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This paper presents the results of line-of-sight (LOS) attitude control using control moment gyros under a micro-gravity envi-

ronment generated by parabolic flight. TheW-Z parameters are used to describe the spacecraft attitude. In order to stabilize the

current LOS to the target LOS, backstepping-based feedback control is considered using theW-Z parameters. Numerical simulations

and experiments under a micro-gravity environment are carried out, and their results are compared in order to validate the proposed

control methods.
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Nomenclature

A : Jacobian matrix for 2SGCMGs
Ã : Jacobian matrix for LOS control
C : Jacobian matrix for 4SGCMGs

[a b c]T : directional cosine vector of theZ-axis
with body axes

H : CMG angular momentum vector
H i : i-th CMG angular momentum vector
h0 : angular momentum of the CMG wheel
J : satellite inertia tensor (= diag(Jx, Jy, Jz))
Jw : moment of inertia of the CMG wheel

about the spin axis
J̃ : part of satellite inertia tensor(= diag(Jx, Jy))

k1, k2, k3 : control gains
(X,Y,Z) : inertial coordinate axes

(Xb,Yb,Zb) : satellite body axes
(Xc,Yc,Zc) : CMG axes
w1, w2, z : W-Z parameters
w : W parameter vector (= [w1 w2]T)
β : skew angle (= 54.73 deg)
δ : gimbal angle vector (= [δ1 δ2 δ3, δ4]T)
δi : gimbal angle (i = 1,2,3, 4)
Ω : rotational speed of the CMG wheel
ω : angular velocity of the spacecraft in the body frame -

(= [ω1 ω2 ω3]T)
ω̃ : two-dimensional angular velocity of the spacecraft

in the body frame(= [ω1 ω2]T)
τ : attitude control torque generated by CMGs
∗̄ : complex conjugate of a complex number *

1. Introduction

Control moment gyros (CMGs) are attitude control actua-
tors. An advantage of CMG systems is that they can gener-
ate higher torque than reaction wheels (RWs) and are there-
fore used in large spacecraft such as the International Space
Station (ISS). Unlike RWs, however, CMGs contain motorized
actuators known as gimbals. The presence of gimbals intro-
duces the risk of failure, and additional redundancy is required

in the attitude controller in order to ensure controllability, since
post-launch repair is generally impossible. Although this redun-
dancy increases fault tolerance, it also increases the spacecraft
weight. Even if one or more CMGs malfunction, satellites must
maintain attitude control as much as possible. Many studies
have examined methods by which to provide acceptable levels
of fault tolerance without additional weight as a solution to the
problem of maintaining three-axis attitude control in the event
of the failure of one or more actuator. In one form of the under-
actuated control problem, known as the two-torque problem,1)

the goal is to damp out the rotational motion2–10) and/or main-
tain three-axis attitude control11–19) when torque can be gener-
ated only around two axes.

Most studies have assumed the use of thrusters or two orthog-
onal RWs, or have taken similar approaches, but a few studies,
considered the use of two single-gimbal control moment gy-
ros (SGCMGs). For example, Kwon et al.20) studied linear
parameter-varying (LPV) control, Gui et al.21) studied singular-
value decomposition, and Gui et al.22) investigated the modified
direct-inverse steering law, where two parallel SGCMG gimbal
axes were assumed in all of these studies. As long as their an-
gular momenta are not parallel, two parallel gimbal axes can
generate two-axis torque in a manner similar to that for attitude
control using two orthogonal RWs. In the widely used pyramid-
array SGCMG system, however, the failure of two CMGs will
not leave two functioning CMGs with parallel gimbal axes. In
a skewed array, moreover, the independent degrees of freedom
of the two SGCMGs are those of the two gimbals, but the gen-
erated torque is three dimensional. With skewed-axis CMGs,
it is therefore not possible to obtain control simply by apply-
ing two-axis torque in the manner of two orthogonal RWs or
two CMGs with parallel gimbal axes. Yamada et al.23) stud-
ied rate damping control using two SGCMGs. Kasai et al.24)

proposed a three-axis attitude control method for two skewed
CMGs, using the corning effect of repeated one-axis maneuver-
ing with a built-in gimbal-rate limiter. However, its range of
applications is limited because control is achieved by feedfor-
ward control. Gui et al.25) proposed feedback control using a
generalized dynamic inverse (GDI) procedure for orientations
that depart substantially from the target attitude, together with



backstepping control for stabilization to the target attitude. In
all cases, however, three-axis attitude control with two skewed
SGCMGs using feedback control has invariably required com-
plex nonlinear control techniques.

Line-of-sight (LOS) control is widely used in astronomical
observations and communications to point the mission equip-
ment in a specified direction for astronomical body observa-
tion or communication. In many cases, the conditions for atti-
tude stabilization around the LOS axis in a specified direction
can be relaxed, and LOS control by two skewed SGCMGs may
therefore be easier than three-axis attitude control. In Ref. 26),
LOS attitude maneuver control consisting of two phases is pro-
posed using theW-Z parameters for describing the spacecraft
attitude. The expression in terms of theW-Z parameters is suit-
able for two-axis (LOS) attitude maneuver control. However,
most previous studies on two-skewed CMGs involved numer-
ical simulations, and experimental studies have not yet been
adequately performed. This is because the three-dimensional
attitude motion of a satellite model is not easy to control in
an arbitrary direction on the ground due to the effect of grav-
ity. Several techniques have been developed to realize three-
dimensional motion on the ground, including air-bearing sim-
ulators28) and micro-gravity conditions using parabolic flight29)

or free fall. Air-bearing simulators are widely used and can
realize long-duration experiments, but cannot achieve complete
three-dimensional motion due to the presence of a pillar. In con-
trast, parabolic flight or free fall can provide completely three-
dimensional free space, but cannot be used in long-duration ex-
periments.

In this study, prioritizing the three-dimensional motion over
the duration of experiments, attitude maneuvering experiments
are carried out under micro-gravity environments in order to
validate the backstepping-based steering control of two skewed
SGCMGs for LOS attitude maneuvering usingW-Z parame-
ters.27) The results of numerical simulations and experiments
are then compared in order to confirm the validity of the steer-
ing control and LOS attitude maneuvering experimentally.

The reminder of this paper is organized as follows. In Section
2, the pyramid-type CMG system is explained. The attitude as
expressed usingW-Z parameters is described in Section 3. The
steering control law for two-skewed CMGs and steering law
for damping rotation about the LOS axis are derived in Section
4. In order to validate the steering control laws, numerical and
experimental results are presented and compared in Section 5.
Section 6 presents the conclusions of this study.

2. Pyramid-type CMGs

2.1. Four CMGs
Figure 1 shows a schematic diagram of the pyramid arrange-

ment of four SGCMGs considered in this study. TheXc, Yc, and
Zc axes correspond to the CMG axes. The vectorgi represents
the direction of thei-th CMG gimbal axis.

The gimbal angle for each CMG is denoted asδi . In a tradi-
tional pyramid-type CMG system, the skew angleβ is fixed at
β = tan−1

√
2 rad (= 54.73 deg), because the momentum enve-

lope representing the maximum available angular momentum of
the CMG for attitude maneuvers becomes nearly spherical for

Fig. 1. Pyramid arrangement of four SGCMGs.

the case of this skew angle. The total CMG angular momen-
tum vector for the four SGCMGsH is expressed in the CMG
coordinate system as

H =
4∑

i=1

H i(δi) = h0

 −cβ sinδ1
cosδ1

sβ sinδ1

 + h0

 − cosδ2
−cβ sinδ2
sβ sinδ2


+h0

 cβ sinδ3
− cosδ3
sβ sinδ3

 + h0

 cosδ4
cβ sinδ4
sβ sinδ4

 (1)

wherecβ = cosβ, andsβ = sinβ.
The time derivative of the angular momentum vector for the

CMGs can be obtained as

Ḣ =
4∑

i=1

∂H i

∂δi
δ̇i = f1δ̇1 + f2δ̇2 + f3δ̇3 + f4δ̇4 = h0Cδ̇ (2)

where

C =
[

f1 f2 f3 f4

]
=

 −cβ cosδ1
− sinδ1
sβ cosδ1

sinδ2
−cβ cosδ2
sβ cosδ2

cβ cosδ3
sinδ3

sβ cosδ3

− sinδ4
cβ cosδ4
sβ cosδ4

 .
(3)

When the CMG system is in the singular state, the CMG cannot
produce torque about the direction of vectors perpendicular to
the plane ofḢ, regardless of the gimbal rate. This situation oc-
curs whenḢ from Eq. (2) lies in a plane for any choice ofδ̇.
The corresponding gimbal angles, momentum vector, and vec-
tor s are called the singular gimbal angles, singular momentum
vector, and singular vector, respectively.
2.2. Two CMGs

When we assume that two mutually opposed CMGs (Nos. 2
and 4) in the pyramid array of four CMGs have failed and pos-
sess no angular momentum, the CMG system can be considered
to be a two-skewed SGCMG system, as shown in Fig. 2. In this
case, the angular momentum in the CMG system is given by

H =
∑
i=1,3

H i(δi) = h0

 −cβ sinδ1
cosδ1

sβ sinδ1

 + h0

 cβ sinδ3
− cosδ3
sβ sinδ3

 (4)

We now consider the time derivative of the angular momen-
tum of two SGCMGs.

Ḣ =
∑
i=1,3

Ḣ i = h0A
[
δ̇1
δ̇3

]
(5)



Fig. 2. Two skewed SGCMGs.

whereA is the Jacobian matrix given by

A =

 −cβ cosδ1 cβ cosδ3
− sinδ1 sinδ3
sβ cosδ1 sβ cosδ3

 . (6)

Since the attitude control torque, which is generated by the
CMGs and applied to the spacecraft, is opposite the time-
derivative of the CMG angular momentum for the case of single
spin, the attitude control torque generalized by the CMGs for
the case of single spin can be written as

τ = −Ḣ = −
∑
i=1,3

Ḣ i = −h0A
[
δ̇1
δ̇3

]
(7)

When the gimbals are actuated at [δ1 δ3] = [δ δ] with
[δ̇1 δ̇3] = [−δ̇ − δ̇], the generated torque is

τ = −Ḣ = h0

[
0 0 2δ̇sβ cosδ

]T
(8)

and torque can be generated only about theZc-axis. Conversely,
if they are actuated at [δ1 δ3] = [δ − δ] with [ δ̇1 δ̇3] = [δ̇ − δ̇],
we have

τ = −Ḣ = h0

[
2δ̇cβ cosδ 0 0

]T
(9)

and torque can be generated only about theXc-axis.

3. W-Z Parameters

The attitude of a spacecraft may be expressed in terms of Eu-
ler angles, quaternions, Rodrigues parameters, or various other
parameters. In this study, we use theW-Z parameters proposed
by Tsiotras and Longuski.27) In this section, we describe how
these parameters are used for attitude expression and why they
are suitable for LOS control.

TheW-Z parameters express the attitude in terms of two ro-
tational transforms (see Fig. 3). The first is a rotationz about
the Z-axis. The second is a rotationθ about a vectoru in the
X-Y plane to match the attitude. Let us denote the directional
cosine vector of the axisZ with the body axes (Xb,Yb,Zb) as
[a b c]T , as shown in Fig. 3. Defining the vectorw as

w =
[

b
1+c

−a
1+c

]T
= [w1 w2]T (10)

we then have the following relation between the time derivatives
of theW-Z parameters and the angular velocity of the satellite: ẇ1
ẇ2
ż

 =


(
1+ w2

1 − w2
2

)
/2 w1w2 w2

w1w2

(
1− w2

1 + w
2
2

)
/2 −w1

−w2 w1 1


 ω1
ω2
ω3


(11)

Fig. 3. Definition ofW-Z parameters.

Rewriting vectorw in complex-number notation as

ŵ = w1 + iw2 (12)

and similarly rewriting the satellite’s angular velocity compo-
nents on thex andy axes as

ω̂ = ω1 + iω2 , (13)

we can then rewrite Eq. (11) as

˙̂w = −iω3ŵ +
ω̂

2
+

( ¯̂ω
2

)
ŵ2 , (14)

ż= ω3 + Im
(
ω̂ ¯̂w

)
. (15)

In considering LOS control, if we take the direction of the mis-
sion equipment as theZb-axis in the satellite’s body coordinate
system, it is then not necessary to restrict the attitude about
the Zb-axis, and, consequently, it is not necessary to control
the value ofz in the W-Z parameters. The control problem is
thereby reduced to a problem of stabilizing the two-dimensional
vectorw to zero. Based on Eq. (14), the time derivative of the
squared norm ofw is then

d
dt
|ŵ|2 = (1+ |ŵ|2)Re(ω̂ ¯̂w) , (16)

d
dt
|w|2 = (1+ |w|2)(ω̃ · w) . (17)

TheW-Z parameters are complex numbers, but, as shown in Eq.
(16) or Eq. (17), the time derivative of|w|, which represents the
LOS angle, can be expressed by only a real value. TheW-Z pa-
rameters are therefore appropriate for LOS control, and, in this
study, we take Eq. (16) or Eq. (17) as the basis for designing a
feedback controller. TheW-Z parameters are conceived as ex-
pressions for application to the two-torque problem, in which
torque cannot be generated about theZb-axis. In order to sim-
plify the application of theW-Z parameters to the LOS attitude
maneuver problem using CMGs, we hereinafter assume that the
Xc- andZc-axes of the CMG coordinate system coincide with



theXb- andYb-axes, respectively, of the satellite’s body coordi-
nate system.

4. Line-of-Sight Control

4.1. Steering control law with two gimbals for LOS axis
maneuvering

The use of just one nonlinear feedback controller to perform
attitude control (three-axis or LOS) is desirable since it elimi-
nates the need to switch between two controllers, but nonlinear
feedback control tends to require control quantities exceeding
the actuator limit, with the attendant difficulty of designing a
gain that would prevent limit overruns.

In this study, we assume that the angular momentum of the
overall system is zero. Near the target LOS attitude, we assume
that if gyration has sufficiently slowed, then the two gimbal an-
gles of the two skewed SGCMGs are both close to 0 or 180 deg.
The angular momentum of the CMG system as expressed in the
satellite’s body coordinate system is then

H ≈ h0

 −cβ (sinδ1 − sinδ3)
sβ (sinδ1 + sinδ3)

0

 . (18)

Because we assume that the angular momentum of the overall
system is zero, if the angular momentum of the CMG about the
Yc-axis is zero, then the angular velocity of the satellite about
theZb-axis is also zero. In such a case, by ignoring the gyration,
the equation of motion can be approximated to describe two-
axis rotation about theXb- andYb-axes as[

Jx 0
0 Jy

] [
ω̇1
ω̇2

]
= −h0

[
−cβcδ1 cβcδ3
sβcδ1 sβcδ3

] [
δ̇1
δ̇3

]
(19)

which can be rewritten as

J̃ ˙̃ω = −h0 Ã
[
δ̇1
δ̇3

]
(20)

where

Ã =
[
−cβcδ1 cβcδ3
sβcδ1 sβcδ3

]
. (21)

If we let v = |ŵ|2, then the differential equation Eq. (16) can be
rewritten as

v̇ = (1+ v)(ω̃ · w) . (22)

Introducing the virtual angular velocity

ω̂d = −k1ŵ (or ω̃d = −k1w) , (k1 > 0) , (23)

and substituting̃ωd into ω̃ in Eq. (22), Eq. (22) then becomes

v̇ = −k1(1+ v)v (< 0) . (24)

The solution of the above differential equation is then

v = |ŵ|2 = |w|2 = 1/(γek1t − 1) (25)

whereγ is an integration constant. As shown in Eq. (25), the
parameterv(= |ŵ|2) is asymptotically stable. The virtual angular
velocity (Eq. (23)) is input to stabilize the body axisZb to the
inertial Z-axis. In this paper, we consider the task of pointing
Zb in the target direction starting from an arbitrary direction in

the inertial coordinate system. For simplicity, we take theZ-
axis of the inertial coordinate system as the target LOS direction
without loss of generality.

In order to derive a steering control law that is intended to fol-
low the virtual angular velocity input (Eq. (23)), by introducing
the difference between the current angular velocity vector and
the virtual angular velocity input asσ = ω̃ − ω̃d, a Lyapunov
function candidate is chosen as

V(v,σ) = v +
1
2
σTσ = v +

1
2
|ω̃ − ω̃d|2 . (26)

The satellite angular acceleration due to the CMG-generated
torque is transformed to the satellite’s body coordinate system,
noting that the angular acceleration about theZc-axis is also
close to zero, we have

˙̃ω = R̃ω̇ = −h0 J̃−1 Ã
[
δ̇1
δ̇3

]
(27)

where

R̃ =
[

1 0 0
0 1 0

]
. (28)

In addition, note that

ω̃ = ω̃d + σ , (29)

˙̃ωd = −k1ẇ = −k1W̃ω (30)

where

W̃ =


(
1+ w2

1 − w2
2

)
/2 w1w2 w2

w1w2

(
1− w2

1 + w
2
2

)
/2 −w1

 .
(31)

By taking the time derivative of Eq. (26) and substituting Eqs.
(27), (29), and (30), we have

V̇ = −k1(1+v)v+σ·
{
(1+ v)w + (k1W̃ω − h0 J̃−1 Ãδ̇)

}
. (32)

If a steering control law is designed as[
δ̇1
δ̇3

]
=

1
h0

Ã−1 J̃
{
k1W̃ω + k2

(
R̃ω + k1w

)
+ (1+ v)w

}
(33)

then

V̇ = −k1(1+ v)v − k2|σ|2 ≤ 0 . (34)

As we assume the application of feedback control near the tar-
get LOS and considerδ1 ≈ δ3 ≈ 0 or π, we havecδ1 , 0 and
cδ3 , 0. We then have| Ã| , 0, and it is always possible to cal-
culate the gimbal steering law (Eq. (33)). In short, the steering
control law (Eq. (33)) does not encounter singularities near the
target LOS.

Consequently,V is radially unbounded,̇V < 0 ∀(v,σT)T ∈
ℜ3\ {0}, andV(0) = 0. This proves that the steering control law
employed near the target LOS can asymptotically stabilize the
current LOS to the target LOS. Hereinafter, the above steering
control law (Eq. (33)) is referred to as “steering control law-1.”



4.2. Damping of rotation about the LOS axis
In micro-gravity experiments using parabolic flight, the air-

plane changes its flight direction from upward to downward
before providing micro-gravity conditions. This change in the
flight direction then induces the relative pitch-up motion in the
cabin for the experiments. Hereinafter, for simplicity, theXb-
axis is coincident with thex-axis of the airplane at the initial
time of the experiments. If the satellite model does not rotate
relative to the airplane body at the initial time of the micro-
gravity experiment, the satellite model will have an initial an-
gular velocity about the pitch axis of the airplane. It is desir-
able, but very difficult, to set the initial angular velocity of the
satellite model to zero before experiments under micro-gravity
conditions, particularly the angular velocity about theZb-axis
of the satellite model due to the pitching motion of the airplane.
In order to address this problem, we consider the compensation
of the rotational motion about theZb-axis using the 2nd and 4th
CMGs in this study.

When the 2nd and 4th gimbals are actuated in the direction
opposite the origin, such that [δ̇2 δ̇4] = [δ̇ − δ̇], no torque is
generated about theXb- andYb-axes, but the torque about the
Zb-axis is generated as

τ = −2h0δ̇cβ cosδ . (35)

In order to damp out the angular velocity about theZb-axis, let
us consider the following feedback control torque about theZb-
axis:

τ = −k3Jzω3 . (36)

Now, we assume that the initial gimbal angles of the 2nd and
4th CMGs are both zero. In this case, a steering law for the
2nd and 4th gimbal to damp out the angular velocity about the
Zb-axis is derived from Eqs. (35) and (36) as follows:[

δ̇2
δ̇4

]
=

k3Jzω3

2h0cβ

[ 1
cosδ2−1
cosδ2

]
. (37)

In this study, the steering control law combining Eq. (33) and
Eq. (37) is referred to as “steering control law-2.”

By taking into consideration the mechanical limitation for
the gimbal motors and singularity avoidance, the following con-
straints are set on the gimbal rate in accordance with the gimbal
rate and angles.

δ̇i =


saṫδmax

(δ̇i) |δi | < δmax

0 δi ≥ δmax, δ̇i > 0
0 δi ≤ −δmax, δ̇i < 0

(38)

5. Numerical Simulation and Experiments

5.1. Experimental setup
Figure 4 shows the satellite model used in this study. Ta-

ble 1 shows the parameters of the satellite model: size, weight,
moment of inertia, CMG wheel angular momentum, and con-
straints on the gimbal rate and angles to avoid singularities. The
moment of inertia about each axis, (Jx, Jy, Jz), was measured by
a torsional pendulum method, which is described as:

J =
mgd2T2

4π2L
(39)

Fig. 4. Experimental setup.

Table 1. System model.

Parameter Values
Size radius 0.25 [m], height 0.35 [m]

Massm 10.0 [kg]
J diag(0.238,0.341,0.268) [kgm2]
Jw 0.00083 [kgm2]
Ω 2000 [rpm] (= 209.44 [rad/s])

h0 = JwΩ 0.02 [Nms]
δ̇max 30.0 [deg/s]
δmax 65.0 [deg]

Table 2. Simulation and experiments parameters.

Parameter Values
w1(0), w2(0), z(0) (0.1895, 0.1895,0.0)

Control gainsk1, k2, k3 3.0, 3.0, 4.0
Initial gimbal anglesδ(0) [0,0, 0,0]T [rad]

wherem is the mass of the model [kg],d is the distance between
two suspending cables [m],T is the oscillation period [s], and
L is the length of the cables [m]. The CMG wheels are made of
brass, and their radius is 10 cm. The moment of inertial of the
CMG wheel was measured using a moment of inertia measure-
ment device (MOI-005-104, Inertia Dynamics and LLC Co.).

The control laws are implemented in a laptop computer (PC)
using MatlabR⃝ code. The angular velocities are measured by
mems gyros. The gimbal angles are measured using poten-
tiometers. Arduino Mega is used as an on-board computer to
control the stepper motors for gimbal angles and direct-current
(DC) motors for the wheels and to communicate with the PC.

The data of the angular velocities and gimbal angles are sent
from the satellite model to the PC, and the gimbal rate com-
mand determined by the steering control laws is sent from the
PC to the satellite model. This communication is implemented
by serial communication via Bluetooth with 38,400 bps. The
W-Z parameters to express the attitude are calculated in the PC
by integrating Eq. (11) using the angular velocities measured
by the mems gyros. The experimental results are recorded in
the form of CSV files in the PC. The sampling period in the
experiments is approximately between 0.08 s and 0.1 s.
5.2. Numerical and experimental results

It is desirable to appropriately choose attitude maneuver an-
gles and control gains to perform experiments within the avail-
able length of time for free-floating in the micro-gravity con-
dition. The technical staff of Diamond Air Service Inc. sug-
gested that, although the micro-gravity condition continues for
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Fig. 5. Simulations results for steering control law-1.

approximately 20 s, the length of time for free-floating experi-
ments will be limited to within 5 s due to the translational mo-
tion of the model in the free space of the cabin. By taking this
suggestion into consideration, we developed the experimental
setup described above, and selected the initialW-Z parameters
and control gains. Table 2 shows the selected initialW-Z pa-
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Fig. 6. Experimental results for steering control law-1.

rameters and control gains for the experiments. The initialW-Z
parameters correspond to an angle of 30 deg between theXb-Yb

axes. In other words, we intend to perform an attitude maneuver
of 30 deg between theXb-Yb-axes.

Although the sampling period in the experiments varies be-
tween 0.08 s and 0.1 s due to the communication condition and
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Fig. 7. Simulations results for steering control law-2.

the task load on the PC, in the numerical simulations, the sam-
pling period of the gimbal rate command is set to 0.1 s in order
to simply emulate the experiments.

Firstly, we present and discuss the numerical results for steer-
ing control law-1. Figure 5 shows the result of simulation for
steering control law-1. The third gimbal rate is dramatically
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Fig. 8. Experimental results for steering control law-2.

switched from the maximum positive rate to a negative rate
around 1.3 s and then gradually changed to zero after 2.0 s.
In contrast, the first gimbal rate changed smoothly. As shown
in Figs. 5(c) and 5(d), the LOS can be pointed to and stabilized
to the target LOS direction by two skewed SGCMGs with the
feedback steering control law described herein, and the settling



time of the attitude maneuver is approximately 4.0 s, which is
expected for the experiment. As mentioned in the previous sub-
section, steering control law-1 neither damps out the rotational
motion about the LOS direction nor stabilizes the attitude angle
around the LOS axis to zero. As a result, the attitude around the
LOS direction, which corresponds to theZ parameter, shifted
from the initial attitude, as shown in Fig. 5(d). This attitude
shift around the LOS axis is approximately 0.13 rad (= 7.4 deg).

Figure 6 shows the results of experiment for steering control
law-1. Similar to the numerical result, the third gimbal rate is
switched from the maximum positive rate to the negative rate,
but swift timing is delayed from the numerical result. In addi-
tion, the third gimbal rate does not approach zero. As shown
in Fig. 6(a), the first gimbal rate in the experiment exhibits a
trend of changing from a negative value to positive value. This
trend is similar to that of the numerical experiment, but the rate
magnitude is greater than the numerical result. The angular ve-
locities approached zero around 4 s, as shown in Fig. 6(c), but
suddenly changed. This sudden change resulted from the colli-
sion of the model with the wall of the cabin. Thus, this sudden
change can be ignored. The LOS is stabilized approximately to
zero around 4 s, as shown in Fig. 6(d). This setting is similar
to the time for the numerical results. As shown in Fig. 6(d), the
attitude shift around the LOS axis is approximately 0.3 rad (=

17.2 deg), which is approximately 2.5 times the numerical re-
sult. Although there are some differences between the numeri-
cal and experimental results, it is experimentally confirmed that
steering control law-1 can stabilize the LOS to the target LOS
direction.

Next, we present and discuss the results for steering control
law-2. As mentioned above, the attitude around the LOS axis
(Z parameter) shifted from the initial attitude for the case of
steering control law-1, because steering control law-1 neither
damps out rotational motion about the LOS direction nor sta-
bilizes the attitude angle around the LOS direction to zero. In
contrast, steering control law-2 was designed to suppress rota-
tion around the LOS direction. In order to validate this effect of
steering control law-2, numerical simulations and experiments
are carried out. Figures 7 and 8 show the results of the nu-
merical simulations and the experiments using steering control
law-2, respectively. In contrast to the results for steering control
law-1, all of the gimbals are actuated. The 2nd and 4th gimbals
are actuated in opposite directions in order to suppress the rota-
tional motion around the LOS axis, as shown in Figs. 7(a) and
8(a), but the magnitude of the 2nd and 4th gimbal rate is larger
than that of the numerical simulation. The trend of the gimbal
rate change in the experiment is similar to that of the numeri-
cal result until approximately 2.2 s, but the first and third gim-
bal rates in the experiment differed from those of the numerical
simulation. In addition, in the experiment, the first gimbal rate
command was negative after approximately 2.5 s, but the first
gimbal angle was not correctly actuated. This may be because
of communication or mechanical trouble during the experiment.
Despite this trouble in the first gimbal motion, Fig. 8(d) shows
that the LOS maneuvering to the target LOS direction was com-
pleted in approximately 4 s in the experiment. This is because
the angular momentum of the third CMG can be in the direction
between theXb- andYb-axes by tilting the gimbal, and this leads
to easy maneuvering around the direction between theXb- and

Yb-axes. In other words, the third CMG played the most im-
portant role in maneuvering between theXb- andYb-axes. In
addition, steering control law-2 succeeded in damping out the
angular velocity about the LOS axis, as shown in Figs. 7(c) and
8(c). This effect of steering control law-2 resulted in the sup-
pression of the attitude drift about the LOS axis, as shown in
Figs. 7(d) and 8(d).

6. Conclusion

In this paper, theW-Z parameters are used to express the
attitude, and two steering feedback-control laws are derived
for LOS maneuver control, based on a backstepping control
method. The first control law was designed for LOS angle stabi-
lization only, and the second control law was designed not only
for LOS angle stabilization but also for suppression of rotation
around the LOS axis.

Taking into consideration the available length of time for
experiments under micro-gravity conditions, an experimental
setup that possesses a large angular momentum was developed
and control gains and the maneuver angle were selected.

In order to validate the steering control laws, numerical sim-
ulations and experiments under micro-gravity conditions were
carried out, and the obtained results were compared. As a re-
sult, the second steering control law, which was designed to
suppress the attitude drift about the LOS axis, can suppress the
attitude rotation shift about the LOS axis, and although there
were some differences between the numerical and experimental
results, due primarily to trouble in the first gimbal motion, the
steering control laws presented in this study can stabilize the
initial LOS direction to the target LOS direction.
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