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In this paper, we propose a novel singularity avoidance/passage logic based on inverse kinematics for steering a variable-speed
double-gimbal control moment gyro. This method does not employ any correction term, which is for the singularity avoidance and
required in a previously proposed steering logic, and it can generate a precise torque close to the reference torque. Also, it uses
an evaluation function including gimbal rate limitations explicitly for singularity avoidance/passage decision. Its function leads a
decision causing small attitude-error compared with the previous method which uses a simple threshold. Effectiveness of the method
is demonstrated by numerical simulations.
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Nomenclature

b⃗i : ith axis of the body fixed coordinate
(i = 1, 2, 3)

h : angular momentum
hW : magnitude of the wheel angular velocity
J : inertia matrix of a spacecraft
∆t : control period of attitude control
ω : body angular velocity
θ : gimbal angle of a VSDGCMG
τ : output torque

Subscripts
I : inner gimbal
O : outer gimbal
ref : reference
t : total

W : wheel
Superscripts

+ : solution when cos(θI + ∆θI) > 0
− : solution when cos(θI + ∆θI) < 0
∗ : numerically integrated values

Bold letters denote elements in the body fixed coordinate un-
less otherwise stated.

1. Introduction

Recently, many challenging space missions for science and
engineering have been carried out by using micro satellites,
which can be developed at low cost in a short time. Exam-
ples of those micro satellites are a 50 kg class micro satel-
lite “TSUBAME”1) developed at Tokyo Institute of Technology,
and a small deep space probe “PROCYON”2) developed at The
University of Tokyo and JAXA. One of the problems regarding
micro satellites is their small volume and this requires a device
installed on a satellite to be small size. For the problem, us-
ing a variable-speed double-gimbal control moment gyro (VS-
DGCMG) for three-axis attitude control is a promising option

Fig. 1.: VSDGCMG configuration when θi = θo = 0.

and expected to be able to save more space than using three re-
action wheels. This is because the actuator has three degrees of
freedom per one device and three-axis attitude control can be
conducted by only one VSDGCMG.

The mechanics of the VSDGCMG is shown as Fig. 1. The
CMG consists of a wheel and two gimbal: an inner gimbal and
an outer gimbal. The variable-speed wheel rotates at high speed
in a spacecraft and the inner gimbal rotates the wheel around an
axis orthogonal to the wheel’s rotation-axis. The outer gimbal
further rotates the inner gimbal around an axis orthogonal to the
outer gimbal axis.

Several attitude control methods using a VSDGCMG has
been proposed: a non-linear control method derived from a
strict equation of motion,3) a backstepping control method,4)

and a time-optimal maneuver planning method.5) However, few
studies focus on a singular problem where the CMG sometimes
cannot generate torque along a certain direction. The singular
states of the VSDGCMG can be divided into two types: 1) the
wheel speed becomes zero and 2) the wheel’s rotational axis co-
incides with the outer gimbal axis. Tsukahara et al. proposed a
steering logic6) to avoid and pass the latter singular state. The
avoidance means not being trapped at the state and the passage
means leaving from the singularity after being trapped. When



an approximate variation of the outer gimbal angle in the vicin-
ity of the singular state is larger than a threshold, the singularity
avoidance is conducted. The passage is conducted when the
variation is small.

In this paper, first, we propose a singularity avoidance steer-
ing logic by modifying the IKSL7) (inverse kinematics steer-
ing logic) for a VSDGCMG. Then, we show that this singlar-
ity avoidance logic causes large attitude error due to the con-
siderable increase of the reference gimbal rate in the vicinity
of the singular state. Second, we propose a singularity avoid-
ance/passage steering logic to prevent the error.

The inverse kinematics is a method to obtain magnitude of
each wheel momentum and each gimbal angle from angular
momentum of a CMG system. Using the inverse kinematics
makes a correction term unnecessary, which is used for avoiding
the singular state in the steering logic derived from dynamics.
Also, the usage makes the CMG system generate torque close
to commanded value. In particular, applying the inverse kine-
matics to the VSDGCMG is reasonable because the magnitude
of the wheel momentum and the two gimbal angles can be eas-
ily calculated from the CMG momentum. Compared with the
Tsukahara’s method, the proposed singularity avidance/passage
logic has a characteristic that an evaluation function for the sin-
gularity avoidance/passage decision explicitly includes gimbal
rate limitations. Essentially, the avoidance/passage decision de-
pends on the gimbal rate limitations; if there is no limitation,
the avoidance should be always conducted. Therefore, the pro-
posed method including the limitations explicitly can decide
more appropriately (with smaller attitude-error) than the pre-
vious one can.

In section 2 of the paper, a mathematical model of a space-
craft with a VSDGCMG is described. In section 3, the steering
logic based on the inverse kinematics is proposed. In section
4, effectiveness of the proposed method is demonstrated by nu-
merical simulations. We present our conclusions in section 5.

2. Mathematical model

Total angular momentum of a spacecraft with a VSDGCMG
can be approximated as follows.

ht = Jω + hW (1)

We assume a configuration that the outer gimbal axis, the
inner gimbal axis and the wheel axis coincide with each axis of
the body fixed coordinate when θI = θO = 0 as shown in the
Fig. 1. In the configuration, the wheel angular momentum hW

is expressed in the body fixed coordinate as

hW (θ, hW ) = hW

 sin θI
− sin θO cos θI
cos θO cos θI

 (2)

where θ = [θO θI]T .
By taking the time derivative in the inertial coordinate, we

can obtain the following equation of motion.

Jω̇ + ω × ht = Bu (3)

Bu is a time derivative of the wheel angular momentum in the
body fixed coordinate and expressed as follows.

B =

 0 −hW cos θI − sin θI
hW cos θO cos θI −hW sin θO sin θI sin θO cos θI
hW sin θO cos θI hW cos θO sin θI − cos θO cos θI


(4)

u =
[
θ̇O θ̇I ḣW

]T
(5)

As is clear from the jacobian matrix B, there are two singular
states: cos θI = 0 and hW = 0. In the former case, the wheel
axis coincides with the outer gimbal axis and the output torque
lies in a two-dimensional plane; the torque cannot point to an
arbitrary direction. In the latter case, the wheel rotation stops.
In this paper, we focus on the former singular state which the
CMG is likely to encounter during attitude maneuvers.

3. Proposed method

For a VSDGCMG, IKSL calculates control inputs ḣW and
θ̇ = [θ̇O θ̇I]T as follows. It calculates reference angular mo-
mentum hWref = hW (θref, hWref), which the CMG should have
after a sufficiently small control period ∆t, from a given ref-
erence output torque τref and the current angular momentum
hW . To possess the reference momentum hWref, the reference
wheel-momentum magnitude hWref and the reference gimbal an-
gles θref are calculated. Finally, the control inputs ḣW and θ̇ are
determined such that the wheel-momentum magnitude and the
gimbal angles vary by ∆h(= hWref − hW ) and ∆θ(= θref − θ)
during ∆t, respectively.

Given the reference torque and the current CMG momentum,
time derivative of the CMG momentum should be as follows.

dhW

dt
= −τref (6)

A first-order approximation leads the following reference mo-
mentum.

hWref = hW − τref∆t (7)

Substituting hWref = hW (θref, hWref) and the Eq. (2) into the Eq.
(7), we can obtain the following equation.

hWref

 sin θIref
− sin θOref cos θIref
cos θOref cos θIref

 = hW − τref∆t (8)

By representing the right-hand side of the equation above as
[h1 h2 h3]T , the equations to be solved become as follows.

hWref sin θIref = h1 (9)
−hWref sin θOref cos θIref = h2 (10)
hWref cos θOref cos θIref = h3 (11)

Sum of squares of the Eq. (9) – (11) leads the following
equation.

h2
Wref = h2

1 + h2
2 + h2

3 (12)

Square root of the sum of squares of the Eq. (10) and the Eq.
(11) becomes:

hWref cos θIref = ±
√

h2
2 + h2

3 (13)



Now, we assume that hWref , 0 and h2
2 + h2

3 , 0. Dividing the
Eq. (9) by the equation above leads the following equation.

θIref = tan−1 h1

±
√

h2
2 + h2

3

(14)

Substituting the equation above into the Eq. (10) and (11), we
obtain

∓
√

h2
2 + h2

3 sin θOref = h2 (15)

±
√

h2
2 + h2

3 cos θOref = h3 (16)

Dividing the Eq. (15) by the Eq. (16) leads the following equa-
tion.

θOref =

tan−1 −h2
h3

(cos θIref > 0)
tan−1 h2

−h3
(cos θIref < 0)

(17)

Using ∆h = hWref − hW and ∆θ = θref − θ, we can summarize
the solution of the Eq. (8) as

∆hW = −hW +

√
h2

1 + h2
2 + h2

3 (18)

∆θI = −θI + tan−1 h1

±
√

h2
2 + h2

3

(19)

∆θO =

−θO + tan−1 −h2
h3

(cos θIref > 0)
−θO + tan−1 h2

−h3
(cos θIref < 0)

(20)

Although two solutions exist, either should be selected such
that the sign of cos θIref equals that of cos θI . As h2

2 + h2
3 sel-

dom strictly becomes zero on the computer, this selection can
avoid being trapped into (numerically diverging near) the sin-
gular state of cos θIref = 0 without a correction term required
in the dynamics-based steering logic. Also, the absence of the
correction-term makes the output-torque close to the reference.
Now, we distinguish the two solutions by superscripts + and −
which denote signs of cos θIref. Using this notation, the Eq. (19)
and (20) show the following relationship.

θ−Iref + θ
+
Iref =

{
π (sin θ+Iref > 0)
−π (sin θ+Iref < 0)

(21)

θ−Oref − θ+Oref = π (22)

It is found that two solutions of θIref approach each other in the
vicinity of cos θ+Iref = 0 and those of θOref always differs by π
radians. If hWref , 0 and h2

2 + h2
3 = 0, the following solution is

selected.

∆hW = −hW +

√
h2

1 + h2
2 + h2

3 (23)

∆θI = −θI ± π/2 (24)
∆θO = 0 (25)

For hWref = 0, a selected solution is as follows.

∆hW = −hW (26)
∆θI = 0 (27)
∆θO = 0 (28)

Again, as h2
2 + h2

3 seldom strictly becomes zero on the computer
and we focus on hWref > 0, the Eq. (18) – (20) are mainly used.

Using the result of the inverse kinematics, control inputs can be
obtained as follows.

ḣW =
∆hW

∆t
, θ̇ =

∆θ

∆t
(29)

We analyze behavior of the outer gimbal angle in the vicinity
of the singular state of cos θI = 0 when the proposed steering
logic is employed. For an example, the case is studied where
the state keeping cos θI > 0 approaches to the singularity. Sub-
stituting the Eq. (2) and (7) into the Eq. (20), we obtain

∆θO = −θO + tan−1 hW sin θO cos θI + τ2∆t
hW cos θO cos θI − τ3∆t

(30)

where τi is a ith (i = 1, 2, 3) element of τref. Substituting the
Eq. (29) into the Eq. (30) and approximating that cos θI ≈ 0,
we can obtain the following differential equation.

θ̇O(t) =
1
∆t

(
−θO(t) + tan−1 τ2(t)

−τ3(t)

)
(31)

Furthermore, assuming that the time-period when the state is in
the vicinity of the singularity is sufficiently short and the refer-
ence torque τref can be regarded as constant in the period, we
can easily solve the equation as

θO(t) = (θO(0) −C) exp
(
− t
∆t

)
+C (32)

where C = tan−1(τ2/ − τ3). This solution shows that θO ap-
proaches to C as time passes. If we rewrite the Eq. (31) using
the Eq. (32), the following equation can be obtained.

θ̇O(t) =
−1
∆t

(θO(0) −C) exp
(
− t
∆t

)
(33)

This equation shows that the norm of the control input |θ̇O|
reaches a maximum value of |(θo(0) − C)/∆t| in the vicinity of
the singular state. The value may violate gimbal rate limitations
which the general CMG has and the violation can cause large
attitude error.

To avoid the attitude error, we consider a method to pass the
singular state (once pass cos θI = 0 and escape from there) and
then we propose a novel singularity avoidance/passage steer-
ing logic. For an example, the case is studied where we select
the θ+ref solution, θO(0) = 0 and C+ = π [rad]. In the case,
C− = 0 and the θ−Oref solution approaches the initial gimbal an-
gle θO(0) = 0 as time passes. Therefore, when the control input
far exceeds the upper limit near the singularity, changing the
selected solution to θ−Oref seems to be able to decrease more at-
titude error than continuing to select the θ+Oref solution as shown
in the Fig . 2. When using the method, we must select θ−Iref too.
This “transition” regarding the inner gimbal angle is expected
to have less impact on the attitude because the Eq. (21) leads
θ+I ≈ ±π/2 and θ−I ≈ ±π/2 in the vicinity of the singular state
as shown in Fig . 3. Hereinafter, we mention how to decide
whether to transit, and the control inputs during the transition.
For simplicity, we consider the case where cos θI changes from
positive to negative across π/2 radians.

As an evaluation function L(∆θ,∆hW ) to decide whether the
algorithm transitions to the another solution, we employ “the
difference between the average torque during T1 and the torque
−τref which the CMG should be affected from the spacecraft



Transition

Fig. 2.: Transition of the solution for the outer gimbal angle θo.

Fig. 3.: Transition of the solution for the inner gimbal angle θI .

during that time by changing the gimbal angles and the wheel
speed”:

L(∆θ,∆hW ) =

∣∣∣∣∣∣
{

hW

(
sat

θ+θ̇maxT1,θ+θ̇minT1

(θ + ∆θ), hW + ∆h∗W

)
−hW (θ, hW )} /T1 + τref|

(34)

where θ̇max and θ̇min are gimbal-rate upper and lower limita-
tions, respectively, and “sat” denotes a saturation function de-
fined as

sat
θmax,θmin

(θ) =


θmax (θ > θmax)
θ (θmin ≤ θ ≤ θmax)
θmin (θ < θmin)

(35)

The evaluation function about selecting θ+ref and θ−ref becomes as
follows, respectively.

L+ = L(∆θ∗+,∆h∗W ) (36)

L− = L(∆θ∗−,∆h∗W ) (37)

where ∆θ∗ and ∆h∗W are integrated values calculated by using
the Eq. (18)–(20) from the current time t to t+T1. The reference
torque τref is assumed to be constant at the current reference
torque during the integration.

As the evaluation function includes the gimbal rate limitation
explicitly, the proposed method can decide more appropriately
than the previous one can. If L+ > L− and the minimum value
of | cos θI | during T1, which is denoted as | cos θI |min, is less than
ε, the transition starts. During the time-period of T2 for the
transition, the control inputs are selected as follows.

θ̇O = sat
θ̇max,θ̇min

(
1
∆t

t
T2

(
θ−O − θO

))
(38)

θ̇I = sat
θ̇max,θ̇min

(
1
∆t

t
T2

(
θ−I − θI

))
(39)

Although there is a large difference between the reference an-
gles θ−ref and the current angles θ at the start time of the tran-
sition, the reference approaches to the current as time passes;

therefore, the inputs are designed such that the current values θ
gradually approach to the reference θ−ref because

Summarizing the above, the singularity avoidance/passage
steering logic is conducted as follows.

1. Integrate gimbal angle and wheel angular momentum us-
ing the Eq. (18)–(20) during T1.

2. If L+ > L− and | cos θi|min < ε hold true, go to 3. If not, go
to 4.

3. Steering the gimbals using the Eq. (38) and (39) during T2.
Then, go to 1.

4. Steering the gimbals using the Eq. (18)–(20) or the Eq.
(23)–(28). Then, go to 1.

4. Numerical simulations

Numerical simulations are carried out to verify the valid-
ity and effectiveness of the proposed method, where the atti-
tude and the angular velocity track the pre-defined trajectories.
Based on the Ref. 6), parameters common to the all simulations
are specified as

J = diag
[
3.41 2.89 2.55

]
[kgm2]

ωref =


t

14ω f 0 ≤ t < 14
ω f 14 ≤ t < 16
30−t
30 ω f 16 ≤ t ≤ 30

θO(0) = −π/4[rad], θI(0) = 1.36[rad], hW (0) = 0.1[Nms]
T1 = 1.0[sec], T2 = 2.0[sec], ε = 0.1

θ̇max = 1[rad/s], θ̇min = −1[rad/s]

where ωref is the reference angular velocity and has the trape-
zoidal trajectory. The reference quaternion is calculated by in-
tegrating the reference angular velocity. The reference torque is
calculated as

τref = Jω̇ref + ω × ht + kωωerr + kqV(qerr) (40)

where kω = 5.0 and kq = 1.25. qerr is the error quaternion be-
tween the current and the reference attitude. V(q) is a function
which returns the part of the quaternion (V(q) = [q1 q2 q3]T ).
ωerr is error angular velocity and defined as follows.

ωerr = ω − ωref (41)

We specified the Euler method as the numerical integration con-
ducted in the steering logic. This is because the method has the
advantage in the low computational complexity and it can be
calculated even on an on-board computer. The integration time
is 0.1 s. As for the initial value of the inner and outer gimbal an-
gle, we specified the angle in the vicinity of the singular state,
and the angle which is difficult to generate torque along +YZ
direction, respectively.

Three cases are carried out where reference angular velocity
differs as follows.

• Case A: ω f = 0.02
√

0.5
[
0 1 1

]T
[rad/s]

• Case B: ω f = 0.028
√

0.5
[
0 1 1

]T
[rad/s]

• Case C: ω f = 0.04
√

0.5
[
0 1 1

]T
[rad/s]
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Fig. 4.: Reference trajectories of the quaternion and the angular
velocity in the case A

For an example, the reference trajectories for the case A are
shown in the Fig. 4. The large reference angular velocity
like the case C requires large torque and therefore gimbals are
steered rapidly. In this case, the control inputs exceeding the
gimbal rate limitations are often calculated and the singularity
passage should be conducted.

Simulation results of the case A are shown in the Fig. 5. In
order to make it easy to evaluate the attitude error, only first,
second and third elements of the error quaternion are shown. It
is found that the proposed method evaluates that the avoidance
has smaller attitude error than the passage and it avoids the sin-
gular state. The decision is right judging from the quite small
error angle shown in the figure. Also, as we expected in the sec-
tion 3, the figure shows that the outer gimbal rate dramatically
increases when θi ≈ π/2.

Simulation results of the case B are shown in the Fig. 6. In
this cases, the evaluation functions become

L+ = 1.90 × 10−3, L− = 1.82 × 10−3

at t = 3.2 s and the passage (transition of the solution) starts.
For comparison, the case is shown in the Fig. 7 where the Eq.
(18)–(20) is always selected, namely, the avoidance is compul-
sorily conducted. These figures show that the avoidance has
slightly smaller attitude error than the avoidance. As the evalu-
ation function employed in the proposed method is just an ap-
proximation, it is found that the decision might be wrong when
L+ and L− are nearly equal. However, these figures also show
that the attitude error does not make much difference in two
cases and such a wrong decision is not a problem in practice.

Simulation results of the case C are shown in the Fig. 8.
In this case, the passage can decrease more attitude error than
the avoidance, and the algorithm rightly recognizes it and starts
to pass the singular state at t = 1.9 s. As with the case B2,
the case of the compulsory avoidance is shown in the Fig. 9.
This figure shows that the attitude error becomes large due to
the significant violation of the gimbal rate limitation when the
singular state is avoided, as we expected in the section 3. From
the results above, it is shown that the proposed steering logic
can estimate the cost of the singularity avoidance/passage and
select the action which causes the small attitude error.

Next, we will evaluate torque error defined as the difference
between the output and reference torque. This is because the
proposed method does not use any correction term for the sin-
gularity avoidance and is expected to be able to generate precise
torque close the reference torque. We compare the torque error
in our method with that in the Tsukahara’s method6) in the case

A. The parameters for the singularity avoidance employed in
the Tsukahara’s method is specified as

δ = 0.2, l = 0.2

Simulation results are shown in the Fig. 10. The Tsukahara’s
method has the error of approximately −1.7× 10−2 Nm at max-
imum. On the other hand, the error in the proposed method is
less than −2.4×10−3Nm and this results show that the proposed
steering logic can generate precise torque.

5. Conclusion

In this paper, we proposed a novel singularity avoid-
ance/passage logic based on inverse kinematics for steering a
VSDGCMG. This method does not employ any correction term,
which is for the singularity avoidance and required in the pre-
viously proposed steering logic, and it can generate a precise
torque close to the reference torque. Also, it uses an evalua-
tion function including gimbal rate limitations explicitly for the
singularity avoidance/passage decision. This function leads a
decision causing small attitude-error compared with the previ-
ous method which uses a simple threshold. Effectiveness of the
method was demonstrated by the numerical simulations.
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Fig. 5.: Case A (avoidance).
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Fig. 6.: Case B (passage).
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Fig. 7.: Case B2 (compulsory avoidance).
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Fig. 8.: Case C (passage).
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Fig. 9.: Case C2 (compulsory avoidance).
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(a) Proposed method

0 10 20 30

Time [sec]

-20

-15

-10

-5

0

5

T
o
r
q
u
e
 
E
r
r
o
r
 
[
N
m
]

10
-3

1

2

3

(b) Tsukahara’s method

Fig. 10.: Time history of torque error in the case A
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