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In this paper we present methods and concepts to design and validate highly nonlinear orbits characterized by ultra low control.
These features are met when flying through the Saddle Points, which are location in the Solar System when gravitational accelerations
balance. Trajectory optimization is embedded into high-fidelity environments, where accurate description of the spacecraft natural and
controlled motion is achieved. Orbit determination and navigation analysis rely on high-fidelity models for both the space and ground
segments assets as well. Tools have been developed and applied to the case of the possible mission extension of Lisa Pathfinder.
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1. Introduction

Flying in highly nonlinear gravity fields is appealing due to the
unique features that can be achieved if these models are prop-
erly exploited. Lagrange point orbits, ballistic capture orbits,
low-energy transfers, invariant manifolds, etc., are just mere
examples of what can be done by using the natural motion of
a spacecraft subject to two (or more) gravitational attractions
that are comparable. Beside generating orbits that cannot be
designed in the classic two-body problem, multi-body mod-
els may enable considerable propellant savings, launch window
widening, and overall safety increase1).

More recently, attention has been paid to the exploration of
the Saddle Points (SP) in the Solar System2). These are loca-
tions in the configuration space where the net gravitational ac-
celeration balances. These regions present clean, close-to-zero
background acceleration environments where possible devia-
tions from the General Relativity (i.e., the MOND/TeVeS the-
ory) can be tested and quantified3). Within the set of SP in the
Solar System, the Sun–Earth SP is particularly appealing due to
its relatively easy accessibility4). Although they are remarkable
locations in the Solar System, SP are still unexplored. Their lo-
cation and the non-equilibrium nature suggest that flying across
the SP can be done by exploiting the highly nonlinear, limited
control authority orbits described above.

The orbits flying through the SP feature a number of peculiar-
ities, namely, 1) they are highly sensitive to small variations
in the initial conditions, 2) a very limited control authority can
be exerted⇤, and 3) the SP has to be targeted with high preci-
sion. These demanding requirements make it natural to question
about the feasibility of flying through the SP with such under-
actuated systems in highly unstable vector fields.

In this work, we have formulated methodologies and developed
tools to design highly-nonlinear, control-limited orbits flying

⇤ This is because ultra low thrust propulsion (e.g., cold gas thrusters) is
preferred to conventional high-thrust propulsion to enable a fine trajec-
tory control and to avoid disturbances due to propellant sloshing.

through the SP, and to assess their feasibility, with a special fo-
cus on their navigability. The trajectory design is carried out in
a restricted n-body problem where the solar radiation pressure
as well as the oblateness of the celestial bodies are modeled.
Maneuvers are considered impulsive in the first stage of design;
they are transformed into continuous, finite-burn arcs in later
stages. The feasibility assessment involves developing high-
fidelity models for both the space and ground segments assets.
An orbit determination algorithm accounts for uncertainties and
noise in the spacecraft state, dynamical model, and maneuver
execution. The cost to navigate the orbits is also extracted a
posteriori by considering the deviations from the nominal solu-
tion given by the orbit determination.

The application case is Lisa Pathfinder (LPF). LPF has been fly-
ing about Sun–Earth L1 into a Lissajous orbit. Its Drag Free and
Attitude Control System (DFACS) is made of three clusters of
cold-gas (Nitrogen) thrusters. LPF is also equipped with a grav-
ity gradiometer consisting of two freely floating test masses,
separated by a baseline of just under 40 cm. This is an ideal
apparatus that can be used to test MOND/TeVeS theories.

2. Transfer Design

The equations of motion for a massless spacecraft are written
in a high-fidelity n-body problem within a Sun–Earth synodic
frame. The model is referred to as roto-pulsating restricted
n-body problem5) (RPRnBP). Precise positions and velocities
of celestial bodies are retrieved with the SPICE toolkit† as
a function of ephemeris epoch, that is TDB seconds after
J2000 date (January 1 2000 00hr:00min:00sec). On top of
that, the gravity field is perturbed by the action of 1) Solar
Radiation Pressure (SRP) acting on the Sun–S/C line and
handled with a spherical model, and 2) the planets oblateness,
which is embedded as an expansion series in the potential,
as function of J2 and Jn. The equations of motion are

† The toolkit is freely available through the NASA NAIF website. Refer
to http://naif.jpl.nasa.gov/naif/. Last seen on Dec 22 2016.

http://naif.jpl.nasa.gov/naif/
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where ⇢ and m are the S/C nondimensional position vector in the
roto-pulsating frame and its mass, respectively, n is the mean
motion of the Earth about the Sun, k their present distance,
and b their barycenter; C is the rotation matrix from inertial
to RPRnBP, S the set of celestial bodies influencing the S/C
dynamics, µ j the gravitational parameter of the j-th body, ⇢ j
its position vector, J2 j its second zonal harmonics coe�cient,
and Rpl j its mean equatorial radius; F0 is the force magnitude
exerted on the spacecraft due solar pressure, and Ik a three-by-
three matrix of zeros except for the third diagonal component,
Ik(3, 3) = 1. Primes indicate indicate derivative with respect
to nondimensional time, where dots derivative with respect to
dimensioned time‡. Eq. (1) is the equation used in the present
work for the trajectory design.

The trajectory design workflow consists of 4 phases:

I) In the exploration phase, feasible initial solutions are
sought by means of a global grid search. Starting from
the unstable manifold of L1 and L2 halo orbits, ballistic
approaches to the SP are classified§. The direct numerical
simulation parameters are a) the halo orbit amplitude, b)
the S/C initial phase along the halo, and c) the initial true
date. The search provides su�cient degrees of freedom to
achieve numerous ballistic SP close passages (with a grid
of 96, 000 points, roughly 1% of the trajectories came to
within 10, 000 km of the SP).

II) The optimization phase is the core of the transfer design.
A direct transcription of the dynamics, coupled with a
multiple shooting method, is used to tune a series of im-
pulsive maneuvers to precisely target the SP.

III) The finite burn phase is required to translate the optimal
impulsive maneuvers into a series of finite thrust arcs,
compatibly with the engine ultra-low control capabilities.

IV) For augmented accuracy, the thrusting direction of the out-
put solutions is further refined in an Earth-centered inertial
frame. This the refinement phase.

2.1. Multiple burns multiple shooting

The SP passage is targeted by means of a multiple shooting
technique that embeds a series of impulsive burns instanta-
neously modifying the S/C velocity. This is a general state-to-
position optimal transfer where the initial time is an optimiza-
tion parameter and the final conditions depend on the actual SP
position, which is a function of time. The number of maneu-
vers, NoM, is prescribed. Referring to Fig. 1 we define:

‡ Mixed derivative notation in Eq. (1) acknowledges that ephemeris data
is numeric, discrete, and provided for dimensional time.
§ The SP is located at a distance of approximately 258,800 km from the
Earth, along the Sun–Earth line, between the Sun and the Earth.

• Segment as the part of the trajectory that stems from the
multiple shooting transcription;

• Arc as the ballistic stretch separated by maneuvers;

• Leg as the whole S/C trajectory between SP passages.

In this analysis, there are m� 1 segments per arc (m is the num-
ber of discrete points for the multiple shooting time discretiza-
tion), NoM + 1 arcs per leg, and as many legs as the number
of consecutive SP passages. For numerical purposes, each arc
can be considered as a separate two-point boundary value prob-
lem (TPBVP), where boundary conditions on both temporal ex-
trema depend either on 1) the initial conditions and the state of
the following adjoint arc, 2) the states of two adjoint arcs, or
3) the state of the previous adjoint arc and the final conditions.
In this way the optimization can be carried out by patching to-
gether several multiple shooting arcs. The patching condition
requires continuity in position and a fixed jump in velocity that
represents the impulsive maneuver. The multiple shooting pro-
cedure is briefly recalled here for convenience. It is applied to a
general arc j of the trajectory, and superscripts in the variables
indicate the arc to which they belong. The proper selection of
variables and an ad-hoc transcription strategy have significant
impact on the algorithm e�ciency and performance6).

A TPBVP7) consists of finding x(t), t 2 [t0, t f ], such that

ẋ = f (x, t), h(x(t0), x(t f )) = 0. (2)

In this context, the dynamics in (2) is the state space represen-
tation of Eq. (1) (x is 6-dimensional). The function h specifies
nonlinear boundary conditions, needed to well-pose the prob-
lem8). Problem (2) is solved for a finite set of variables9).

The solution is discretized over m points t( j)
0 = t( j)

1 < t( j)
2 < · · · <

t( j)
m = t( j)

f ; that is, s

( j)
k = x(t( j)

k ), k = 1, . . . ,m. This defines m � 1
segments in which a TPBVP is solved by enforcing continuity
at both ends. This shortens the duration of the original solution
and reduces sensitivity. Let the defect vector be
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where '(x0, t0; t) is the flow (i. e., solution) at time t of Eq. (2)
starting from initial conditions (x0, t0). A schematic represen-
tation of the defect vectors and the ballistic arcs is shown in
Fig. 1. The problem is to determine the states s

( j)
k such that

⇣( j)
k = 0, k = 1, . . . ,m � 1, and h

( j)(s

( j)
1 , s

( j)
m ) = 0. (4)

In Eqs. (4) there are 6m unknowns (the states s

( j)
k ) and 6m equa-

tions (6 boundary conditions and 6(m � 1) defect constraints).
This is the classic multiple shooting method. Within this frame-
work, patching together adjoint arcs simply translates in the
proper mathematical definition of the function h

( j), expressing
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Fig. 1.: Multiple shooting strategy.
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where �v = [03, I3]T
2 R6⇥3 is an operator that maps velocity in

its correct position. Note that both x0 and x f can be function of
time. This is important because the initial/final state might be a
prescribed trajectory (e. g., LPF).

Variables. The number of unknowns, Nvar, of this problem
depends on the number of maneuvers and the number of seg-
ments of the multiple shooting, namely

Nvar = (6m + 2)(NoM + 1).

They represents m(NoM+1) six-dimensional states for the mul-
tiple shooting, and 2 times per arc. The nonlinear programming
(NLP) variables embed hence the initial and final times, that are
allowed to vary. The variables are collected in vector

y = (s

(1)
1 , s

(1)
m , s

( j)
k , s

(NoM+1)
m , t(1)

1 , t(1)
m , t( j)

1 ,t
(NoM+1)
m ), (6)

where it is noted that variables are repeated at arc interfaces.
This reduces the mutual dependence among arcs, leading to
more sparse Jacobian, better behaved coupling only due to con-
tinuity conditions, with the drawback of tracking a higher num-
ber of unknowns.

Objective function. A relevant space mission parameter is the
�v consumption, which is intimately related to on-board pro-
pellant mass. Accordingly, the objective function is,

J(y) =
NoMX

j=1

k�u( j)
k

2. (7)

Constraints. These are subdivided into:

• Equality constraints

(i) Time and position continuity at arcs interfaces,

(ii) Defect vectors must be null to ensure continuity be-
tween adjoint segments,

(iii) Boundary conditions enforcement.

• Inequality constraints

(i) The maximum time for reaching the SP is bounded to
5 years, and each arc should last minimum 2 days,

(ii) The nature of the problem suggests that several solu-
tions exist corresponding to a wide range of control
authority. Here, control budget is limited to 20 m/s.

(iii) For feasible impulsive-to-finite maneuver conversion,
it is necessary to allow enough post-maneuver time.
This is done by estimating the thrusting time as a
function of the �v, and engine performances.

There are a total of 4NoM + 6(m � 1)(NoM + 1) + 9 equality
constraints, ceq = 0, and 2NoM+3 inequality constraints, c  0:
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In the last component of Eq. (8), �r = [I3, 03] 2 R3⇥6 is an oper-
ator that maps state to position. (�S P is referred to the SP miss
distance.) Regarding the last of Eq. (9), numerical simulations
have shown that this is always an overestimation of the time
necessary to spread the maneuver.
Problem 1. The problem of precisely hitting the SP by resort-
ing to a series of impulsive maneuvers can be stated as:

min
y

J(y) s.t.
(

ceq = 0,

c  0.
(10)

The Matlab active-set algorithm has been used to solve the NLP.

Fig. 2 shows and example of trajectory to the SP. The light-
colored line is the guess solution of the exploration phase,
whereas the dark line represents the actual trajectory. A series
of 6 impulsive maneuvers place the spacecraft in a SP-bound
path. Relevant parameters of the trajectory are found in Table 1.
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Fig. 2.: Example of trajectory to the SP.

Table 1.: Parameters for the direct SP transfer orbit refinement.

NoM �v TOF tS P k�S Pk

[m] [m/s] [days] [TDB] [m]
6 16.23 122.5 07/18/17, 17:02:56 0.14e � 3

3. Finite burn maneuvers

An exact impulsive to finite burn maneuver conversion is one
that produces a finite burn solution whose final state is equal to
the final position and velocity of the original post impulse tra-
jectory at the time the finite burn maneuver ends. This means
that the ballistic (un-thrusted) phases of the finite burn trajectory
are identical to the ballistic phases of the impulsive trajectory.
The single impulsive maneuver may be part of a more complex
multi-impulse trajectory. An approach to this problem is to con-
vert each impulsive maneuver separately¶. It is assumed that the
end time of a finite burn maneuver will be less than or equal to
the start time of the next finite burn maneuver that is used to
replace the next impulsive maneuver, if it exists. The latter is
compliant with the the nonlinear constraint of Section 2.1..

The minimum finite burn time optimization problem for a sin-
gle impulse, as defined here, is treated as a pseudo-rendezvous
problem where the target particle flies along the post-impulse
trajectory10). Referring to Fig. 3, the chase particle is the space-
craft itself that flies along the pre-impulse trajectory and is re-
quired to rendezvous with the target particle. In this figure, the
time of the impulse is ti, and the state of the particle on the finite
burn trajectory is also identified at the same epoch.

The information available from the impulsive maneuver is used
to estimate the start/end times of the time optimal finite burn,
along with the values of the locally referenced spherical angles
and their first and second time derivatives. Azimuth and eleva-
tion time profiles for the thrust are approximated as quadratic
polynomials of time with unknown coe�cients, leading to a
sub-optimal solution. A direct method with explicit numerical
integration is used to optimize this finite burn model solution.

The impulsive to finite burn conversion is done assuming ideal
engine with constant maximum thrust and exhaust velocity.

¶ The conversion of a multi-impulse trajectory to an equivalent multi-
finite burn trajectory is a separate problem, with many more issues,
and is also not considered in this study.

Pre-impulse trajectory
Post-impulse trajectory
Chaser particle
Target particle

ti
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Fig. 3.: Impulsive to finite burn maneuver pseudo-rendezvous.

4. Navigation Analysis

To assess the feasibility of flying preliminary designed orbits, a
navigation tool has been implemented. This includes the devel-
opment of high-fidelity models for both space and ground seg-
ments assets, as well as an orbit determination algorithm which
uses simulated measurements to reconstruct the spacecraft state.

4.1. Tracking windows

The identification of tracking/coverage windows for all the se-
lected ground stations represents the first step of the naviga-
tion analysis, required to generate the radiometric data and ulti-
mately simulate the estimation process.

More in details, a coverage window from one ground station is
defined as an un-thrusted portion of the trasfer trajectory with-
out solar conjunction11) or Moon occultations and in which the
corresponding elevation and linking constraints are satisfied.

After their identification, resulting visibility windows may also
be filtered with respect to other criteria such as:

• overlaps, whenever the spacecraft is in view of multiple
ground stations, to avoid simultaneous radiometric data;

• short durations, to ensure a minimum duration, required
for instrument calibrations process;

• long durations, to limit the time interval available for nav-
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igation purpose;

• windows frequency, to avoid dealing with coverage win-
dows very close in time, which may not reflect real life
conditions and typically do not lead to significant improve-
ments in the orbit knowledge12).

The coverage windows obtained from Cebreros ground station
for the presented transfer are shown in Fig. 4. Note that these
have already been filtered assuming a minimum separation in-
terval of 5 days between two consecutive windows. The daily
coverage evolution along the transfer is reported in Fig. 5.

4.2. Measurements generation

Radiometric data including two-way Doppler and range mea-
surements are generated from selected ground stations. Their
accuracy is a↵ected by several errors such as Earth orientation,
clock instabilities, delays of the signal due to both instruments
(thermal noise), and transmission media. All these sources are
reduced to a set of random and bias errors on the simulated
measurements, whose values are specified in Table 2.

An example of the radiometric data simulated for the LPF case
is reported in Figs. 6 and 7, where range and range-rate mea-
surements from Cebreros ground stration are shown.

4.3. Covariance analysis

The main goal of this section is to determine the achievable
level of accuracy in spacecraft position and velocity knowledge.

Table 2.: Range and Doppler measurements assumptions.

Parameter Value
Range frequency once per pass
Range noise (1�) 20 m
Range bias 20 m
Doppler frequency once every 10 min
Doppler noise (1�) 0.03 mm/s
Doppler bias 0 mm/s
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A Square Root Information Filter (SRIF), as presented in Ref.
13), is used to perform the orbit determination (OD) process and
derive the state estimates. The initial uncertainty is assumed to
be 100 km in each component of position, 1 m/s in each com-
ponent of velocity and 0.1 kg in mass. Starting from the a priori
information, the SRIF algorithm is run with a mapping time of
0.25 days. At each measurement epoch, radiometric data are
processed to obtain the knowledge update in terms of informa-
tion array. In case no measurements are available, state and co-
variance matrix are simply propagated forward, up to the next
mapping time. Proceeding in this way, the state estimates are
sequentially updated, leading to the final position and velocity
knowledge profiles. By fixing a certain threshold, a paramet-
ric analysis can also be performed to determine the minimum
tracking frequency required to guarantee the desired accuracy
level. Note that the adopted filter implementation allows ac-
counting for several error sources:
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• the e↵ects of systematic/bias errors, through a consider co-
variance approach13). Belong to this class, errors such as:

1. ground station location biases: assumed equal to 30
cm in equatorial plane error and 1 m out of equatorial
plane error.

2. systematic errors in the measurement modelling (e.g
due to system calibration errors), see Table 2.

• the e↵ects of exponentially correlated random variables
(ECRV), such as:

1. Stocastic components of the solar radiation pressure,
modeled as an ECRV with a magnitude of 10% of the
nominal force and a correlation time of 1 day.

2. Thrust variables (magnitude and direction) assumed
as ECRV with a 1� error of 1% in modulus and 0.5�

in pointing angle, correlation time of 1 day.

3. Residual accelerations, modeled as an ECRV with a
steady state uncertainty of 3 cm/s/day (3.5 ⇥ 10�10

km/s2, 3�).

The inclusion of all these e↵ects is mainly aimed at compen-
sating for di↵erences between physical models and real world,
and therefore at assessing the feasibility of flying such orbits in
a real environment.

Results are given in Figs. 8 and 9, where the position and veloc-
ity knowledge for the proposed transfer solution are reported.
Clearly, the achievable accuracy in the state knowledge at the
very beginning is quite poor and mainly depends on the a priori
covariance matrix. As soon as the number of processed mea-
surements increases, the accuracy level improves, although a
change in the knowledge can be seen almost in the middle of the
transfer. This is due to a low level of spacecraft observability
which occurs when the spacecraft is crossing the equator plane.
An increment in the knowledge uncertainty is also observable in
the low-thrust arc (grey shaded area in the plot), where the com-
bination of zero tracking data with the magnitude and pointing
noises, deteriorates the achievable accuracy.

4.4. Navigation costs

To estimate the navigation costs the following approach is as-
sumed:
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Fig. 9.: 1� achievable knowledge in spacecraft velocity.

i. The solution is partitioned into small arcs. Let t j and t j+1

be the initial and final time associated to the j-th arc, re-
spectively, and let �t j = t j+1 � t j be its duration.

ii. At time t j, the spacecraft position and velocities are o↵
from the nominal solution by �r j and �u j, respectively.
These deviations are computed starting from the 1�, 2�
and 3� error ellipsoids. The probability of the state es-
timate error falling inside these ellipsoids, assuming a
trivariate Gaussian density function, is 0.200, 0.739, and
0.971, respectively13).

iii. A navigation maneuver �u j at time t j has to be accounted
to correct the deviated state and minimize its distance from
the nominal solution at time t j+1. The magnitude of this
maneuver is computed as shown in Ref. 14):

�u j = k
 
�u j +

�r j

�t j

!
+ aerr�t j, (11)

where k is a systematic propagation error equal to 1.1 and
aerr is an external error applied periodically of 10�11 km/s2.

iv. The logic in i–ii above is repeated for the whole duration
of the transfer (from t0 to t f ). In this way a correction
cycle of periodicity �t j is obtained to limit the growth of
the perturbing trajectory. The cost of this correction cycle
is �vnav =

P
j �v j.

The navigation cost for a �t j of 5 days is reported in Fig. 10. As
expected, the required �v j becomes larger whenever the state
knowledge accuracy decreases. The final �vnav values needed
to navigate the presented solution are 2.387 m/s (1�), 4.766 m/s
(2�) and 7.168 m/s (3�).

To ensure the feasibility of the maneuver �v j within the time in-
terval �t j, the navigation correction duration is computed con-
sidering the current spacecraft mass as well as the maximum
thrust available. As can be seen from the results depicted in
Fig. 11, the needed time is always below the value of 5 days
assumed for the correction cycle.

By varying the value of �t j it might be possible to determine the
optimal navigation interval; that is, the frequency of the correc-
tion cycle that yields the least navigation cost, while still re-
specting the mission requirements. Figure 12 illustrates how
this value changes with the value of �t j, and therefore with the
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Fig. 10.: Navigation costs (correction cycle: 5 days).
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Fig. 11.: Navigation correction duration (corr. cycle: 5 days).
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Fig. 12.: Navigation cost vs frequency of the correction cycle.

frequency of the correction cycle. As expected a higher �vnav is
found for short time intervals, whereas an asymptotic behaviour
is reached for larger �t j.

These costs are added to the �vnom, output of the design phase,
to get an overall �v budget to fly the ultra low thrust orbits.

5. Conclusion

In this paper we have summarized the heritage accumulated in
designing and validating ultra low thrust transfers to the SP.

These are peculiar orbits that require sophisticated methods for
design and navigation analysis. The method and tools devel-
oped have been applied to the possible mission extension of
LPF, though they can be used to treat generic opportunity mis-
sions from the Lagrange point orbits as well as dedicated mis-
sions to the SP.
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