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The problem of aiming a body-fixed axis along an inertially fixed direction is dealt with, when only two reaction wheels can
exchange angular momentum with the spacecraft platform. The feasibility of the pointing maneuver for an arbitrary body-fixed axis
is assessed in the presence of a non-zero angular momentum for the system. Two control laws are then developed, which allow for
completing the desired pointing maneuver from arbitrary initial conditions. Performance two controllers are compared by means of
numerical simulation for a configuration representative of a small-size satellite.
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1. Introduction

The present paper explores the feasibility of single-axis
pointing maneuvers for an underactuated spacecraft in the pres-
ence of a non-zero residual angular momentum vector. In the
considered operational scenario, a body-fixed axis σ̂, such as
the line-of-sight of a sensor, a nozzle for orbit control or an an-
tenna, needs to be aligned to a target direction τ̂, fixed in the in-
ertial reference frame. Only two reaction wheels are available, a
situation representative of a failure condition in non-redundant
control systems or of a critical condition after multiple failures
of a reaction wheel cluster. Two control laws are proposed to
attain the prescribed pointing starting from arbitrary initial con-
ditions, employing only two reaction wheels.

Recent advances in spacecraft and satellite control systems
have succeeded in solving several challenging problems con-
cerning attitude tracking, robust control, optimal slew maneu-
vers, or precision pointing, while assuming a number of actua-
tors equal to, or larger than, the degrees of freedom of the sys-
tem. In the attempt of extending operational lifetime or increas-
ing mission resilience to system failures, attitude stabilization
problems in case of actuator failures is being gaining an increas-
ing attention.

A review of attitude control problems for underactuated
spacecraft is presented by Tsiotras.1) Several authors dealt with
these problems, considering diverse types of control hardware
(thruster,2) reaction wheels,3) control momentum gyro4)), for
either axis-symmetric5) or tri-inertial6) spacecraft, in different
mission scenarios, such as full attitude stabilization, single-axis
pointing, acquisition of a desired spin state, etc.

The present paper aims at extending the results derived in
Zavoli et al.,7) where a single-axis pointing maneuver for a tri-
inertial spacraft is studied under the hypotesis of zero total an-
gular momentum, to the case where an arbitrary, non-zero, ini-
tial angular momentum is present. The feasibility of the point-
ing maneuver is analytically determined for a generic body-
fixed axis σ̂, highlighting that, when σ̂ is not a principal axis
of inertia, it cannot be aligned along some inertial directions τ̂,

while keeping the spacecraft at rest. In this respect, the present
work also extends the results proposed by Yoon8) and Kwon,9)

where a similar problem was considered, but the analysis was
restricted to the circumstance where a principal axis of inertia
was to be pointed.

When the pointing maneuver is feasible, a command law for
the two active reaction wheels is sought, which asymptotically
drives the body-fixed direction σ̂ towards τ̂, so that the point-
ing error, that is, the angle between the unit vectors σ̂ and τ̂,
asymptotically approaches zero.

In the next section, after a short review of spacecraft dynam-
ics in underactuated conditions, the attitude profile allowing for
the desired alignment is derived, together with a simple analyt-
ical condition for maneuver feasibility. Spacecraft attitude is
represented in terms of precession, nutation, and spin angles,
that provide a clear and intuitive physical interpretation of the
results (i.e. the final value of the spin angle indicates the dis-
tribution of angular momentum between the wheels, when the
spacecraft is at rest). Also, this attitude representation allows
for the definition of two control strategies, presented in Sections
3. and 4., which asymptotically drive the spacecraft towards the
prescribed alignment.

The first command law, discussed in Section 3., will be re-
ferred to as Controller A. It is based on a two-step strategy,
where the first step reduces the residual angular speed below a
prescribed threshold, while driving the spin angle close to the
prescribed value. The reduction of the angular rate close to zero
also drives the nutation angle towards its final value, equal to
π/2 for all admissible pointing conditions. The second step,
performed under the action of a Linear Quadratic Regulator,
drives the precession angle towards the required value for accu-
rate pointing, stabilizing the spacecraft in the neighborhood of
the desired final attitude, achieving the prescribed pointing with
zero residual angular rate. In this case a formal proof of conver-
gence to the desired final state is available for both controllers.

In Section 4., a second control law is developed, referred to
as Controller B, based on the definition of a desired angular ve-
locity command, which enforces a stable first order dynamics
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Figure1. Geometry of the problem

to the precession angle towards its desired final value. The non-
linear equations of motion for spacecraft attitude dynamics are
recast in error form, highlighting the angular velocity tracking
error, as well as the spacecraft attitude error with respect to the
target attitude. A nominal dynamics is isolated from a vanish-
ing perturbation term. A rigorous proof of stability is derived
for the stability of the nominal part of the system, only. Robust-
ness of the stability of the nominal system with respect to the
vanishing perturbation is then investigated by means of numer-
ical simulations in Section 5., where performance of both con-
trol laws are compared and discussed. A section of concluding
remarks ends the paper.

2. Problem Statement and Mathematical Model

2.1. Spacecraft Dynamics
A satellite platform equipped with three identical reaction

wheels is considered. The spin axes of the wheels are assumed
aligned with the principal axes of inertia of the rigid body.

An underactuation condition is considered, that is, a (failed)
wheel cannot provide torque. Let FB = {G; ê1, ê2, ê3} be a body-
fixed reference frame, centered in the spacecraft center of mass,
G, with axes aligned to the principal axes of inertia of the space-
craft. Without loss of generality, the spin axis of the failed
wheel, b̂ is assumed to be aligned to the third axis of the body
frame, that is, b̂ ≡ ê3. As a consequence, only two reaction

wheels are available for control, with spin axes parallel to the
ê1 and ê2 body axes, respectively.

Hereafter, it is also assumed that no external torque is present,
so that the angular momentum vector is constant in the inertial
frame. As a further hypothesis, the magnitude of the angular
momentum is also assumed that to be of magnitude less than the
momentum storage capacity of the single active wheel. This is
a mild assumption, provided that, if this condition is violated, it
would not be possible to attain any fixed attitude. In this respect,
one can assume that a desaturation maneuver already reduced
the overall angular momentum below an acceptable threshold
for operating the spacecraft.

Under the above hypothesis, and expressing all vector quan-
tities in terms of components in the body-fixed set of principal
axes of inertia, spacecraft dynamics is given by

Ḣ + ω×H = 0 (1)

where

H = Jω + h (2)

is the total angular momentum vector of the system, whose
magnitude H0 = ‖H‖ is constant,ω = (ω1, ω2, ω3)T is the angu-
lar velocity vector of the body frame with respect to the inertial
frame, J = diag(J1, J2, J3) is the inertia tensor (including the
contribution of RW at rest), h = (h1, h2, 0)T is the relative an-
gular momentum of the reaction wheels, under the assumption
of a failed wheel aligned with ê3, and

u× =

 0 −v3 v2
v3 0 −v1
−v2 v3 0


indicates the skew-symmetric matrix equivalent for the cross-
product operation associated to the vector u = (v1, v2, v3)T .

The relative angular momentum of the i–th reaction wheel
is equal to hi = JwΩi, where Ωi is the wheel spin rate relative
to FB, whereas the absolute angular momentum for the same
wheel is given by h(a)

i = Jw(Ωi +ωi) = hi + Jwωi. The dynamics
of the i-th wheel, under the control of the electrical motor torque
gem,i, is thus given by

ḣ(a)
i = ḣi + Jwω̇i = gem,i i = 1, 2 (3)

A vector u = (u1, u2, 0)T of virtual control torques, ui =

−ḣi = −
(
gem,i − Jwω̇i

)
, is introduced to attain a more compact

notation. As a result, the mathematical model of the spacecraft
dynamics with two reaction wheels is

ω̇ = J−1 [
u − ω× (Jω + h)

]
(4)

ḣ = −u (5)

2.2. Kinematics
The single-axis pointing problem requires that the spacecraft

achieves a final attitude, where a body-fixed axis, identified by
the unit vector σ̂, is aligned to a prescribed inertially-fixed di-
rection τ̂, with zero final angular speed. Without loss of gener-
ality, an inertially fixed reference frame FI = {G; ô1, ô2, ô3} is
introduced, such that the total angular momentum of the space-
craft H is aligned with ô3, and the axis τ̂ lies in the ô1-ô3 plane,
whereas ô2 = ô3 × ô1 completes a right-handed triad. One thus
has

ô1 = ô2 × ô3 ; ô2 = (H × τ̂)/‖H × τ̂‖ ; ô3 = H/‖H‖ (6)



Note that the unit vector ô1 is parallel to the direction of the
projection of τ̂ on the plane perpendicular to H. In the peculiar
case when τ̂ is parallel to H, ô1 and ô2 can be selected arbitrar-
ily on the plane perpendicular to ô3, to complete an orthogonal
right-handed triad FI .

Spacecraft attitude with respect to FI can be represented by
means of a 3-1-3 sequence of precession (Ψ), nutation (Θ), and
spin (Φ) Euler angles,10) where Ψ ∈ [−π, π], Θ ∈ [0, π], and Φ ∈

[−π, π]. The coordinate transformation matrix between inertial
and body frame is TBI = R3 (Φ)R1 (Θ)R3 (Ψ), where Ri (α) for
i = 1, 3 is the elementary rotation matrix,11) which provides the
coordinate transformation between two frames displaced by a
rotation α around the i–th coordinate axis, and

TBI =

 cΦcΨ − sΦcΘsΨ cΦsΨ + sΦcΘcΨ sΦsΘ
−sΦcΨ − cΦcΘsΨ cΦcΘcΨ − sΦsΨ cΦsΘ

sΘsΨ −sΘcΨ cΘ


(7)

where sα = sinα and cα = cosα.
The evolution of Euler angle rates as a function of angular

speed is given byΨ̇Θ̇
Φ̇

 =

 sin Φ/ sin Θ cos Φ sin Θ 0
cos Φ − sin Φ 0

− sin Φ/ tan Θ − cos Φ/ tan Θ 1


ω1
ω2
ω3

 (8)

The attitude representation is known to be singular when
Θ = 0, π. Nonetheless, this attitude parametrization is particu-
larly beneficial for the problem under investigation, as it simpli-
fies the determination of the attitude which achieves the desired
pointing, as outlined in the next subsection.

2.3. Feasibility and Solution of the Pointing Problem
When a spacecraft with only two active RW’s is considered,

the constraint of constant non-zero angular momentum restricts
the set of admissible attitudes at rest to a compact subset of
SO(3), provided that the total angular momentum of the whole
satellite must lie in the plane identified by the spin axes of the
two active reaction wheels (plane ê1–ê2, under the assumptions
outlined above for the spacecraft model).

Given the definition of the body and inertial reference frames
FB and FI , respectively, the target direction τ̂ can be expressed
in FI as

τ̂I = (cosα, 0, sinα)T

where α ∈ [−π/2, π/2] is the elevation of τ̂ over the ô1-ô2 plane.
On the other hand, the unit vector σ̂ can be parametrized in

FB as

σ̂ = (cos λ cos η, cos λ sin η, sin λ)T (9)

where λ is the elevation over the ê1–ê2 plane and η is the az-
imuth with respect to ê1. Provided that the frame FB can always
be chosen such that êT

3 σ̂ ≥ 0, the analysis can be restricted,
without loss of generality, to the case λ ∈ [0, π/2].

In order to simplify the derivation of the target attitude, an
auxiliary body-fixed reference frame FA = {G; â1, â2, â3} is in-
troduced, obtained rotating FB by an angle η about the axis ê3,
that is, TAB = R3 (η). As a consequence, the auxiliary reference
frame can be parametrized by means of a 3-1-3 set of Euler-
angles, {Ψ′,Θ′,Φ′}, such that Φ′ = Φ + η, Θ′ = Θ, and Ψ′ = Ψ.

In this auxiliary reference frame, the unit vector σ̂ belongs to
the plane â1-â3, so that its component are given by

σ̂A = (cos λ, 0, sin λ)T (10)

The derivation of the maneuver feasibility condition and the de-
termination of the final admissible attitude which guarantees the
prescribed alignment of σ̂ and τ̂ with zero residual angular rate
are performed describing spacecraft attitude with respect to this
auxiliary reference frame

Starting from an arbitrary initial attitude, identified by the
angles Ψi, Θi, and Φi, the final attitude represented by Ψ f , Θ f ,
and Φ f must satisfy the following constraints

1. the spacecraft is at rest, that is, ω = 0;
2. σ̂ is aligned with τ̂, that is, σ̂ = τ̂.

The first condition requires that, at the end of the maneuver,
the total angular momentum is completely stored in the reac-
tion wheels, that is, H must lie on the â1-â2 plane, which im-
plies â3

T H = 0. Remembering that total angular momentum is
parallel to ô3, so that HI = (0, 0,H0)T , and H = TBI HI , this
condition can be expressed as h3 = H0 cos Θ = 0.

Thus, the first requirement is met if cos Θ f = 0, that is, the
nutation angle at the end of the pointing maneuver is Θ f = π/2.
This implies that admissible final attitudes with zero angular
rate are never singular, for the attitude parameterization chosen.

Letting sΘ f = 1 and cΘ f = 0 in Eq. (7) , the coordinate
transformation matrix at the end of the pointing maneuver takes
the form

TAI(Ψ f ,Φ f ) =

 cΦ f cΨ f cΦ f sΨ f sΦ f
−sΦ f cΨ f −sΦ f sΨ f cΦ f

sΨ f −cΨ f 0

 (11)

The second requirement (alignment of axis σ̂ with τ̂) is en-
forced by equating the components of σ̂ and τ̂ = TAI τ̂I , when
both vectors are expressed in FA, that is, cos λ

0
sin λ

 =

 cos Φ f cos Ψ f cosα + sin Φ f sinα
− sin Φ f cos Ψ f cosα + cos Φ f sinα

sin Ψ f cosα

 (12)

Equating the third components in Eq. (12), the precession
angle Ψ f must satisfy the condition

sin Ψ f = sin λ/cosα (13)

which admits two real solutions, Ψ f ,1 = Ψ?
f and Ψ f ,2 = π −Ψ?

f ,
with Ψ?

f = asin (sin λ/ cosα) if

|α| ≤ π/2 − |λ| (14)

The inequality in Eq. (14) represents a feasibility condition
for the pointing maneuver, that can be completed only when
the elevation of the axis τ̂ over the plane perpendicular to the
angular momentum vector h is less than the angular distance
between σ̂ and b̂. Figure 2 shows the regions of admissible and
forbidden target directions for a few values of λ.

The 1st and 2nd rows of Eq. (12) form a linear system of equa-
tions in the unknowns X = cos Φ f and Y = sin Φ f , in the form{

aX + bY = c
bX − aY = 0 (15)

where a = cos Ψ f cosα, b = sinα, and c = cos λ ≥ 0, whose
solution is X = ac/(a2 + b2), Y = bc/(a2 + b2). Therefore, Φ f
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Figure2. Admissible (black) and forbidden (grey) target directions in FI

for different value of λ

can be found by using the four-quadrant inverse tangent func-
tion, that is, Φ f = atan2 (b, a) = atan2

(
sinα, cosα cos Ψ f

)
.

Two attitudes realize the single-axis pointing with spacecraft
at rest, one for each solution of Eq. (13). Letting Φ? =

atan2
(
sinα, cosα cos Ψ?) and recalling the relation between

Euler angles for FB and FA frames, one has

(Ψ,Θ,Φ) f =
{(

Ψ?, π/2,Φ? − η
)
,
(
π − Ψ?, π/2, π − Φ? − η

)}
(16)

2.4. Remarks
The constraint imposed by the conservation of the total an-

gular momentum of the system made of the spacecraft platform
and the two active reaction wheels provides some physical in-
sight, useful for the derivation of a suitable control law. First
of all, consider the total angular momentum vector expressed in
body-frame componentsJ1ω1 + h1

J2ω2 + h2
J3ω3

 = H

sΦsΘ
cΦsΘ

cΘ

 (17)

The relationship between nutation angle Θ and angular velocity
component along the failed axis b̂ = ê3 is apparent. In par-
ticular, one has ω3 = H/J3 cos Θ, which clearly implies that
imposing a terminal value of ω3 = 0 is equivalent to require
that Θ f = π/2. Thus, the two active reaction wheels can absorb
the whole angular momentum vector, only if Θ = π/2. This
is equivalent to reducing the number of available rotational de-
grees of freedom to two.

It is also worthwhile to mention that, when the spacecraft is
at rest, Eq. (17) implies that h1 = H0 sin Φ f , h2 = H0 cos Φ f .
The angle Φ f thus defines the allocation of the total angular
momentum between the two active reaction wheels, which co-
incides with the desired final value of the spin angle for the
auxiliary frame, FA.

3. Controller A: a Two-Stage Command Law

A two-stage control law is developed in this Section, where,
as a first step, relative and total angular momentum are driven

towards the desired values at equilibrium, whereas accurate
pointing is achieved as a second step for the pointing maneu-
ver. More in detail, during the first phase the angular velocity
ω is controlled and decreased towards zero, while the angu-
lar momentum is loaded into the two active reaction wheels.
As outlined at the end of the previous section, the spacecraft is
at rest when the angular momentum is distributed between the
two active wheels, with h f = H0(sin Φ f , cos Φ f , 0). This causes
spin and nutation angles to be driven towards their desired final
values. Once ω and h are sufficiently close to their target val-
ues, the controller switches to a different control mode, and the
second step of the maneuver is performed, under the action of a
Linear Quadratic Regulator (LQR).

In subsection 3.1., local properties of spacecraft dynamics
under the action of an LQR controller are considered in the
neighborhood of the desired final condition. An LQR controller
is derived, which stabilizes Ψ, ω and h to their specified values.
The control law for the first step is developed in subsection 3.2.,
whereas the use of the LQR controller for arbitrarily large errors
on precession angle Ψ is considered in subsection 3.3., where
the control law for the second step is discussed.

3.1. Linearized System Analysis and Controller Design
In this section, the analysis of spacecraft rotational dynamics

in the neighborhood of the desired target attitude is performed
via a linearization of the complete set of nonlinear spacecraft
equations of motion, namely Eqs. (8), (4), and (5).

The state vector, written in error form, is given by

xT = (eΨ, eΘ, eΦ, ω
T , eh

T )

where eΨ = Ψ − Ψ f , eΘ = Θ − π/2, eΦ = Φ − Φ f , and
eh = (h1 − h1, f , h2 − h2, f )T . When higher-order terms are
dropped, a linear time-invariant system of 8 first-order ordinary
differential equations is obtained. Conservation of angular mo-
mentum allows one to drop three variables. A reduced-order
linear system is thus derived, and one has

 ėΨ

ω̇
ėh1

 =


0 hT

f /H0 0
0 −J−1h×f 0
0 0T 0


eΨ

ω
eh1

 +

 0
J−1S

G

 u (18)

where x = (eΨ,ω
T , eh1)T is the state vector, u is the control

vector, 0 = (0, 0, 0)T , G = (−1, 0), and

S =

[
1 0 0
0 1 0

]

This choice of the state vector elements guarantees that, when
the reduced-order system reaches the origin, the remaining vari-
ables also approach their desired values. In fact, Θ → π/2 for
ω3 → 0, while ω → 0 and h1 → h f 1 imply h2 → h f 2, which
leads to Φ→ Φ f .

The system in Eq. (18) is controllable if the controllability
matrix C =

[
B, AB, A2B, A3B, A4B

]
has full rank. Letting Ks =

(J2h2
f 2 + J1h2

f 1) / (J1J2J3) and Kd = (J1 − J2)/(H0J1J2J3), it is



C =



0 0 h f 1

H0 J1

h f 2

H0 J2
0 0 Kd

h f 1h2
f 2

J1
−Kd

h2
f 1h f 2

J2
0 0

1
J1

0 0 0 −
h2

f 2

J2
1 J3

h f 1h f 2

J1 J2 J3
0 0 Ks

h2
f 2

J2
1 J2

3
Ks

h f 2h f 1

J1 J2
2 J3

0 1
J2

0 0 h f 1h f 2

J1 J2 J3
−

h2
f 1

J2
2 J3

0 0 −Ks
h f 2h f 1

J1 J2 J3
−Ks

h2
f 1

J2
2 J3

0 0 −
h f 2

J1 J3

h f 1

J2 J3
0 0 Ks

h f 2

J1 J3
−Ks

h f 1

J2 J3
0 0

−1 0 0 0 0 0 0 0 0 0


(19)

Sufficient condition for controllability is that all 5 rows of C
are linearly independent. By inspecting the expression of C,
one can note that all pairs of rows are linearly independent,
with two relevant exceptions, that is, i) rank of C drops to 2
if h f 1 = h f 2 = 0, but this condition is ruled out by the fact that
‖h‖ f = H0 > 0, and ii) rows 2 and 5 are no longer linearly
independent if h f 2 = 0, that is, for Φ f = ±π/2. The latter is
a consequence of the selection of eh1 in the state vector of the
reduced order model, in place of h2. If one considers the dual
reduced-linear system obtained by selecting h2 instead of h1 as
the 5-th state variable, a controllable linear time-invariant sys-
tem is obtained for h f 1 , 0. As a result, the nonlinear system is
first-order controllable, provided that an appropriate choice of
state variable is performed, in order to account for the peculiar
case of Φ f = ±π/2. In what follows it will be assumed that
Φ f , ±π/2.

A static full-state feedback control law in the form u = Kx,
which stabilizes the linearized system of Eq. (18) about the ori-
gin, is synthesized in the framework of LQR control theory.12)

This method provides a robust and rigorous approach to deter-
mine the optimal control gain matrix K ∈ R2×5 that minimizes
a quadratic merit index defined as

J =

∫ ∞

0

(
xT Qx + uT Ru

)
dt

where Q ∈ R5×5 and R ∈ R2×2 are positive definite weighting
matrices for state perturbation and control action, respectively.
The solution of the Algebraic Riccati Equation

AT P + PA − PBR−1BT P + Q = 0

provides the optimal value of the gain control matrix, given by
K = R−1BT P.

The LQR controller guaranties asymptotic stability and op-
timal closed-loop performance only locally, in a neighborhood
of some equilibrium point. Nonetheless, in the present case, the
state matrix A does not explicitly depend on the value of Ψ f .
As a result, for a given spacecraft and a particular choice of the
weighting matrices, Q and R, the optimal gain control matrix K
does not depend on Ψ f , as well.

3.2. Step I: Angular Momentum Stabilization
For the present application, the LQR controller is developed

in the neighborhood of the equilibrium point eΨ = 0,ω = 0, h =

h f , such that also Θ = π/2 and eΦ = 0. However, in a practical
generic case, one cannot expect that the initial state is close to
the desired equilibrium. In order to achieve global convergence
capabilities for the closed-loop system, a controller based on
the complete nonlinear equations of motion is to be designed,
which drives the spacecraft sufficiently close to the prescribed
alignment, with a small residual angular rate.

Consider the strictly positive candidate Lyapunov function,

V =
1
2
ωT Jω + Kh(eh)T eh (20)

where eh = h − h f , with h f = (H0 sin Φ f ,H0 sin Φ f , 0)T . Note
that, as a difference with respect to the linear controller defined
in the previous subsection, the error vector for the relative an-
gular momentum now features three components.

By taking the time derivative of Eq. (20) one gets

V̇ = ωT u − KheT
h u = (ω − Kheh)T u (21)

that can be made negative semi-definite by choosing

u = Kp(ω − Kheh) (22)

with Kp an arbitrary positive definite gain matrix. A simple
form, such as Kp = KpI3, suits the needs of the controller,
where I3 is the identity matrix of order three, and the value of
Kp can be selected by trial-and-error, evaluating in simulation
the closed-loop performance of the controller.

Note that V̇ does not depend on ω3, as u3 remains identically
zero during the maneuver, and consequently V̇ is only negative
semi-definite. Nevertheless, La Salle invariance principle can
be invoked to assess system stability. In fact, the system must
converge towards a solution x(t) such that V̇ = 0, which implies
(ω1, ω2, ω3, h1, h2) = (0, 0,Ω, 0, 0). However, when the error
on the relative angular momentum is zero (eh = 0), it is also∥∥∥h f

∥∥∥ = H0. Because of conservation of total angular momen-
tum, a value of Ω = 0 is the only admissible solution. Thus, the
control law in Eq. (22) globally asymptotically stabilizes the
system towards the condition ω = 0, eh = 0.

3.3. Step II: Linear Controller
When the non-linear controller described in the above sub-

section, Eq. (22), achieves a condition such that ‖ω‖ < εω and
eΦ < εΦ, the LQR control law is activated. The activation
thresholds εω and εΦ were selected by a trial-and-error proce-
dure, that demonstrated that εΦ has a limited impact on closed-
loop performance, whereas εω needs to be small, but not too
close to zero. For the present application, the following values
were used: εω = 0.01 rad/s and εΦ = 1 deg. As a matter of fact,
the possibility of varying the angle Ψ is related to the value of
the residual angular velocity. This explains the reason for the
threshold on ‖ω‖ should not be too close to zero.

Note that at the end of Step I, the errors on angular rate, rel-
ative angular momentum, spin and nutation angles are all ex-
pected to be small, whereas the error on Ψ can be large, ap-
parently hindering the validity of the optimal closed-loop per-
formance of the LQR controller, which are valid only locally,
closed to the considered equilibrium. Nonetheless, when all the
other quantities are close to their equilibrium values, the evo-
lution of Ψ achieves a linear formulation for arbitrary values



of Ψ, thus preserving the validity of the optimality of the LQR
controller.

4. Controller B: A Fully Nonlinear Control Law

The derivation of a single-step control law aiming at stabi-
lizing the spacecraft about the target attitude (Ψ f ,Φ f ) is now
presented. The set of nonlinear equations of motion, given by
Eq.s (8), (4), (5), matches the standard form of cascade systems,
where precession angle dynamics

Ψ̇ =
1

sin Θ
(sin Φ, cos Φ, 0)T ω (23)

is driven by the other system variables, whereas the remaining
part of the system does not depend on Ψ.

By imposing the tracking of the following angular velocity

ωdes = −KΨ(sin Φ cos Φ, 0)T eΨ (24)

the asymptotically stable dynamics for eΨ = Ψ−Ψ f is obtained.
The proof is straightforward: let V1 be a positive Lyapunov can-
didate

V1 =
1
2

e2
Ψ (25)

Under the assumption of exact tracking (i.e. ω = ωdes) and
sin Θ , 0, the time derivative of V1 is

V̇1 = −
KΨ

sin Θ
e2

Ψ (26)

which is negative definite for any KΨ > 0.
On the basis of this last result, a control law is designed to

track simultaneously ωdes and h f . After defining the tracking
error for the angular velocity components as eω = ω−ωdes, the
system can be recast in the form

ėΨ = −KΨeΨ +
1

sin Θ
[sin Φ, cos Φ, 0] eω (27)

ėω = −eω × (Jω + h) + u − ωd × H − ω̇d (28)
ėh = −u (29)

matching the perturbed system structure, ẋ = f (x,u) + g(x),
where

ẋ =

ėΨ

ėω
ėh

 ; f (x) =

 −(KΨ/sin Θ)eΨ

−eω × (Jω + h) + u
−u

 (30)

represents the nominal system, and

g(x) =


(1/sin Θ) [sin Φ, cos Φ, 0] eω

−ωd × H − ω̇d
0

(31)

is a vanishing perturbation term, with ω̇des and ωdes → 0 as
eΨ → 0. Inspection of Eq. (31) allows one to state that g(x) <
γ ‖x‖, at least in a region near the equilibrium, where Θ ∈ (0, π).
Let Ve a positive definite Lyapunov candidate

Ve =
1
2

e2
Ψ +

1
2

eωT Jeω +
1
2

KheT
h eh (32)

whose time derivative is

V̇e = −KΨe2
Ψ + (eω − Kheh)T u

By choosing

u = −Kp (eω − Kheh) (33)

one has

V̇e = −KΨe2
Ψ − (eω − Kheh)T u

Since V̇e does not depend on ω3, V̇ is negative semi-definite
and La Salle invariance principle is invoked to assess sys-
tem stability. As a matter of fact, the system must con-
verge towards a solution x(t) such that V̇ = 0, which implies
(eΨ, eω1, eω2, eω3, eh1, eh2) = (0, 0, 0, ẽΩ, 0, 0). Conservation of
total angular momentum can be invoked here to prove that
eΩ = 0 is the only admissible solution when the error on the
relative angular momentum is zero (eh = 0). Thus, the con-
trol law in Eq. (33) provides global asymptotical stabiliy to the
unperturbed system about the origin. Nonetheless, asymptotic
stability of the origin of the nominal system does guarantee the
robustness of the stability of the equilibrium to the vanishing
perturbation g(x) in a global sense. This latter aspect is the
subject of ongoing analysis and will be here investigated by nu-
merical simulation only.

5. Results

A spacecraft with an inertia tensor J = diag(10, 8, 9) kg m2

is considered for demonstrating the viability of the proposed
control methodologies and analyzing and comparing the re-
sulting closed-loop performance for Controllers A and B. The
two active reaction wheels have an identical moment of inertia,
Jw = 0.0077 kg m2. Wheel electric motor torque saturation is
set at 20 mN m. Spacecraft data are representative of a small
satellite. The control approach was also tested for different sets
of spacecraft parameters, in order to assess the results for a wide
variety of system configurations. These latter results are not re-
ported here, for the sake of conciseness, as far as the behavior of
the system appears qualitatively similar to the cases presented
in what follows.

5.1. Convergence for Controller B
Before comparing Controllers A and B, results of a Monte

Carlo simulation are reported, in order to assess convergence
characteristics of the closed-loop system featuring Controller B,
that is not proven to be globally stable. A set of 1000 runs is per-
formed, randomly selecting the initial attitude, for a prescribed
value of initial angular momentum H0 = 0.85 N m s. The posi-
tions of target direction and body-fixed axis are selected such
that the maneuver is feasible, with λ = 5 deg and α = 45
deg. Control law gains are equal to Kp = 0.25, KΨ = 0.1,
and Kh = 0.1.

Figure 3 shows the pointing error of axis σ̂ with respect to
the desired direction τ̂ as a function of time. The error is plot-
ted on a logarithmic scale, and it appears that an exponential
convergence is obtained for all the considered initial conditions.
Convergence time to various degree of pointing precision is re-
ported in Table 1, in terms of average value for reaching a point-
ing error below 1, 0.1 and 0.01 deg, respectively. The standard
deviation of convergence time for the considered population of
solutions is also reported. Its value is apparently unaffected by
the required level of pointing precision.



Figure3. Monte Carlo analysis for Controller B.

Table1. Convergence time for Controller B in the Monte Carlo analysis.

e = 1◦ e = 0.1◦ e = 0.01◦

mean 603 831 1060
std 98 100 101

The statistical properties of convergence time depend on the
values of the control gains. The values reported above and
used for the Monte Carlo analysis were selected by a simple
trial-and-error procedure performed on a limited number of test
cases, without an actual optimization with respect to average
performance (aiming at a fast convergence) and repeatability of
the results (requiring a small value of the standard deviation).
Nonetheless, the choice appears reasonable.

5.2. Comparison between Controllers A and B
A comparison between closed-loop performance for Con-

trollers A and B is now possible. In this section, unless oth-
erwise stated in the figure label, a blue line indicates the time
histories of relevant variables for Controller A. A solid line is
used for stage 1 (nonlinear controller driving ω to zero) and a
dashed one for stage 2 (final convergence under the action of
the LQR controller). A solid red line indicates the variation
with time of the same variables under the action of Controller
B.

Figures 4 and 5 report the variations of pointing error and
magnitude of the angular velocity as a function of time, respec-
tively, for Controllers A and B, starting from the same initial
condition. An oscillatory convergence is obtained for Con-
troller B, in terms of pointing error, whereas the pointing er-
ror reaches a steady (and indeed large) value under the action
of the nonlinear control law for stage 1 of controller A. In the
same time interval, the angular speed is brought close to zero
by both controllers (see Fig. 5 for t ≈ 300 s), with the spin an-
gle reaching its desired value for both controllers (blue and red
lines in Fig. 6).

Conversely, the error on the precession angle is monoton-
ically reduced by Controller B (red line in Fig. 7), whereas,
it reaches a finite (and once again large) value, during step 1,
when using Controller A. As expected, in this latter case, the
pointing error at the end of step 1 is mainly due to an error on
the (uncontrolled) precession angle. When the LQR controller
takes over, an initial acceleration transient is present, where the
angular rate is incremented by the control logic, in order to
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Figure5. Comparison between Controllers A and B: angular velocity mag-
nitude

achieve a precession rate for driving also Ψ towards its desired
value (dashed blue line in Fig. 7).

In this latter respect, a “bump” in the value of angular rate
magnitude is clearly visible for 300 < t < 450 s (see the initial
portion of the dashed blue line in Fig. 5), which is obtained by
a control action on the wheels, as it is apparent from the upper
plot in Fig. 8. In this respect, the control action for Controller B
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Figure6. Comparison between Controllers A and B: error on spin angle
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Figure8. Comparison between Controllers A and B: wheel rates

(bottom plot in the same figure) appears smoother. Obviously,
both control laws drive the active wheels to the same final spin
condition.

5.3. Comments
If on one side, the use of the two-step control architecture

appears attractive, given the rigorous proof of global stability,
on the other hand the switching logic needs to be carefully ana-
lyzed in practice. The proof of convergence is obtained without
taking into account wheel rate or torque saturation. After the
switching, and in the presence of large errors on Ψ, the need
for accelerating the spacecraft towards its final desired attitude
may lead to wheel saturation and, possibly, divergence, when
this issue is not adequately addressed.

This phenomenon can be avoided by a careful choice of the
weighting gain matrices in the LQR controller synthesis, where
the weight for angular rate components is increased, in order
to penalize large angular rates, and the weight for precession
angle errors is simultaneously reduced. In the present appli-
cation, the weight matrices Q = diag(0.1, 100, 100, 100, 1) and
R = diag(100, 100) provided an LQR controller robust to the
switching phase and the following acceleration transient, for
the considered level of wheel motor torque saturation. Also,
the switching threshold on angular rate needs to be carefully
selected, as the “bump” phenomenon is increased when step 1
ends with a very small final angular rate.

All in all, the closed loop behaviour of Controller B appears
in general smoother, with monotonic or almost monotonic con-
vergence for most variables and a smooth wheel rate profile.
The pointing convergence rate of Controller B is faster, for large
errors, but it becomes slower for small values of the pointing
error, where the optimal characteristics of the LQR controller
provide an advantage in terms of convergence speed locally, in
the neighborhood of the desired attitude.

6. Conclusion

In this paper two control laws were derived, which allow for
aiming an arbitrary body-fixed axis along a prescribed inertial
direction, in the presence of a non-zero angular momentum for
the spacecraft. A feasibility condition for the desired point-
ing maneuver was provided, together with the final attitude that
achieves the desired pointing with zero residual angular rate.

A two-step control law was discussed first, where the first step
drives the angular rate to zero, while taking spin and nutation
angles to their desired values. A second step, under the action
of a Linear Quadratic Regulator was added for completing con-
vergence to the final attitude. A second nonlinear controller was
then considered, where global convergence from arbitrary ini-
tial conditions is proven by means of numerical simulation only,
by means of a Monte Carlo analysis.

An extensive set of simulation was performed for comparing
closed-loop performance of the two controllers. The two-step
control law has a guaranteed performance capability, from ar-
bitrary initial conditions. Nonetheless, the nonlinear controller,
provides a smoother control action and an almost monotonic
convergence to the final desired state.
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