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Lunisolar ephemerides are necessary for orbit computation, however, the ephemeris parameterization can sometimes be a problem
for onboard applications. On one hand, onboard computation requires that the ephemeris parameterization should be concise, as a
result, the off-the-shelf numerical ephemeris such as the JPL DE series are too large in size to fit in; on the other hand, the onboard
application sometimes requires accurate lunisolar ephemerides, whereas the mean secular orbit from analytical theory becomes insuf-
ficient in accuracy. Here in this paper, we report two approaches to remodel the lunisolar ephemerides. To keep higher accuracy than
the analytical mean orbit, both approaches start with the JPL DE ephemeris. We show that the new parameterizations take less storage
than the off-the-shelf DE ephemeris while exceed the analytical mean orbit in accuracy.
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Nomenclature

Ti : the ith period in FFT
si : amplitude of the ith sine component
ci : amplitude of the ith cosine component
∆t : elapsed time since initial/reference epoch
µ : geocentric gravitational constant
r⃗ : geocentric position vector
r̂ : unit vector of r⃗
¨⃗r : geocentric acceleration
δx : error/deviation of variable x

Superscripts
′ (prime) : counterpart variables for perturbing body

(e.g. seleno-/heliocentric gravitational
constant or position vector)

1. Introduction

The lunisolar ephemerides are essential parts in orbit compu-
tation, in terms that they are needed to compute the perturbing
accelerations of lunisolar gravitations, tidal forces, solar radi-
ation pressure and so on. In many cases, this is not a major
concern, since the lunisolar ephemerides can be readily com-
puted with a variety of methods. The analytical solutions to
the lunisolar orbit motion, which result from the conventional
celestial mechanics, is often a simple and convenient option
when the low or moderate accuracy is needed. In such occa-
sions, secular orbits that describe the mean long-term variation
of the lunisolar orbits (sometimes also including major period
terms) and have simple forms that are always welcome in or-
bit computations.1) When the higher accuracy is required than
the analytical secular orbits, various numerical ephemerides are
also conveniently available, such as the JPL DE series. These
models are very accurate but take large storage since they are
exhaustive for all the large planets and the Sun. DE series also
include lunar libration and many other constants.

However, when the orbit is to be computed onboard satellites,
the ephemeris parameterization can sometimes be a problem.
On one hand, onboard computation requires that the ephemeris

parameterization should be concise, so the off-the-shelf numer-
ical ephemeris may be too large in size to fit in; on the other
hand, the onboard application sometimes requires accurate lu-
nisolar ephemerides, whereas the mean secular orbit from ana-
lytical theory becomes insufficient in accuracy. Complex lunar
motion theories2, 3) that dig deeper into the dynamics could pro-
vide better analytical solution, but they are always too compli-
cated to be practically applied in onboard space missions. Semi-
analytical lunar theories are also developed (see e.g. Ref 4, 5)),
which combine the analytical expansions of various forms and
the accurate measurements or numerical ephemeris. The solu-
tion could have matching accuracy with numerical ephemeris,
but at the cost of 104−105 terms for each component (longitude,
latitude or distance).

What is often needed in space missions is a trade-off between
the numerical ephemeris and the pure or semi-analytical so-
lution, and is expected to have a concise form with moderate
accuracy. A common approach is to reanalyze the ephemeris
with Fourier transformation, where major frequencies can be
revealed (see e.g. Ref 6)). The complexity of selected frequen-
cies, which is generally consistent with the accuracy of the fitted
equation, reflects the storage taken by the remodeled parameter-
ization.

Besides the fitting approach, another more straightforward
approach used in this work is to directly remove the irrelevant
parameters in the original numerical ephemeris. For the orbit
computation, the lunisolar orbits, or sometimes only the lunar
orbit, are critical. So for the major planets, it is possible that
the secular mean orbits7, 8) are already sufficient, while the re-
spective parameters in the numerical ephemeris can be safely
removed.

The work in this paper is set in the background of orbit pre-
diction (OP) onboard the GEO satellite. The onboard OP is
expected to be responsible for the orbit of the next 4 hours with
reasonable accuracy. The model parameters are designed to be
updated every 180 days, suggesting that if the ephemerides are
to be simplified, each set of simplified ephemeris parameters
should satisfy the accuracy within the period.

The paper is organized as follows. The fitting approach is dis-



cussed in Section 2 and the approach of tailoring the ephemeris
is explained in Section 3. In Section 4, the implication of lu-
nisolar ephemeris error on orbit prediction is discussed. Some
final discussions are given in Section 5.

2. Fitting the Ephemeris with Frequency Analysis

Given the requirement explained in the introduction, the fol-
lowing strategies are taken to process the ephemeris:

• The DE406 ephemeris is chosen. Other ephemerides can
also be used, while the following procedures can be like-
wise applied;
• The Cartesian coordinates are fitted, since they are directly

needed to compute the perturbing acceleration;
• The ephemeris with the length of about 180 years is ana-

lyzed, for either the Moon or the Sun, to find out the essen-
tial frequencies. During fitting, the frequencies are consis-
tent and only the bias, trend and amplitudes are fitted per
180-day segment;
• To better reveal the high frequencies, the ephemerides are

extracted 10 points per day.

For each component of the Cartesian states, the fitting func-
tion takes the following form

x(t) = a + b · ∆t +
N∑

i=1

[
si sin

(
2π
Ti
∆t

)
+ ci cos

(
2π
Ti
∆t

)]
, (1)

where a and b are fitted bias and linear trend. The period Ti

(or equivalently the frequency fi = 2π/Ti) are determined from
spectral analysis of the 180-year long ephemeris.

Our practice of fast Fourier transformation (FFT) shows that
some signals are small or even buried in the noises. Although
these small signals are difficult to be identified in the spectrum,
they can be obviously found in the fitting residuals. Therefore,
it is not enough to simply analyze the time series of the Carte-
sian states once.

In practice, the fitting procedure and residual analysis are re-
peated until the residuals no longer represent obvious periods.
This requires manual intervention when choosing or adjusting
the frequencies. No obvious periods in the residuals means that
if the better accuracy is pursued, further frequencies to be in-
cluded would be much more complicated than a few individu-
als. This is the case for the lunar orbit, which is strongly per-
turbed by the Sun and the large planets.

The processing of the lunisolar ephemeris based on the
DE406 model shows that about 17 and 5 evident frequencies
can be found in the lunar and solar orbits respectively, both of
which are shown in Fig. 1. The frequencies for each component
are close but the numeric values may not be exactly the same.

To make sure that the found frequencies are consistent, mul-
tiple tests are computed to check the consistency and accuracy.
Twenty segments of 180-day long ephemeris are fitted, using
the found frequencies.

Fig. 2 shows the fitted amplitudes of the position compo-
nents. Most fitted amplitudes of these frequencies are consistent
in different tests and do not show significant discrepancy.

More importantly, the remodeled ephemerides using the fit-
ted Eq. (1) match well with the original numerical ephemerides.
Fig. 3 shows the 3D position error between the ephemeris and
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Fig. 1. Frequencies selected for following fitting, for three position com-
ponents of both the Moon (top) and the Sun (bottom).
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Fig. 2. Fitted amplitude of all three directions, for both the Moon (up) and
the Sun (bottom). The error bar suggests the standard deviation of all the
fitted amplitudes, with respect to the mean value.
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Fig. 3. Error of the fitted position with respect to the ephemeris values, for
the Moon (up) and the Sun (bottom). The left y-axis, corresponding to the
blue bars, is the absolute error (in km), while the right y-axis, corresponding
to the red lines, is the relative error (in percentage) of the absolute error with
respect to the true distance at the epoch.

fitted values. For all tests, the relative fitting errors are consis-
tent, of about 10−4 for the Moon and 10−6 for the Sun, which
are well better than the mean secular orbit which are no better
than 10−2 for the Moon and 10−3 for the Sun.

The new parameterization would have an implication on ac-
celeration, which further affects the OP accuracy. The error of
the lunisolar ephemeris on the acceleration is to be discussed
later.

3. Tailoring the Ephemeris

In contrast to the analytical formulation of the lunisolar orbit,
the numerical ephemeris allows easy access to the accurate lu-
nisolar ephemerides. However, the off-the-shelf parameteriza-
tion, even compiled in compact binary format, is still too large
to be applied in onboard application. Nevertheless given the
fact that ephemerides are exhaustive for all the major planets
and that the accuracy is well beyond the requirement of many
onboard applications, it is possible that the ephemerides be re-
duced by removing excess parameters and by trading the appro-
priately reduced accuracy with reduced data size.

A first motivation is that the accurate planetary ephemerides
are not necessarily needed. Since the perturbing accelerations
of the major planets are very small, only lunisolar ephemerides
need to be accurately considered while the analytical formu-
las can be applied for the planets.7, 8) In some cases, only lu-
nar ephemeris is of major concern, while the secular solar orbit
might already be sufficient.

Fig. 4. Error of re-fitted x component of lunar position (in km), fitted over
8 days using 12th-order Chebyshev polynomial.

The lossless reduction can be implemented as follows. Var-
ious ephemerides always cover centuries to millennia, but the
lifetime of a typical Earth satellite only spans 10 to 20 years.
Reduction procedure starts with choosing the time of interest.
Every data file of DE405 covers 20 years (varies among dif-
ferent versions) and in each file the data blocks are organized
chronologically. In each data blocks, the coefficients of the
Chebyshev polynomials are stored in unique order, with which
we can simply extract the lunisolar parameters and leave the
planetary/nutation parameters.

When the appropriate parameters are available, they can be
likewise compiled in binary format, using the JPL official code
with moderate revisions to the parameter number, start/end
point in the data block and the number of celestial bodies. After
this first reduction, the lunisolar ephemerides remain lossless in
accuracy.

Tests show that for one data file of DE405, which covers 20
years and contains 229 data blocks, the original binary file takes
6254 kilobytes (KB) of storage while the reduced binary file
with lossless lunisolar ephemerides only takes 827 KB of stor-
age. It suggests an approximately 1/8 ∼ 1/7 reduction rate
although the value may vary among different versions.

Further reduction can be obtained if appropriate loss of ac-
curacy is acceptable. Acknowledging the fact that the numer-
ical ephemeris is represented in the coefficients of 12th-order
Chebyshev polynomials and that the ephemerides are fitted over
certain time lengths specific for individual bodies, we can try to
fit the ephemerides with lower order of Chebyshev polynomials
and/or over longer time spans.

Taking the lunar ephemeris as an example, due to its fast mo-
tion with respect to other celestial bodies, the lunar ephemeris
is fitted every 4 days in DE405 (in contrast to 32 days for many
other planets). Fig. 4 shows the error of the re-fitted x com-
ponent of lunar position in an arbitrarily selected 8-day seg-
ment. The 8-day series x components computed using origi-
nal DE405 ephemeris, supposedly from two 4-day segments,
are re-fitted using one 12th-order Chebyshev polynomial. The
re-fitted ephemeris, which is only half the original size, has a
maximum error of less than 200 meters.

On the other hand, the fitting procedure can also be per-
formed using lower order Chebyshev polynomials, in pursuit of



Fig. 5. Error of re-fitted x component of lunar position (in km), fitted over
8 days using 8th-order (red) and 10th-order (blue) Chebyshev polynomials.

less parameters. Fig. 5 shows the errors of the re-fitted x compo-
nent over 8 days but using 8th-order and 10th-order Chebyshev
polynomials respectively. As expected, fitting with lower order
increases the fitting error, but it is still well better than 1km.
Compared with the initial lossless reduction, this reduces the
parameter numbers by over 60 percent but outperforms the fit-
ting approach (frequency analysis) by 1 ∼ 2 order of magnitude
in accuracy.

For a semi-annual (∼ 180 days) segment, we can expect ap-
proximately (800/40) × 40% = 8 KB in binary data storage.
This value can still be reduced if the fitting span and the poly-
nomial order are further adjusted.

4. Implication on the Acceleration

Given the perturbing body is much farther than the satellite
from the Earth, the perturbing acceleration can be approximated
as

¨⃗r ≈ µ
′r

r′3
(
r̂ − 3 cosΨr̂′

)
, (2)

where Ψ is the geocentric elongation between the Earth and the
perturbing body. It can be easily proved that

∥¨⃗r∥ ≤ 2 · µ
′r

r′3
. (3)

Normalizing the acceleration with respect to the two-body
gravitation (which benefits further dynamic analysis), the im-
plication of the position error of the perturbing body on the ac-
celeration reads as follows

δ∥¨⃗r∥max = 6
(
µ′

µ

) ( r
r′

)3
(
δr′

r′

)
. (4)

The acceleration error is plotted in Fig. 6, against the geocen-
tric distance. It is clear that the solar ephemeris can be easily
fitted. With 5 frequencies in each direction, the fitted acceler-
ation is below 0.4 × 10−10 for MEO and below 1.4 × 10−10 for
GEO and IGSO. It is sufficient for orbit propagation over a few
hours to reach cm-level accuracy.
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Fig. 6. The normalized acceleration error with respect to the orbit altitude,
for the Moon (up) and the Sun (bottom). Various lines correspond to the
fitted position errors in Fig. 3. The two vertical lines show the altitudes of
MEO and GEO/IGSO.

However, for lunar ephemeris, the acceleration error can
be as large as 10−8 at GEO altitude. Such error is not al-
ways negligible, especially for accurate applications. On the
other hand, alternative approach, such as tailoring the numeri-
cal ephemerides, allows accurate approximation. Based on the
approaches in Section 3, the ephemerides can be further ap-
proximated if large errors are acceptable. This would allow for
better trade-off between ephemeris accuracy and data size.

5. Conclusion

In this paper, we have shown our preliminary results on two
approaches to reduce the lunisolar ephemerides for our spe-
cific onboard application. The frequency analysis allows simple
modeling of lunisolar ephemerides over 180 days with less than
50 parameters, however, the accuracy of the remodeled lunar
ephemeris may be insufficient for precision applications. Tai-
loring the discrete numerical ephemerides, on the other hand,
allows controllable accuracy by gradually lowering the polyno-
mial order and/or increasing the fitting span, although the coef-
ficients of the Chebyshev polynomials normally take more stor-
age than the frequency analysis. These two approaches can be
alternatively used in onboard application regarding actual accu-
racy requirement.
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