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In the case of a three-axis attitude control of spacecraft by control moment gyros (CMG), more than three CMGs are typically
used for the redundancy. Even when one CMG fails and the redundancy is lost, the attitude control must be maintained. In this paper,
by focusing on the attitude control with three CMGs, suitable steering laws are considered. In order to use the full angular momentum
workspace of three CMGs, singularity problems occur more severely than four CMG case. Two steering laws for the four CMG
pyramid configuration with one CMG failure are proposed; Inverse Kinematics Steering Logic (IKSL) and Forward And Backward
Reaching Inverse Kinematics (FABRIK). The aim of each steering law is to provide gimbal rates from the gimbal angle calculation
by the inverse kinematics of CMGs. IKSL exactly solves the inverse kinematics of the system, whereas FABRIK uses a heuristic
approach to finding an approximate solution of the inverse kinematics problem. Numerical simulations are performed to validate the
effectiveness of the proposed steering laws as compared with the Singular Direction Avoidance (SDA) steering law.
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Nomenclature

β : skew angle
θ : gimbal angles
ĝi : unit vector along gimbal axis of CMG-i
hi : angular momentum of CMG-i

htotal : total angular momentum of CMGs
hw : magnitude of wheel angular momentum
A : Jacobian from gimbal rates to torque
τs : attitude control torque

Subscripts
0 : initial
f : final
r : reference

1. Introduction

For communication and observation purposes, attitude con-
trol systems are needed to perform missions in space. Con-
trol moment gyros (CMGs) are momentum exchange devices to
provide agile and precise attitude control of spacecraft without
use of the fuel. Although they can produce a large output torque
by a small input torque, they suffer singularity problems. CMGs
are mainly classified into three categories: single gimbal con-
trol moment gyros (SGCMGs), double gimbal control moment
gyros (DGCMGs), and variable speed control moment gyros
(VSCMGs).1) Because of their simple mechanical structures,
SGCMGs are often used for spacecraft. Because a SGCMG has
only one degree of freedom, three or more SGCMGs are nec-
essary for three-axis control. Usually an array of four or more
CMGs is used to provide redundancy in the event of a failure.
The most popular configuration is a pyramid-type SGCMG sys-
tem (using four SGCMGs).2)3) Merits of this configuration are
redundancy and three-axis symmetry of output torque. While
many researches have been conducted on its normal operation,
limited researches have been presented4)5) in the case where one
CMG fails and the redundancy is lost. This paper will focus on

these topics.
CMG arrays are subject to singularities, where a set of gim-

bal angles cannot realize the three-axis control torque. These
singular states appear as surfaces in the momentum space of
the CMG system. The redundancy of four CMGs allows the
small gimbal motion to pass through the inner singular surfaces
in the momentum space. However, in the case of three CMGs,
the larger discontinuities in the gimbal angles often occur when
crossing these surfaces. These issues may be avoided by re-
ducing the angular momentum workspace not to encounter the
singular surfaces, where the inverse calculation of the Jacobian
matrix from the gimbal rates to three-axis control torque can-
not be calculated. However, the research shows that for the
commonly used skew angle of 54.7 degrees, to achieve singu-
larity free operation, the workspace is severely limited when
one CMG fails.4) Although this restriction is relaxed by chang-
ing the skew angle, the skew angle is usually fixed to an optimal
value for the four CMG configuration. Other research has inves-
tigated the fail case with magnetic torquers used in conjuction,5)

but the magnitude of the control torque is limited. To provide
the agile control, the entire momentum workspace should be
utilized without altering the skew angle or the use of additional
actuators.

The spacecraft cannot easily be repaired and refilled. When
one CMG fails, its wheel is spun down and the attitude control
with the remaining CMGs becomes necessary. The current con-
trol methods depending on the redundancy sometimes cannot be
applied to the failure case. In this paper, therefore, two steer-
ing laws are proposed to provide the control when one CMG
in the pyramid-type SGCMG system fails: Inverse Kinematics
Steering Logic (IKSL) and Forward And Backward Reaching
Inverse Kinematics (FABRIK) steering law.6) In IKSL, the ex-
act gimbal angles are determined from the inverse kinematics
of the system to realize a desired torque. When crossing the
singular surfaces, discontinuities in the gimbal angles may give
rise to large gimbal rates and momentary torque errors. Even in
this case, this steering law is rather accurate and its logic does



not have singularities. However, IKSL is computationally ex-
pensive and complex. On the other hand, the FABRIK steering
law applies a heuristic method to solving the inverse kinemat-
ics of CMG system. Unlike IKSL which first finds all exact
solutions to the inverse kinematics, FABRIK searches for only
one approximate solution. It is an iterative method, where each
iteration often provides an output torque close to the desired
torque. Hence, the number of iterations provides a trade-off be-
tween accuracy and computation time. While it cannot give the
same tracking performance as IKSL, it is comparably simple in
its implementation.

The remainder of this paper is organized as follows: In Sec-
tion 2, the spacecraft model is introduced with the pyramid con-
figuration of four CMGs where one CMG fails and is removed.
In Section 3, two new steering laws are introduced and the de-
tails of their algorithms are described. In Section 4, the results
of the numerical simulations of the spacecraft attitude control
with the proposed steering laws are shown and the character-
istics of the simulation results are dicussed. In Section 5, the
conclusions of the paper are presented.

2. Spacecraft Model

Here, an attitude control system using three CMGs shown in
Fig. 1 is focused. This configuration assumes one CMG fails in
the popular pyramid configuration of four CMGs.
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Fig. 1. Configuration of three CMGs

By using the skew angle β and gimbal angle of CMG-i (i-th
CMG), θi, the unit vector along the gimbal axis and that along
the angular momentum of CMG-i are denoted ĝi and ĥi, respec-
tively. These vectors are expressed as

[
ĝ1 ĝ2 ĝ3

]
=

sβ 0 −sβ
0 sβ 0
cβ cβ cβ

 , (1)

[
ĥ1 ĥ2 ĥ3

]
=

−s1cβ −c2 s3cβ
c1 −s2cβ −c3

s1sβ s2sβ s3sβ

 , (2)

where sin θi, cos θi, sin β, and cos β are abbreviated as si, ci, sβ,
and cβ, respectively. The magnitude of the angular momentum
of each CMG is the same for all CMGs and is denoted by hw.
The total angular momentum of three CMGs, htotal, is given by

htotal = hw

(
ĥ1 + ĥ2 + ĥ3

)
. (3)

The unit vector along the torque of CMG-i is denoted by τ̂i =

ĝi × ĥi. The Jacobian matrix A from the gimbal rates to the

control torque is given by

A =
[
τ̂1 τ̂2 τ̂3

]
=

−c1cβ s2 c3cβ
−s1 −c2cβ s3
c1sβ c2sβ c3sβ

 . (4)

By using the Jacobian A, the attitude control torque τs gener-
ated by the CMGs is given by

τs = −hw Aθ̇, θ =

θ1θ2
θ3

 . (5)

The gimbal rates of the CMGs, θ̇, can be calculated directly
from Eq. (5),

θ̇ = − 1
hw

A−1τs. (6)

When det A = 0, A−1 cannot be calculated and the CMGs are
in the singular state. In this paper, in order to avoid the singu-
larity issues, θ̇ is obtained by using the inverse kinematics that
calculates the gimbal angles from the total angular momentum
of the CMGs.

3. Steering Laws

Although most steering laws for the attitude control by the
CMGs have the singularity issues, inverse kinematics methods
have no singularities because these methods calculate θ̇ from
the gimbal angles θ. In the following section, two steering laws
are introduced. One is a comparatively analytical and accurate
method by a complex calculation. Another is a heuristic method
by a simple calculation.

3.1. Inverse kinematics steering logic2)

Inverse kinematics steering logic (IKSL) uses the inverse
kinematics of CMGs. Generally, the inverse kinematics pro-
vides the inputs from the given outputs. In the CMG case, out-
puts are total angular momentum of CMGs whereas the inputs
are gimbal angles of CMGs. The solutions are numerically cal-
culated because the analytical solution cannot be obtained.
3.1.1. Algorithm

As described above, the inverse kinematics of CMGs is to
find θ from the given htotal. The elements of the given htotal is
expressed by htotal = hw

[
hx hy hz

]T
. The problem is to find

the solution of the following equations:

−s1cβ − c2 + s3cβ = hx, (7)
c1 − s2cβ − c3 = hy, (8)

s1sβ + s2sβ + s3sβ = hz. (9)

From Eqs. (7)-(9), the following equation for s2 and c2 is ob-
tained by eliminating s1, c1, s3, and c3 as:(hy + s2cβ

)2
+

(
hx + c2

cβ

)2 (hy + s2cβ
)2
+

(
hz − s2sβ

sβ

)2
= 4

(
hy + s2cβ

)2
(10)

This equation is reduced to an eighth-order polynomial equation
for s2. Because the equation cannot be solved analytically, the
solution for s2 is obtained numerically. Once the solution for



s2 is obtained, the solutions for c2, s1, c1, s3, and c3 are easily
calculated from the following equations:

s2
1 + c2

1 = 1, (11)

s2
2 + c2

2 = 1, (12)

s2
3 + c2

3 = 1, (13)

s1 =
−(s2cβ + c2 + hx)sβ + hzcβ

2sβcβ
, (14)

s3 =
(−s2cβ + c2 + hx)sβ + hzcβ

2sβcβ
, (15)

c1 − c3 = hy + s2cβ. (16)

The gimbal angle θi is uniquely calculated from each set of si

and ci, and θ has at most eight solutions.
3.1.2. Gimbal rate limitation

In the feedback attitude control, a reference quaternion and a
reference angular velocity of the spacecraft are generated first.
The attitude control torque τs is calculated from the difference
between the current and the reference states. The time interval
and the variation of the total angular momentum of CMGs at
each interval are denoted by ∆t and ∆htotal, respectively. The
target value of the total angular momentum h̃total is given by

h̃total = htotal + ∆htotal = htotal − τs∆t. (17)

Because the inverse kinematics has eight or fewer solutions,
the selection among the obtained solutions is needed. The
present gimbal angles and the solution of the inverse kinematics
for h̃total are denoted by θ and θ̃, respectively. Here, ∥θ̃ − θ∥ is
minimized to select the appropriate solution. The variation of
the gimbal angle is calculated by ∆θ = θ̃ − θ. If the CMG state
is in the inner impassable singular surfaces, the ideal θ̃ cannot
be realized because ∆θ becomes too large for one sampling in-
terval. In such a case, by using the limit of ∥∆θ∥, ∆θmax, θ̇ is
determined as follows:

θ̇ =
1
∆t

min (∆θmax, ∥∆θ∥)
∆θ

∥∆θ∥ . (18)

When θ̇ is given by Eq. (18), θ does not reach θ̃ in one sam-
pling interval. Even in this case, IKSL helps the CMGs to pass
through the inner impassable singular state.
3.2. FABRIK steering logic

In this subsection, a heuristic iterative method, Forward And
Backward Reaching Inverse Kinematics (FABRIK),6) is intro-
duced and modified for the inverse kinematics of CMGs. In
the case of IKSL, because the solutions are obtained directly
from a complicated equation (8th order polynomial equation),
the solutions are accurate but the procedure is complicated. Es-
pecially when the CMG configuration has additional degrees of
freedom, it is rather difficult to select the best solution. Us-
ing FABRIK, the solutions are not always accurate but simple.
FABRIK can calculate the solution easily in the same way even
if the configuration has four or more CMGs.

3.2.1. Algorithm
A temporary angular momentum pi is defined by the summa-

tion of the angular momentum of each CMG as follows:

p1 = 0, (19)

p2 = hw ĥ1, (20)

p3 = hw

(
ĥ1 + ĥ2

)
, (21)

p4 = hw

(
ĥ1 + ĥ2 + ĥ3

)
. (22)

The initial values of p0 and p4 are set at 0 and h̃total, respec-
tively; p1 = 0, p4 = h̃total. In FABRIK, these two equations are
alternately substituted in the backward and forward procedures,
and each procedure is calculated as follows: The distance be-
tween each pi is firstly defined by ri = pi+1 − pi. First, let p4

be h̃total and the backward calculation is executed. The vector
ri is modified so that pi is realized by the angular momentum
hi. The new distance ri is calculated by projecting ri onto an
orthogonal plane to gi and changing the size to the magnitude
of angular momentum of each CMG, hw. That is, ri is modified
as follows:

ri = hw r̂i, r̂i =
ri − (ri · gi)gi

∥ri − (ri · gi)gi∥
. (23)

The gimbal angle of CMG−i is calculated from ri. The differ-
ence angle between the calculated gimbal angle of CMG-i and
the current one, θidif , is obtained from

sin θidif = (ĥi × r̂i) · ĝi, cos θidif = ĥi · r̂i. (24)

If θidif is larger than the limited value, ri is recalculated as fol-
lows:

ri =

{
ri |θidif | ≤ θmax

hw

(
cm ĥi + sign(θidif)smĝi × ĥi

)
|θidif | > θmax

(25)

where θmax is the allowable magnitude of θidif and sin θmax and
cos θmax are abbreviated as sm and cm, respectively. Then, pi is
redefined as pi+1 − ri. This calculation is executed from i = 3
to i = 2. Second, let p1 be 0 and the forward calculation is exe-
cuted from i = 1 to i = 2. As shown in the backward procedure,
ri is calculated by projecting pi+1 − pi onto an orthogonal plane
to ĝi and changing the size to the magnitude of angular momen-
tum of each CMG, hw. If the difference angle θidif is larger than
the limited value, Eq. (25) is also applied in this procedure.
Then, pi+1 is redefined as pi + ri. Therefore, pi is calculated in
the backward and forward procedure as follows:

Backward procedure : pi = pi+1 − ri (26)
Forward procedure : pi+1 = pi + ri (27)

By repeating the backward and forward procedures in a certain
number of times, p4 is finally calculated and it becomes almost
close to the target. The angular momentum of each CMG−i is
calculated from pi+1 and pi, and the whole procedure of FAB-
RIK is shown in Fig. 2.



3.2.2. Modification of initial θ
In this subsection, initial setting of θ is considered. FAB-

RIK can get only one solution near the current gimbal angles
because it searches the solution within the limit value from the
current gimbal angles. In the singular state, it sometimes takes
a lot of time to pass through the singular surface. In FABRIK,
the selection of the initial gimbal angles is important to obtain
the proper gimbal angle solution in an allowable number of it-
erations.

Here, the initial angular momentum is calculated from the
modified gimbal angles kiniθ. The parameter kini is a constant
value for changing the initial gimbal angles from θ, and in the
case of kini < 1, the solution search is started from the smaller
gimbal angles than the current ones. In the case of three CMGs,
there are only a limited number of solutions since the configu-
ration has no redundancy. Although the terminal gimbal state
in the attitude maneuver is different from the initial one unless
specifically devised, the terminal state sometimes becomes the
same as the initial state in FABRIK with kini < 1. This is be-
cause the solution of θ is likely to be small in the case of kini < 1.
Returning to the initial condition is desirable in the case of the
repetition of the attitude maneuvers.
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Fig. 2. Flowchart of FABRIK

4. Numerical Simulations

In this section, maneuver simulations are executed in order to
examine the capabilities of IKSL and FABRIK. For the compar-
ison, a simple steering law named Singular Direction Avoidance
(SDA)7) is also applied.

4.1. Attitude control
The spacecraft attitude is expressed by Euler parameters. Eu-

ler parameters q is defined by the rotation angle θs around the
Euler axis â as follows:

q (θs, a) =
[
S (q)
V(q)

]
=

[
cos θs2
â sin θs2

]
, (28)

where S (q) and V(q) refer to the scalar part and the vector part,
respectively. In the simulations, the spacecraft is controlled by
a PD control law so that its Euler parameters and angular veloc-
ity follow the reference Euler parameters qr, and the reference
angular velocity ωr, respectively. Let qr and ωr be expressed by
the half rotation time, tf , â, and θs as follows:

ωr(t) =


θsf

t2
f

ât t < tf

2θsf

tf
− θsf

t2
f

ât tf < t < 2tf

0 2tf < t

(29)

q̇r(t) =
1
2

qr(t) ⊗ ωr(t), (30)

where ⊗ denotes a quaternion multiplication. An example of
time histories of qr and ωr is shown in Fig. 3 where tf , â, and θs
are set at the values in Table 1.

0 10 20 30
-0.25

-0.2

-0.15

-0.1

-0.05

0

Time [s]

E
u
l
e
r
 
P
a
r
a
m
e
t
e
r
s

 

 

x

y

z

Euler parameter qr

0 10 20 30
-3

-2

-1

0

1

Time [s]

B
o
d
y
 
R
a
t
e
 
[
d
e
g
/
s
]

 

 

x

y

z

Angular velocity ωr

Fig. 3. Reference trajectories

The proportional gain and the derivative gain are described
by kp and kd, respectively. The attitude control torque τs is de-
fined by the error of the Euler parameters qe and the error of the
angular velocity ωe as follows:

τs = −kpV (qe) − kdωe, (31)

where

qe = q†r ⊗ q, (32)
ωe = ω − ωr, (33)

and q†r denotes the conjugate quaternion of qr. In the proposed
steering laws, IKSL and FABRIK, the angular momentum com-
mand h̃total is given by Eq. (17).

In order to compare the performances of the steering laws in
the singular state, a tracking maneuver is designed so that the
total angular momentum passes through an impassable singular
surface. The moment of inertia of the spacecraft, J, is set as
follows:

J =

0.5541 0.0130 0.0183
0.0130 0.5447 −0.0149
0.0183 −0.0149 0.6289

 [kgm2]. (34)

The parameters of the simulations are specified in Table 1.
4.2. SDA steering logic

The SDA steering logic is also tested in the simulations. Let
the singular value decomposition of matrix A be expressed by

A = USVT . (35)

In SDA, by using matrices U, S, and V, the inverse matrix of
matrix A is calculated as follows:

A−1
SDA = VS−1

SDAUT . (36)



Table 1. Parameters of the simulation
Items Values
Moment of inertia J
Wheel angular momentum hw = 0.0576 [Nms]
Skew angle of each CMG β = 45 [deg]
Initial gimbal angles θ = [−45, 0, 45]T [deg]
Eular axis â = [−2/3,−2/3,−1/3]T

Proportional gain kp =10 [Nm]
Derivative gain kd = 5 [Nms/rad]
Initial Euler angle θs0 = 0 [deg]
Final Euler angle θsf = 40 [deg]
Half rotation time tf = 10 [s]
Maximum gimbal rate θ̇max = 2 [rad/s]
Time interval ∆t = 0.01[s]
Parameter in SDA α0 = 0.1
Parameter in SDA kσ = 10
Parameter in IKSL ∆θmax = 0.02 [rad]
Parameter in FABRIK kini = 0.8
Parameter in FABRIK θmax = 0.02[rad]

In the above equation, S−1
SDA is calculated as follows:

S−1
SDA = diag

 1
s11
,

1
s22
,

s33

s2
33 + α

 , (37)

where sii means the singular value of matrix A, that is, the (i, i)-
th component of matrix S, and the inequality s11 ≥ s22 ≥ s33

is assumed. The positive parameter α avoids the sigularity of
inverse matrix A−1 in the case of singular states, and is given by

α = α0e−kσ s2
33 , (38)

where α0 and kσ are positive constants.
The torque errors are produced by the parameter α in the sin-

gular direction expressed by the third column of matrix U and
its effects become larger near the singular surface. On the singu-
lar surface, the gimbal rates become zeros in the singular direc-
tion, and thus, passing through the singular surface sometimes
becomes difficult in SDA.
4.3. Simulation results

Figures 4 - 6 show the simulation results of SDA, IKSL, and
FABRIK, respectively. In each figure, the first subfigure shows
vector part of the Euler parameters V(q). The second shows
vector part of the error Euler parameters V(qe). The third shows
angular velocity ω. The fourth shows gimbal angles θ. The
fifth shows gimbal angle rates θ̇. The sixth shows the condition
number of A.

In the case of SDA in Fig. 4, the condition number shows
that the CMGs encounter a singular state at t = 10 [s] and can-
not escape until t = 25 [s]. In the singular state, the gimbal
angle motion is suppressed and it takes a longer time to escape
from the singular state. While the CMGs are stuck in the singu-
lar state, small torque errors resulting from parameter α in the
singular direction accumulate, which makes the attitude error
and the angular velocity error larger than those of other cases.

In the case of IKSL in Fig. 5, the gimbal angles move rapidly
at t = 9 [s] and t = 11 [s]. From the condition number, the
CMGs encounter the singular state at these times but little time
is spent in the singular state. Although momentary errors are
observed in the angular velocity at these timings of the singular

state, IKSL is best able to follow the reference trajectory with
the smallest peak errors.

In the case of FABRIK in Fig. 6, the condition number shows
that the CMGs are not close to the singular state. The gimbal
angle motion is visibly smoother and the gimbal angle rates are
also small. Although the attitude error in FABRIK is as large as
that of SDA, the gimbal angle rates are much smaller than those
of SDA.

All steering laws produce the identical motion until a singu-
lar surface is encountered. For this trajectory, IKSL and FAB-
RIK can return the gimbal angles to their initial state. Many
other trajectories have been tested by FABRIK with kini < 1,
and in many cases, the final gimbal angles return to the initial
state though they do not always return to the initial one. These
characteristics are regarded as one of the merits of FABRIK.

To summarize the performances of the steering laws, IKSL
produced the best results. However, IKSL needs much more
computations than the other methods. Average and maximum
computation time among these steering laws are shown in Ta-
ble 2 when they are run on MATLAB with an i7-6700 CPU. In
this table, the number of the iterations in FABRIK is 10 which
is also used in the simulations. As shown in Table 2, the com-
putation time of IKSL is almost four times larger than that of
FABRIK, and is ten times more larger than that of SDA.

Table 2. Time for steering laws

Steering law Average time [µs] Maximum time [µs]
SDA 13.82 52.28
IKSL 221.97 523.12
FABRIK 54.56 138.81
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Fig. 4. Attitude control simulation (SDA)
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Fig. 5. Attitude control simulation (IKSL)
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Fig. 6. Attitude control simulation (FABRIK)

5. Conclusions

This paper investigates the attitude control of spacecraft us-
ing three CMGs where one CMG fails in the pyramid configu-
ration of four CMGs. Two steering laws based on the inverse
kinemtics which calculates the gimbal angles of the CMGs from
the total angular momentum are proposed; Inverse Kinematics
Steering Logic (IKSL) and Forward And Backward Reaching
Kinematics (FABRIK). IKSL is a method to obtain exact gim-
bal angle solutions from an eighth-order polynomial equation.
The method realizes accurate attitude motion, but the compu-
tation burden is larger than FABRIK. On the other hand, FAB-
RIK is a heuristic method to obtain the approximate solution by
an iterative procedure. Some modifications are added to orig-
inal FABRIK to be suitable for the inverse kinematics of the
CMGs. Although the accuracy of the attitude motion is infe-
rior to that of IKSL, FABRIK is easy in implementation and the
computation burden is also less than IKSL. These steering laws
are examined by numerical simulations in comparison with the
Singular Direction Avoidance steering law (SDA). The simula-
tion results show the validity of the proposed steering laws in
escaping from the singular state.
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