∂λ j

−

∂ f ∗

∂λ j

Tmax

m2
Ψ − f ∗

Tmax

m2

∂Ψ

∂λ j

− ∂
2L
∂m∂λ j

+ λm

Tmax

c

∂2 f ∗

∂m∂λ j

∂Gm

∂λm

=
∂2 f ∗

∂m∂λm

Tmax

m
Ψ − ∂ f ∗

∂λm

Tmax

m
Ψ − ∂2L
∂m∂λm

+

Tmax

c

∂ f ∗

∂m
+ λm

Tmax

c

∂2 f ∗

∂m∂λm

These expressions involve the partial derivatives of Ψ with

respect to s and λ up to order two. The first order derivative of

Ψ with respect to s was already given in Eq. (15), and the rest

can be calculated as follows:

∂Ψ

∂λl

=
Bl jλ j

Ψ

∂2Ψ

∂s j∂sk

=
1

2

λl
∂2 Bln

∂s j∂sk
λn

Ψ
− 1

4

(

λl
∂Bln

∂s j
λn

)

(

λl
∂Bln

∂sk
λn

)

Ψ3

∂2Ψ

∂λ j∂λk

=
B jk

Ψ
−

(

B jlλl

)

(Bklλl)

Ψ3

∂2Ψ

∂s j∂λk

= −1

2

(

λl
∂Bln

∂s j
λn

)

(Bklλl)

Ψ3
+

∂Bkl

∂s j
λl

Ψ

2.2. Minimum-time, fuel and energy problems

Three especially interesting OCPs are the minimum-time,

minimum-energy and minimum-fuel problems. In this subsec-

tion, the values of L, f ∗ and their derivatives for these families

of OCPs are presented.

The objective function for minimum-time (understood as the

independent variable, or ‘generalized time’) problems takes the

form:

J =

∫ t f

ti

1 dt =

∫ t f

ti

L dt

leading to a constant Lagrangian of value 1. Furthermore, it is

possible to prove that f ∗ is also constant and equal to 1. Con-

sequently, all the derivatives of L and f ∗ become zero, greatly

simplifying the previous expressions for the Jacobian of R.

Minimum-fuel problems have a great practical interest for

mission design, but the discontinuities introduced by the char-

acteristic bang-bang structure of f ∗ greatly difficult their numer-

ical treatment. One way to address this issue is to apply homo-

topy techniques,5) solving an easier problem such as minimum-

energy first and performing a continuation in the objective func-

tion until the original minimum-fuel problem is reached. To this

end, a modified J depending on an homotopy parameter ε is in-

troduced as done by Zhang et al.:4)

J =
Tmax

c

∫ t f

ti

[

f − ε f (1 − f )
]

dt =

∫ t f

ti

L dt, ε ∈ [0, 1]

The two limit cases in ε correspond to minimum-fuel for ε = 0

and minimum-energy for ε = 1. Substituting L into the Hamil-

tonian and rearranging terms one reaches:4)

H = λ⊤ · A + f ∗
Tmax

c

[

S − ε + ε f
]

where a switching function S has been defined as:

S = − c

m
Ψ − λm + 1 (17)

This S is a generalization of the expression obtained by Zhang

et al.4) for the CR3BP in Cartesian coordinates. Same as in the

Cartesian case, by deriving H with respect to f and equating

to zero a minimum for f is found in the form f = (ε − S )/2ε.

Restricting this solution to the allowable set for the control, f ∈
[0, 1], a piecewise function for f ∗ is finally obtained:

f ∗ =



















0 for S > ε
(ε − S ) /2ε for − ε ≤ S ≤ ε
1 for S < −ε

(18)

This expression for f ∗ coincides with the one given by Zhang et

al.4) using Cartesian coordinates, only changing the definition

of S . Furthermore, it is straightforward to check that for the

minimum-fuel case (ε = 0) a bang-bang profile is obtained.

The derivatives of f ∗ will be different from zero only when

the thruster is operating in the intermediate regime, that is, for

|S | ≤ ε. In that case, the derivatives of S with respect to y up

to order 2 can be expressed as functions of the known deriva-

tives of Ψ as follows (for brevity, only the derivatives needed to

compute G, Gm and the variational equation are reported):

(

∂ f ∗

∂s

)

j

=
∂ f ∗

∂s j

=
1

2ε

c

m

∂Ψ

∂s j



∂ f ∗

∂m
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2ε

c
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Ψ
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)

j
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=
1

2ε

c

m

∂Ψ

∂λ j

∂ f ∗

∂λm

=
1

2ε

(

∂2 f ∗

∂s∂s

)
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∂s j∂sk

=
1

2ε

c

m

∂2Ψ

∂s j∂sk

(

∂2 f ∗

∂s∂m

)

j

=
∂2 f ∗

∂s j∂m
= − 1

m

∂ f ∗

∂s j

(

∂2 f ∗

∂s∂λ

)

jk

=
∂2 f ∗

∂s j∂λk

=
1

2ε

c

m

∂Ψ

∂s j∂λk

(

∂2 f ∗

∂s∂λm

)

j

=
∂2 f ∗

∂s j∂λm

= 0

∂2 f ∗

∂m2
=

1

ε

c

m3
Ψ

(

∂2 f ∗

∂m∂λ

)

j

=
∂2 f ∗

∂m∂λ j

= − 1

m

∂ f ∗

∂λ j

∂2 f ∗

∂m∂λm

= 0

The derivatives of L with respect to y up to order 2 can now

be expressed in a compact way in terms of the derivatives of f ∗

(again, only the terms required to evaluate G, Gm and DyR are

included.):
(

∂L
∂s

)

j

=
∂L
∂s j

=
Tmax

c

∂ f ∗

∂s j

K

∂L
∂m
=

Tmax

c

∂ f ∗

∂m
K

(

∂2L
∂s∂s

)

jk

=
∂2L
∂s j∂sk

=
Tmax

c

[

∂2 f ∗

∂s j∂sk

K + 2ε
∂ f ∗

∂s j

∂ f ∗

∂sk

]

(

∂2L
∂s∂m

)

j

=
∂2L
∂s j∂m

=
Tmax

c

[

∂2 f ∗

∂s j∂m
K + 2ε

∂ f ∗

∂s j

∂ f ∗

∂m

]

(

∂2L
∂s∂λ

)

jk

=
∂2L
∂s j∂λk

=
Tmax

c

[

∂2 f ∗

∂s j∂λk

K + 2ε
∂ f ∗

∂s j

∂ f ∗

∂λk

]

(

∂2L
∂s∂λm

)

j

=
∂2L
∂s j∂λm

=
Tmax

c

[

∂2 f ∗

∂s j∂λm

K + 2ε
∂ f ∗

∂s j

∂ f ∗

∂λm

]

∂2L
∂m2

=
Tmax

c















∂2 f ∗

∂m2
K + 2ε

(

∂ f ∗

∂m

)2














(

∂2L
∂m∂λ

)

j

=
∂2L
∂m∂λ j

=
Tmax

c

[

∂2 f ∗

∂m∂λ j

K + 2ε
∂ f ∗

∂m

∂ f ∗

∂λ j

]

∂2L
∂m∂λm

=
Tmax

c

[

∂2 f ∗

∂m∂λm

K + 2ε
∂ f ∗

∂m

∂ f ∗

∂λm

]

with

K = (1 − ε + 2ε f ∗)

3. Application

This mathematical framework has been used in a recent work

by Gonzalo et al.6) to study the low thrust end-of-life disposal

of Galileo satellites, using modified equinoctial element to for-

mulate the dynamics.7–10)

4. Conclusion

A mathematical framework for the formulation of OCPs us-

ing indirect methods and a generic formulation for the dynam-

ics has been proposed. The mathematical structure of the equa-

tions derived from the first order optimality conditions has been

leveraged to propose problem-independent formulas involving

a set of problem-dependent matrices and their derivatives with

respect to the state and mass. In particular, all the contribu-

tions of the costate elements associated to the state (excluding

mass) have been reduced to a quadratic form of the costate and

its derivatives. Relatively simple expression have also been de-

rived for the variational equation needed to compute the STM,

key to improve the numerical behavior of solvers for the TP-

BVP associated to the OCP. Expressions for the minimum-time,

minimum-energy and minimum-fuel problems have been pro-

vided.
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