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The increased population in space of uncontrollable objects (e.g., space debris) poses severe threats to space assets. In order
to avoid collisions with space debris and schedule space missions, the acquisition of highly accurate and reliable state information
of these threatening objects is essential. However, due to the sparsity of observations collected by limited sensors on ground, non-
Gaussian errors could be introduced into the orbit prediction process without measurement correction. Moreover, uncertain parameters
(e.g., the ballistic coefficient, area-to-mass ratio, etc) may also make the non-Gaussianity of orbital dynamics more severe. Both lead
to very challenging orbit determination (OD) tasks. The particle filter (PF) is widely used for state estimation of nonlinear systems
with non-Gaussian uncertainty based on sequential Monte Carlo simulations (MCS). The generalised polynomial chaos (gPC) theory
can also benefit from MCS methods to approximate a dynamic model for uncertainty propagation of model parameters and initial
conditions. In this sense, this work integrates the gPC into the traditional bootstrap PF algorithm (gPCPF) for the non-linear and non-
Gaussian OD problem. A high area-to-mass ratio object in an inclined geosynchronous Earth orbit is used for validating the efficacy
of the proposed gPCPF with simulated ground-based range and range rate measurements. Its performance is compared with extended
Kalman filter, unscented Kalman filter (UKF), Gaussian mixture UKF and the bootstrap PF. The results indicate gPCPF outperforms
other filters with an uncertain orbital parameter (i.e., the ballistic coefficient) handled.
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Nomenclature

x : Orbital state vector
p : Orbital parameter vector
z : Measurement vector
f : Nonlinear dynamic model
h : Nonlinear measurement model
u : Measurement noise
X : Augmented state vector
φ : The generalised polynomial basis function
ξ : Multidimensional random variable
α : Multidimensional index
Φ : Multivariate basis function
C : Matrix of gPC coefficients
η : Standard Gaussian independent random vector
Ĉ : Matrix of coefficients of truncated gPC
H : M × N Matrix of polynomials

p(·) : Probability density function
ω : Weight

aS RP : Solar radiation pressure acceleration
B : Ballistic coefficient

1. Introduction

Due to the large number of resident space objects (RSOs) and
the limited number of sensors available to track them, space
surveillance is subject to large observation gaps. In addition,
the large propagation intervals coupled with nonlinear RSO dy-
namics result in a highly non-Gaussian probability distribution
of the orbital state. Therefore, only estimation techniques that
can handle both non-linear and non-Gaussian (NLNG) problem,
are suitable for orbit determination (OD) for these RSOs.

The research into the field of online, real-time state estima-
tion based on dynamic models dates back to 1960, when Rudolf
E. Kalman developed a minimum-variance estimator, namely
the Kalman filter (KF), for linear stochastic systems with as-
sumed Gaussian distributions in his seminal paper.15) Since
then, KF and its variants have been widely used in estimation
problems. The extended Kalman filter (EKF) is commonly used
for real-time nonlinear estimation by linearising the dynamic
and/or measurement equations at each time step via first-order
Taylor expansions.24) However it fails when the simple lineari-
sation causes a considerably inaccurate approximation. Thus,
some other variants, like the Gaussian higher-order KF (GHKF)
that takes second- or even higher- order approximation of the
nonlinearity, have been proposed.9) Another set of alternatives
are sigma point Kalman filters (SPKF), including the unscented
Kalman filter,14) the central difference filter12) and the divided
difference filter.21) SPKFs essentially are sampling-based fil-
ters and can yield more accurate results than an EKF or GHKF,
especially when accurate initial condition states are not well
known.7) But SPKFs are often slightly slower than the EKF.

For most general real-world systems, filters that do not rely
on the Gaussian assumption have also been investigated. The
Gaussian sum Kalman filter, like the Guassian mixture un-
scented Kalman filter (GMUKF), is proposed to deal with
NLNG problems by approximating the a posterior probabil-
ity density function (PDF) using a weighted sum of Gaussian
PDFs.12) A second general approach to NLNG filtering is
known as a particle filter (PF), based on sequential Monte Carlo
simulation (MCS).1) PF can provide satisfactory accuracy of the
solutions in the NLNG cases but also poses high computational
costs.

Obviously filters need to handle uncertainties involved in the



system’s dynamics and associated observations so as to obtain
optimal estimates. As a useful alternative to statistical methods,
the generalised polynomial chaos (gPC) theory is proposed to
account for the effects of arbitrary, time-invariant uncertainties
associated with model parameters and initial conditions.27) It
is an extension of the classical polynomial chaos expansions25)

for substituting the stochastic system by an alternative deter-
ministic system with a linear combination of orthogonal basis
functions and propagating the associated uncertainties onto the
system response without experiencing any constraints of linear
dynamics, or Gaussian distributions of the uncertainty sources.
The gPC method has been applied in many space applications,
e.g., orbit uncertainty propagation.13, 23) It also has been inte-
grated with filters for state and parameter estimation.3, 17, 18, 28)

The main idea of this paper is to combine the generalised
polynomial chaos (gPC) with PFs (gPCPF) in a hybrid scheme,
and compare the gPCPF with the bootstrap PFs in the OD prob-
lem with nuisance orbital parameters. To be specific, the gPC is
used to propagate the orbital state with an uncertain parameter
through the non-linear dynamics. Then a generic PF scheme is
implemented for the posterior orbital state and PDF estimation.
The basis polynomials of gPC need to be regenerated based on
the posterior PDF for the next iteration. Finally, numerical sim-
ulations are given for testing the OD performance by the pro-
posed gPCPF algorithm with ground-based observations. Two
scenarios are given: one is an inclined geosynchronous Earth
orbit (IGSO) following a Keplerian motion and the other one
is to assume a high area-to-mass ratio (HAMR) with this IGSO
and the solar radiation pressure (SRP) is considered with an
uncertain ballistic coefficient. gPCPF filtering performance is
compared with extended Kalman filter (EKF) and the bootstrap
PF, in terms of state estimation and sensitivity analysis of the
parametric uncertainties.

The rest of the paper is organised as follows: Section 2.
gives the nonlinear stochastic model of the system with non-
Gaussian parametric uncertainty. The mathematical details for
the gPC methodology is introduced in Section 3.. Section 4. in-
troduces the formulation of particle filters followed by the pro-
posed gPCPF algorithm given in Section 5.. Two numerical
examples are used to test the performance of gPCPF in Section
5.. Section 6. draws the conclusions of this paper and discusses
some future work.

2. Problem Formulation

Consider a general continuous-time nonlinear dynamic sys-
tem with uncertain initial state and parameters and a discrete-
time measurement model

ẋ = f (x, p, t), (1)
zk = h(xtk ) + uk, (2)

where x(tk) denotes the n-dimensional state vector at the time
epoch tk; p denotes the l-dimensional uncertain parameters in-
volved in the nonlinear dynamic model represented by the sym-
bol f (·); z denotes the m-dimensional measurements with their
function represented by h(·); uk is measurement noise with a
known distribution p(uk), which is usually assumed to follow a
zero mean Gaussian PDF. For simplicity, the state and param-
eters are combined as X =

[
x; p

]
with the total dimensions of

d = n + l. In the Bayesian framework, one attempts to construct
the posterior PDF p(Xk |z1:k) of the state variables and param-
eters based on the information of the measurement and a prior
PDF p(X0). Then the state and parameters can be recovered
from the posterior PDF. The formulation of Bayesian estima-
tion will be introduced with details in Section 4..

3. Generalised Polynomial Chaos

3.1. Dynamical System Approximation by Generalised
Polynomial Chaos

The gPC framework is used for efficient propagation of the
probabilistic uncertainties in X0. Generally two steps are in-
volved in gPC algorithms: 1) the construction of a surrogate
model of the system using the orthogonal polynomials and 2)
the stochastic propagation of the initial uncertainties through
evaluation of the surrogate model. In the context of gPC, the
solution X of Eq. 1 can be represented by an infinite series of
orthogonal polynomials19)

X(t, ξ) = c0φ0 +

d∑
i1=1

ci1φ1(ξi1 ) +

d∑
i1=1

i1∑
i2=1

ci1i2φ2(ξi1 , ξi2 )

+

d∑
i1=1

i1∑
i2=1

i2∑
i3=1

ci1i2i3φ3(ξi1 , ξi2 , ξi3 ) + . . . , (3)

where φk is the generalised polynomial basis function of order
k determined using the Wiener-Askey scheme27) based on the
PDF of multidimensional random variables ξi j (i j = 1, 2, . . . , d)
that typically represent the uncertainties in model parameters
or initial and boundary conditions. The original PC expansion
can only be assembled using Hermite polynomials, correspond-
ing to standard Gaussian distribution of ξi j . In the gPC context,
however, the polynomial bases have been expanded into other
types of functions. For instance, Legendre, Laguerre, and Ja-
cobi are optimal selections for modelling the effects of random
variables described by uniform, γ and β distributions, respec-
tively, in order to achieve theoretical exponential convergence
of the approximation. The families of PDFs and their corre-
sponding families of orthogonal polynomials are summarised
in Table 1.

Table 1. The families of distributions and corresponding families of or-
thogonal polynomials

Distribution ξ PolynomialsΦk(ξ) Support
Gaussian Hermite (0, 1)

γ Laguerre [0,∞)
β Jacobi [a, b]

Uniform Legendre [−1, 1]

The above expansions can be formulated in a concrete form
via multidimensional basis functions, i.e.

X(t, ξ) =
∑
α∈Nd

0

CαΦα(ξ)
(
Nd

0 :=
{
(α1, . . . , αd) : α j ∈ N ∪ {0}

})
,

(4)
where α ∈ Nd

0 is a multidimensional index notation; Φk(ξ) de-
notes the multivariate basis function, which is defined as the
tensor product of univariate polynomial basis functions with the



assumption that the random univariate variables ξi are indepen-
dent, and identically distributed (IID)

Φα(ξ) = Φα(ξ1, ξ2, . . . , ξd) = φ(1)
α1

(ξ1)φ(2)
α2

(ξ2) · · · φ(d)
αd

(ξd),
(5)

where αd ∈ N
1
0 denotes the degree of the univariate polynomials

φ(d)
αd (ξd). In practical applications, the assembly of orthogonal

polynomials in Eq. 4 needs to be truncated to a finite number.
A standard truncation strategy corresponds to the total degree
p of the polynomials and the dimensionality d of the random
variables characterising the input uncertainties, hence the ap-
proximation of X with truncated gPC expansions is given as

X̂(t, ξ) =
∑
α∈Ad

p

CαΦα(ξ)
(
Ad

p =
{
α ∈ Nd

0 : ‖α‖0 ≤ d, ‖α‖1 ≤ p
})
.

(6)
The total number of terms N in an expansion of total order p
involving d random variables is given by

N = 1 +

p∑
s=1

1
s!

s−1∏
r=0

(d + r) =
(p + d)!

p!d!
. (7)

Additionally, a hyperbolic truncation scheme based on q-norm
is also used as an alternative, with the index sets given as

Apq,d =
{
α ∈ Nd

0 : ‖α‖0 ≤ d, ‖α‖q ≤ p
}
, (8)

where

‖α‖q =

 d∑
i=1

α
q
i


1/q

(0 < q ≤ 1).

When q = 1, the hyperbolic truncation reduces to the standard
truncation in Eq. 6. Due to the sparsity-of-effects principle that
the low-order interactions of the polynomials take main effects,
the hyperbolic truncation scheme leads to sparse gPC expan-
sions,4, 5) which are more time efficient.

Substitution of the approximate solution X̂ into Eq. 1 results
in errors, which are given by

e(N) =
˙̂X(t, ξ) − f (t, X̂, ξ) =

˙̂X(t, ξ) −
∑
α∈Ad

p

CkΦk(ξ), (9)

which indicates the truncation error depends on N in the stan-
dard truncation scheme and converges in the mean-square sense
as N tends to infinity,26) i.e.

lim
N→∞
〈e2(N)〉 = 0. (10)

From above remarks, both the computational costs and approx-
imation accuracy depend on the value of N. In practice, the
dimensionality d of uncertainties is always deterministic with
a specific system. Hence, the degree p needs to be decided in
order to achieve a given error threshold but also to calculate the
gPC coefficients efficiently.

3.2. Non-intrusive Approach to Solve gPC Coefficients
To build up the approximation of the solution X̂, the poly-

nomial coefficients need to be solved. The approaches can
be categorised into two types: intrusive and non-intrusive ap-
proaches. In an intrusive approach, all the dependent random
variables in the system equations are replaced with gPC expan-
sions, which is straightforward but difficult to implement as it
requires rewriting the whole programme of dynamic system in
Eq. 1. Therefore, only non-intrusive approaches are considered
in this work.

In this way, the system model is treated as a ”black-box”
so that the gPC coefficients are solved based on a set of sim-
ulation response evaluations. Generally two primary strate-
gies have been proposed to calculate the polynomial coefficients
non-intrusively in the literature, i.e., the spectral projection and
the least-squares regression (LSR).2, 8) The LSR and its variant
Least Angle Regression (LAR) are introduced in the work.
3.2.1. Least-squares Regression

The method of LSR solves the coefficients Cα by minimising
the cost function2)

Cα ≈ argmin
1
M

M∑
j=1

X(t, ξ j) −
∑
α∈Ad

p

CαΦα(ξ j)


2

. (11)

According to Eq. 11, the gPC expansions and corresponding co-
efficients can be written into a linear system
Φα1 (ξ1) Φα2 (ξ1) · · · ΦαN (ξ1)
Φα1 (ξ2) Φα2 (ξ2) · · · ΦαN (ξ2)

...
...

. . .
...

Φα1 (ξM) Φα2 (ξM) · · · ΦαN (ξM)



ĈT
α1

ĈT
α2
...

ĈT
αM

 =


XT (t, ξ1)
XT (t, ξ2)

...
XT (t, ξM)

 .
(12)

The Eq. 12 can be formulated in a simple form

HĈ = Y, (13)

where H is a M × N matrix on the left hand side of Eq. 12,
Ĉ is the matrix of gPC coefficients, and Y is comprised of the
surface response of the system model. The solution of the gPC
coefficients can be given

Ĉ = (HT H)−1HTY. (14)

Figure 1 illustrates the degree of the N th multivariate polyno-
mial functions with respect to each univariate polynomial func-
tion. In this case, six inputs of position and velocity components
are propagated using maximum 4th degree gPC. There are a to-
tal of 210 coefficients to be solved. The value of each coefficient
is shown in Figure 2.
3.2.2. Least Angle Regression

LAR is proposed as an efficient procedure to select the poly-
nomial basis functions that dominates the model response, in
order to yield sparse gPC expansions for solution approxima-
tion.5) The method of LAS solves the coefficients Cα by min-
imising the cost function

Cα ≈ argmin
1
M

M∑
j=1

X(t, ξ j) −
∑
α∈Ad

p

CαΦα(ξ j)


2

+λ
∑
α∈Ad

p

|Cα|

(15)
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where λ is a positive scalar. An adaptive LAR procedure is
detailed in [5].

For the following orbit determination demonstration, both
LSR and LAR methods are used to solve gPC coefficients in
the gPCPC filter, from which the best solutions are chosen.

4. Particle Filter

Sequential state estimation is the process of determining the
states of a stochastic dynamical system epoch by epoch by
incorporating the noisy measurements collected from the sys-
tem’s sensors with an imperfect dynamic model in the frame-
work of various filtering techniques. The state typically evolves
according to a Markov chain. Except for the linear case (with
Gaussian noise), no closed-form solutions to the state estima-
tion problem are known. A Markov process for the system
function in Eq. 1 is assumed

p(Xt0 |z0) = p(Xt0 ), (16)
p(Xtk |Xtk−1 , z1:k−1) = p(Xtk |Xtk−1 ), (17)

where p(Xt0 |z0) is the the a priori PDF of the state vector.
In the measurement update step, the prior PDF is updated

with the new observation zk based on Bayes’ theorem to obtain
the posterior PDF

Posterior︷      ︸︸      ︷
p(Xtk |z1:k) =

Likelihood︷    ︸︸    ︷
p(zk |Xtk )

Prior︷        ︸︸        ︷
p(Xtk |z1:k−1)

p(zk |z1:k−1)︸       ︷︷       ︸
Evidence

, (18)

where p(zk |Xtk ) is the measurement likelihood, which is ob-
tained from the measurement model; the normalising denom-
inator p(zk |z1:k−1) is given by

p(zk |z1:k−1) =

∫
p(zk |Xtk )p(Xtk |z1:k−1)dXtk . (19)

We can consider the update or filtering distribution as a weight-
ing of the prediction distribution as in the full joint case above,
i.e.

Posterior︷      ︸︸      ︷
p(Xtk |z1:k) =

Weight︷︸︸︷
wk

Prior︷        ︸︸        ︷
p(Xtk |z1:k−1), (20)

where in this case the weight is defined as

wk =
p(zk |Xtk )

p(zk |z1:k−1)
. (21)

In the time update step, p(Xtk |z1:k) is predicted to p(Xtk+1 |z1:k)
as shown in Eq. 22, which can be taken as a prior over Xtk before
the most recent observation zk is available. p(Xtk+1 |Xtk ) is given
by the system dynamics in Eq. 1.

p(Xtk+1 |z1:k) =

∫
p(Xtk+1 |Xtk )p(Xtk |z1:k)dXk. (22)

Generally, the Eqs. 20 and 22 with the initial PDF given in
Eq. 16 define a very conceptual solution of the sequential es-
timation problem. Analytical solutions for prediction and up-
date steps in Eq. 20 - 22 can only be obtained with some spe-
cific assumptions. For instance, the Kalman filter deduced
from the above rules has been proven to be an optimal fil-
tering technique when the following two conditions are sat-
isfied: 1) Both the system and measurement equations (Eqs.
1 and 2) are linear; 2) All the state and measurement noises
(p(Xt0 ), p(zk |Xtk ) and p(Xtk |zk)) follow Gaussian distributions.
However, for nonlinear systems with non-Gaussian noises, it is
impossible, in general, to estimate the state or/and parameters
optimally and analytically. Attempts to force these problems
into a linear and Gaussian framework by linearisation lead to
EKF, SPKF and many variants. However, with nonlinearity and
non-Gaussianity becoming much more severe, this type of ap-
proximation always results in divergence. In these cases, the PF
turns out to be a good alternative.

The PF is a simulation-based sequential Monte Carlo
method, which implements a sequential Bayesian filter by MCS
without making any assumption on the PDF. The central idea of
a PF is to represent the required PDF by a large number of IID
samples (particles) X(i)

tk−1
with associated weights ω(i)

k

p(Xtk |z1:k) ≈
Ns∑
i=1

ω(i)
k δ(Xtk − X(i)

tk ), (23)

where the ith weight ω(i) is normalised such that
∑Ns

i=1 ω
(i) = 1; δ

denotes the Delta function; Ns denotes the number of particles.
As Ns becomes large, the estimated posterior PDF approaches



the real PDF. Then the state can be estimated using these parti-
cles and weights. Specifically, with the posterior PDF obtained
based on the Bayes’ rule, the state estimate can be solved by

X̂tk = Ep(Xtk |z1:k)[Xtk ] :=
∫

Xtk p(Xtk z.1:k)dXtk . (24)

The derivation of PFs is revisited here.1, 10, 11) According to the
principle of importance sampling, the weights ω(i)

k in Eq. 23 are
defined as

ω(i)
k ∝

p(Xi
t0:tk |z1:k)

q(Xi
t0:tk |z1:k)

, (25)

where q(Xi
t0:tk |z1:k) is the importance distribution, from which

the particles are drawn. Then an update equation for the weight
can be derived by formulating p(Xi

t0:tk |z1:k) using Bayes’ rule

ω(i)
k = ω(i)

k−1

Likelihood︷    ︸︸    ︷
p(zk |Xi

tk )

Transition︷       ︸︸       ︷
p(Xi

tk |X
i
tk−1

)

q(Xi
tk |X

i
t0:tk−1

, z1:k)
, (26)

where the importance distribution is given by

q(Xi
t0:tk |z1:k) = q(Xi

tk |X
i
t0:tk−1

, zk)q(Xi
t0:tk−1
|z1:k−1). (27)

To save the memory of the filtering algorithm, the importance
distribution is further simplified to be dependent solely on Xtk−1

and zk

q(Xi
tk |X

i
t0:tk−1

, z1:k) = q(Xi
tk |X

i
tk−1
, zk). (28)

This yields a modified weight expressed as

ω(i)
k ∝ ω

(i)
k−1

p(zk |Xi
tk )p(Xi

tk |X
i
tk−1

)

q(Xi
tk |X

i
tk−1
, zk)

. (29)

The above equations present how the state estimate and its
posterior PDF could be solved using sequential importance
sampling technique.1, 10) However, the particles meet with the
degeneracy phenomenon. Since the prior PDF p(Xi

tk |X
i
tk−1

) is
usually broader than the likelihood p(zk |Xi

tk ), the normalised
weights tend to concentrate into one particle after a number of
recursions.20) The effective sample size is used to measure the
sampling degeneracy, which is approximated by

N̂e =
1

Ns∑
i=1

(ω(i)
k )2

. (30)

Once the effective sample size N̂e is smaller than a threshold
Nt, a resampling procedure is recommended to deal with the
sampling degeneracy.1, 16)

5. Generalised Polynomial Chaos Based Particle Filter

5.1. Isoprobabilistic Transformation
In the context of gPC, isoprobabilistic transformation2, 6) is

used to transform the random vector ξ that is not standardised
into a set of reduced variables η

ξ = T(η). (31)

Depending on the distribution of each component of the vari-
able ξi, the associated reduced variable ηi can be represented
by a Gaussian distribution, uniform distribution, etc. Then the

approximate state X can be formulated as a function of the re-
duced variables η

X(t, ξ) =
∑
α∈Nd

0

CαΦα(T(η)) =
∑
α∈Nd

0

C̄αΦα(η). (32)

Note that the variables ξ are assumed independent. But isoprob-
abilistic transformation also can be used for correlated variables
through, e.g., Nataf transformation.6)

5.2. gPCPF Algorithm
Combining Eqs. 16, 22, 23, 29, the traditional bootstrap PF

algorithm is summarised as below:1, 10, 11)

1. Initialisation at k = 0 for i = 1, . . . ,Ns:
• Generate Ns particles Xi

t0 from an initial distribution
p(Xt0 );

• Set the normalised importance weights ω(i)
0 = 1/Ns.

Repeat at each time k ≥ 1 for i = 1, . . . ,Ns:
2. Measurement update:

• The weights for the new sampling at current epoch
can be calculated using Eq. 29;

• Normalise the weights

ω(i)
k =

ω∗(i)k
Ns∑
i=1
ω∗(i)k

; (33)

• The final posterior density is estimated using Eq. 23,
and the state is updated

X̂tk =

Ns∑
i=1

ω(i)
k Xi

tk ; (34)

3. Resampling:
• Calculate the efficient sample size using Eq. 30;
• If N̂e < Nt, generate a new set of particles Xi

tk accord-
ing to Eq. 33, and let ω(i)

k = 1/Ns.
4. Time update:

• Generate predictions from the importance distribution

Xi
tk+1
∼ q(Xi

tk+1
|Xi

tk , zk+1). (35)

In analogy to the traditional bootstrap PF algorithm, only
the time update step needs to be substituted. Additionally,
a common reasonable choice for the importance distribution
q(Xi

tk+1
|Xi

tk , zk+1) is the transition PDF p(Xi
tk+1
|Xi

tk ) represented
by the system function in Eq. 1,1) which has been termed as
the bootstrap PF. Hence, the weights involved in Eq. 29 can be
rewritten as

ω(i)
k ∝ ω

(i)
k−1 p(zk |Xi

tk ). (36)

The uncertainties involved in the transition PDF for the system
function will be propagated by gPC expansions in Eq. 35. The
gPCPF algorithm is illustrated in Figure 3.

6. Numerical Examples

Following previous discussion, we set up two orbit determi-
nation scenarios where nonlinear and non-Gaussian effects can-
not be neglected. Both scenarios include an IGSO satellite with
an orbital period of 24 hours. Range and range rate observa-
tions are simulated from different numbers of ground stations
with different noises. No process noise is added for the current
work.



Table 2. Satellite Initial Conditions in the ECI Coordinate System

x (m) y (m) z (m) vx (m/s) vy (m/s) vz (m/s)
37334419.253 6402992.005 -13817229.687 -1259.3 2409.9 -1709.8
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State and state PDF propagation using gPC

Fig. 3. gPCPF Algorithm Illustration

6.1. Scenario I
In the first scenario, only two-body motion is assumed for

the space object. Three ground stations (see Figure 4 for the
detailed information) are chosen for measurement simulation.
An elevation mask of 20◦ with an interval of 600s is used for
all the measurements. The initial state of the reference orbit is
given in Table 2. A standard deviation value of 1m is given for
each position component and that of 1mm/s is given for each
velocity component in the initial covariance matrix.
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Fig. 4. Range Observations From Three Ground Stations (Elevation
Mask: 20 Degrees)

To analyse the gPCPF performance with data outage, differ-
ent numbers of ground station data are used. Statistical results
of position and velocity estimation errors are given in the bar
chart in Figure 5 and 6 in comparison with PF results. Gen-
erally speaking, gPCPF and PF share similar OD performance.
With observations available from only one ground station, the
3D RMS (Root Mean Square) error of position estimates comes
to approximately 3m with the largest contribution coming from
the In-track direction.

Different observation standard deviation values are given for
sensitivity analysis. As the range measurement 1σ grows from
1m to 100m, both position and velocity estimation accuracy and
precision deteriorate using both PFs. The gPCPF generates sim-
ilar results with the bootstrap PF. These results are shown in
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Figure 7 and Figure 8.
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Figure 9 and 10 plot the position and velocity errors in terms
of RMS in the Radial, In-track and Cross-track frame using



gPCPF, respectively. Only one station’s measurements are used
with STD value of 10m and 1mm/s given to range and range rate
measurements, respectively. It is obvious that the 3σ bounds get
larger purely due to the orbit propagation without measurement
correction in the middle of the process. When measurements
become available again, the 3σ value stops increasing. Both po-
sition and velocity errors are all constrained by the 3σ bounds.
The In-track components have largest errors in comparison with
other two components.
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6.2. Scenario II
For space objects in the high altitude region (e.g., the geosyn-

chronous orbit), the solar radiation pressure is one of the largest
non-gravitational perturbations and can therefore have signifi-
cant influence on their orbital dynamics. The acceleration of
SRP is formulated as the following Eq. 37 for the cannonball
assumption

aSRP = −
PSRCRAS

m
rs, (37)

where PSR is the solar radiation pressure constant, CR is the so-
lar pressure parameter, AS is the effective area facing the Sun, m

is the object mass and rs is the vector from the object to the Sun.
In this scenario, the value of the ballistic coefficient, B =

CRAS
m ,

is chosen to be 1.4, which is consistent with a HAMR object.22)

Only the Yarragadee station is used to generate observations
hereafter, with σρ = 10m and σρ̇ = 1mm/s as standard devia-
tion values for the range and range rate respectively.

To assess the effects of uncertain ballistic coefficient B on OD
performance, the gPCPF is compared with the bootstrap PF in
the following tests with different distributions (normal and uni-
form distributions) representing the uncertainty associated with
B. A mean value of 1.4 and a variance value of 0.2 are speci-
fied for the normal distribution. An interval of [1.2 1.6] is given
for the uniform distribution. Statistical values of the estimates,
i.e., RMS, Mean and STD (Standard Deviation), are given in
Figure 11 and Figure 12 for the position and velocity, respec-
tively. It is clearly shown that gPCPF outperforms the bootstrap
PF in terms of 3D error statistical analysis. By more accurately
quantifying uncertainties of both initial state variables and dy-
namical parameters, gPC provides a better approach to predict
covariance information forward in the time update step of the
filter. Hence the gPCPF generates better OD solutions than the
traditional bootstrap PF.
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In Figure 13 and Figure 14, RMS values of position and ve-
locity estimates using gPCPF are presented in the RIC coordi-
nate system. All these estimates are duly constrained in the 3σ
bounds. The 3D RMS errors reach 11.727m and around 1mm/s
for the position and velocity respectively when the ballistic co-
efficient B is assumed as a normal distribution. While those
values come to 15.255m and around 0.8mm/s with a uniform
distributed B.

Finally, PF results are compared to EKF, UKF and GMUKF
results in Figure 15 and Figure 16 for position and velocity,
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respectively. Among them, GMUKF exploits a 5-component
Gaussian mixture model (GMM) to approximate the initial
multivariate Gaussian distribution. Afterwards, the number of
GMM components is fixed but their weights are changing along
the time. The ballistic coefficient is assumed to be normally
distributed for the space object. Grey dash lines indicate the 3σ
bounds calculated from the gPCPF in both figures. It is clearly
shown that the Radial estimation outperforms the other two di-
rections. Due to the geometry of the range measurements, it
is more likely the imprecise orbit prediction with the uncertain
SRP force can be corrected well in the Radial direction. When
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Fig. 15. Position Estimates Using Different Filters (EKF, UKF, GMUKF,
PF and gPCPF)
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Fig. 16. Velocity Estimates Using Different Filters (EKF, UKF, GMUKF,
PF and gPCPF)

the observation outage starts at the 76th epoch, the position esti-
mates in all three directions for both EKF and UKF diverge sig-
nificantly, even escaping out of the 3σ bounds. Both PF results
also deteriorate but they are still constrained by the 3σ bounds.
The velocity estimates turn out to be more stable than the posi-
tion estimates. In the Cross-track direction, EKF estimates are
much worse in comparison with the bootstrap PF and gPCPF,
and have many unstable spikes. The state estimation perfor-
mance by GMUKF are somewhat between EKF/UKF and PFs
for both position and velocity components. Statistical values for
position and velocity estimates using various filters are given in
the Figure 17 and Figure 18. For position estimates, the pro-
posed gPCPF has the best performance in terms of 3D RMS,
Mean and STD values. For velocity estimates, gPCPF does not
provide smallest 3D mean errors - larger than GMUKF, but it
still generates good performance in terms of RMS and STD val-
ues.

Figure 19 presents the particles evolution in the gPCPF. It is
clear the ”Radial - In-track” plane of the orbit becomes non-
Gaussian as time propagates. In particular, the In-track com-
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ponent spreads out more significantly during the observation
outage shown in the left-bottom subfigure. As observations be-
come available again after the 113th epoch, the non-Guassianity
of the orbit becomes less severe as shown in the right-bottom
subfigure.
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Fig. 19. Particle evolution in gPCPF

7. Conclusion

This paper presents a gPCPF based orbit determination ap-
proach for a high area-to-mass ratio space object in an in-
clined geosynchronous Earth orbit. In the framework of gen-
eralised polynomial chaos expansions, uncertainties associated
with both initial state variables and dynamical parameters can
be quantified very well. In this sense, the proposed gPCPF
turns out to be more advantageous in comparison with the tra-
ditional bootstrap PF without significantly increasing computa-
tional burden. It is demonstrated that more accurate solutions

are generated by the gPCPF in the simulated orbit determina-
tion scenarios for the HAMR space object. Future work will fo-
cus on time efficiency analysis for the gPCPF with tuning gPC
degrees, and more severe non-linear and non-Gaussian orbital
scenarios (e.g., a highly elliptical orbit) will be studied.
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