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Abstract 

A novel adaptive controller for attitude tracking control problems of rigid bodies is presented 
in this paper. The most important feature is that both instantaneous state data and past 
measurements (historical data) are concurrently employed during the parameter adaptation 
process. A specially designed information matrix is introduced to encode concurrent 
information into the adaptive law. Under this new formulation, both state tracking errors and 
parameter estimation errors are guaranteed to asymptotically converge to zero subject to the 
satisfaction of a finite excitation condition, which is a significant relaxation when compared to 
the persistent excitation condition that is typically required for these classes of problems. 
Numerical simulations are illustrated to evaluate the various features of the proposed method.   
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Introduction 

Attitude control problems of rigid bodies have been extensively investigated in the past several 
decades due to their applications in aerospace engineering and many other areas such as 
robotics. In particular, nonlinear adaptive control methods have been widely studied and applied 
to the stabilization/tracking control problems of attitude dynamics in the presence of parameter 
uncertainties. It is important to note that most of the existing adaptive attitude control solutions 
are built upon the conventional certainty equivalence (CE) principle. It is well understood that 
CE-based adaptive controllers cannot guarantee the convergence of parameter estimation errors 
to zero unless reference signals additionally satisfy certain persistent excitation (PE) conditions 
[1]. This fact further results in potential performance degradation of CE-based adaptive 
controllers in many applications [2] when compared with the underlying deterministic 
controllers (i.e., controllers for non-uncertainties system dynamics).  

Aiming to address the possible absence of persistence of excitation, the main contribution of 
this paper is the introduction of a new adaptive control scheme for attitude tracking control 
problems of rigid bodies in the presence of parameter uncertainties. It should be emphasized 
that the results presented in this paper are partially inspired by the concurrent learning adaptive 
control (CLAC) theory [3, 4], but maintain certain crucial distinctions. The CLAC design 
innovatively uses specially selected and online recorded state data concurrently with 
instantaneous state data for adaptation. Under the CLAC framework, if system states can be 
assumed to satisfy a certain sufficient excitation condition over a finite interval of time (which 
is formally referred to as a finite excitation (FE) condition), the adaptive control algorithm can 
be designed such that rich enough historical data could be recorded to ensure the convergence 
of parameter estimation errors. However, to acquire the historical data, smoothers or observers 
need to be employed to numerically approximate state derivatives, a process that is usually 
vulnerable to multiple sources of measurement noise and approximation errors. This 
requirement for smoothers also lays a great theoretical barrier to the applications of CLAC to 



PEER REVIEW 
 

18th Australian Aerospace Congress, 24-28 February 2018, Melbourne 
 

nonlinear mechanical systems due to the inevitable coupling that exists between state 
derivatives and unknown parameters. In particular, it is currently impossible to design a 
concurrent learning adaptive controller for attitude control problems. 

In this paper, a novel adaptive tracking control algorithm ensuring precise parameter estimation 
under a FE condition is developed for attitude tracking control problems of rigid bodies. To be 
specific, low-pass filtered regressor matrices and states are first introduced into the formulation, 
which not only circumvents the state derivative estimation requirements of the classical CLAC 
formulation within the adaptation scheme but also renders the resulting parameter-adaptation 
dynamics to reside within a stable and attracting manifold. Subsequently, a special information 
matrix is designed to continuously record historical data and provide new information for the 
adaptation process. Additionally, a judiciously designed non-CE term is introduced into the 
adaptive algorithm to help the resulting closed-loop system overcome the uniform detectability 
obstacle [5] if the FE condition cannot be satisfied. Under this design framework, system states 
are ensured to asymptotically track the desired trajectories, and if system states further satisfy 
a FE condition, parameter estimation errors are further guaranteed to asymptotically converge 
to zero.  

The remainder of this paper is organized as follows. The governing attitude tracking dynamics 
and the control objective are introduced in Sec. II. Then, the main result of the paper, a 
composite adaptive control algorithm is presented in Sec. III, along with a proof for the major 
closed-loop stability result. Numerical simulation results are demonstrated in Sec. IV. Finally, 
this paper ends with some concluding remarks in Sec. V. 
 
 

Mathematical Preliminaries and Problem Formulation 
 
Mathematical Preliminaries 
 
Definition 1 (Finite Excitation) [3]: A bounded signal ( ) : n mg ×⋅ →   is said to be finite 
exciting (FE) over an interval [ , ]t t T+ , where 0t ≥  is finite, if there exist finite constants 0T >  
and 0c >  such that  

T ( ) ( )d
t T

m mt
g g cτ τ τ

+

×≥∫ I  

where m m×I  is the m -dimensional identity matrix. 
 
Problem Formulation 
 
The unit-quaternion-based attitude kinematics is utilized in this paper. The body-fixed frame of 
the rigid body is denoted by { , , }b b b bX Y Z= , and the inertial frame is represented by 

{ , , }i i i iX Y Z= . As an example, the unit quaternion of b  concerning i  is defined by [6]: 
T T[ , ]bi bi biη=q ξ , where biη  and biξ  are respectively the scalar part and the vector part of biq , and 

2 T+ 1bi bi biη =ξ ξ . Multiplication is an important operation of quaternions; for arbitrary two 
quaternions T T

1 1 1[ , ]η=q ξ  and 2 2
T

2
T[ , ]η=q ξ , using `` ⊗ ”  to denote the quaternion 

multiplication operator, we have T T T
1 2 1 2 1 2 1 2 2 1 1 2[ , ( ) ]ηη η η⊗ = − + + ×q q ξ ξ ξ ξ ξ ξ . Moreover, 

T T[ , ]η∗ =q ξ  denotes the conjugate of the corresponding quaternion q . For the tracking control 
problems considered in this paper, we employ a virtual frame { , , }t t t tX Y Z=  to describe the 
expected attitude trajectories and use tiq  to denote the quaternion of t  with respect to i . The 
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error quaternion, which describes the relative attitude of b  with respect to t , is defined by 

bt ti bi
∗= ⊗q q q , and the attitude-tracking error dynamics model is given as follows [6], 

 
T

3 3

1 ( ) , ( )
2 ( )

b bt
bt bt bt bt

bt bt

E E
Sη ×

 −
= =  + I

ξ
q ω qq

ξ
   (1) 

 ( )( ) [ ( ) ( ) ]b b b b b t
bt bi bi bt ti bt ti cS S C= − + − +Jω ω Jω J ω ω q ω u    (2) 

where 2
3 3( ) 2 ( ) 2 ( )C S Sη×= − +Iq ξ ξ , btη  and btξ  are respectively the scalar part and the vector 

part of btq . The vector b
btω  denotes the relative  angular velocity between the two frames, which 

is expressed in b . We use tiω  to denote the expected angular velocity, and b
tiω  and t

tiω  denote 
the coordinate transformation of that same vector in b  and t , respectively. The matrix J  is 
symmetric positive-definite designating the inertia of the rigid body, and cu  denotes the control 
input torque signal to be designed. Then the tracking control objective is to design cu , such that 
the closed-loop system is stable, and the rigid body can track the expected attitude trajectory 
(formalized as 3lim{ ( )  , ( )}bt btt

t t
→∞

= 0ξ ω ) for the case of uncertainty within the inertia matrix J  

(unknown constant). 
 

 
Composite Adaptive Controller Development and Stability Analysis 

  
An important property of attitude-tracking dynamics is that it allows affine representation of 
inertia-related terms. In particular, this property is utilized to re-organize Eq. (2) to the 
following form: 
 1( ) ( )b b

bt p bt bt d bt ck kκ −= − + − + +ξ ξ ω J Wω θJ u

   (3) 

where pk , dk  and κ  are positive constants, and p dk kκ = + ; T
11 12 13 22 23 33[ , , , , , ]J J J J J J=θ , it 

contains all the information of the unknown inertia matrix J, wherein J11, J12, J13, J22, J23 and 
J33 are entries of J; W is a regressor matrix which satisfies 

[ ( ) ( ) ( ) ( ) ] ( )( )b b t t b b
p bt bt v bt bt bt ti bt ti bi bik k S C C Sκ= + + + − −Wθ J ξ ξ ω ω q ω q ω ω Jω

 . Then, we define 
the following filtered angular velocity and regressor matrix,  
 3(0),b

f f bt fκ ω= − + = 0ω ω ω   (4) 

 3, (0)f f fκ= − + = 0W W   WW   (5) 
and also employ an auxiliary control input f f cu uκ= − +u . Substitute fω , fW  and fu  into Eq. 
(3) and by straightforward algebraic operations, one has 
 1( )f p bt d f f fk kξ ω −= − − + + +J W θ u γω   (6) 

where (0)e tκ−=γ γ  is an exponentially vanishing term, and its initial value related to system 
states: 1 1(0) (0) (0) (0) ( (0) (0)) (0) (0) (0)b

f p bt d f f f bt p bt fk k k− −= + + − + = + −γ ω ξ ω J W θ u ω ξ J u , 
The main reason for us to build this filtered structure is that now the filtered angular velocity 

fω  is attainable, and the consequence of this fact is discussed as follows. 
1) Consider an auxiliary variable β  defined by f p bt d fk k= − − +β ω ξ ω γ . Then, if of is 

designed to follow the form ˆ
f f=u W θ , where θ̂  denotes the adaptive estimate of θ , we 

have 3f = 0u . Accordingly, one can readily obtain that ( )tγ  and ( )tβ  are also an attainable 

variable for all 0t ≥ , and 1
f

−=β J W θ , where ˆ= −θ θ θ . It follows that β  contains the 
information concerning the parameter estimation errors. 
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2) Recalling Eq. (6) and once again employing the affine representation property of attitude 
dynamics, we have a f=W θ u , where the new regressor matrix aW  satisfies 

a f p bt d f fk k= + + − −W θ Jω Jξ Jω Jγ W θ  and thus ( )a tW  is also attainable for all 0t ≥ . 
This result indicates that, by introducing filtered states and regressor matrices, the 
information of the unknown parameter vector θ  (coupled with Wa) can be acquired through 
the auxiliary control input uf. 

 
After all these preliminaries, the main result of this paper, a composite adaptive controller for 
attitude tracking control of rigid bodies, is summarized in the following theorem. 
 
Theorem 1: Consider the attitude tracking error dynamical model in Eqs. (1) and (2), and 
further consider the filtered states, regressor matrices, and dynamics in Eqs. (4), (5), and (6). 
The control torque signal and adaptive law are defined as follows, 
 ˆ( ) ( ) ( ),  ( ) ( ) ( )c f f ft t t t t tκ= + =u u u u W θ   (7) 

 Tˆ( ) ( ) ( ) ( ) ( )a
a f a l a

p d

kt k t t k k t
k k

µ= − + −
+

θ W β Ω   (8) 

where ak , lk  and µ  are positive constants, the definition of ( )a tΩ  is  

 
1

[0, ]

ˆ( )[ ( ) ( ) ( )] if [0, ], rank( ( )) 6
( ) ˆ( )[ ( ) ( ) ( )] min{arg [rank( ( )) 6]}

a a
a

a a a a t

t t t t t t t
t

t t t t t τ τ−
∈

 − ∀ ∈ <= 
− = =

C A θ B A
Ω

A A θ B A
  (9) 

with T T 1
6 6( ) ( )[ ( ) ( ) ]t t t t a −
×= + IC A A A , and the matrices A and B are defined by 

 T
6 6( ) (  ) ( ) ( ), (0)a at t t tσ ×= − + = 0A A W W A   (10) 

 T
6 1( ) (  ) ( ) ( ), (0)a ft t t tσ ×= − + = 0B B W u B   (11) 

wherein a and σ  are positive constants. If ( )a tW  further satisfies the FE condition as given in 

Definition 1, then, for arbitrary (0)bt ∈q  , 3(0)bt ∈ω   and 6ˆ(0)∈θ  , it follows that 

3lim { ( ), ( ), ( )}t bt btt t t→∞ = 0ξ ω θ . 
Proof: To analyze the closed-loop stability, employ the following storage function, 

 T T T T1( ) ( )
2 2 2bt I bt I f f

a

V
k
σ

= − − + + +q q q q ω ω γ γ θθ    (12) 

where T[1,0,0,0]I =q  is the identity quaternion, ρ  and σ  are positive constants which are 
introduced just for the sake of analysis, they satisfy 1/ ( ) 1/ ( )p dk kρ κ κ= +  and m1/ Jσ = , 
wherein Jm denotes the minimum eigenvalue of J. Then, substituting Eqs. (2), (7) and (8) into 
the time derivative of V, and employing the Cauchy-Schwarz inequality, one can obtain 

 T T T T T 1 T

4 4 2
p d

bt bt f f f f l a

k kV kκρ σµ σ−≤ − − − − −ξ ξ ω ω γ γ θ W J W θ θ Ω     (13) 

When Wa satisfies the FE condition, by the definition of FE, there exist finite constants 0t∗ ≥ , 
0T >  and 0c > , such that 

 T ( ) ( )
t T

a a m mt
cτ τ

∗

∗

+

×≥∫ IW W   (14) 

 Then, from Eq. (10), one has 
  

 ( ) T
6 6( ) e e ( ) ( )d e

t Tt T t T
a at

t T cσ σ στ τ τ
∗

∗ ∗

∗

+∗ − + −
×+ ≥ ≥∫ IA W W   (15) 
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This result indicates that, if Wa satisfies the FE condition, there always exists a finite time 
at t T∗= + , such that at t∀ ≥ , ( )tA  is full-rank. Accordingly, by Eq. (13), for all at t≥ , the 

storage function V  satisfies 
2 2 2 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )

4 4 2
p d

bt f m f l

k kV t t t t J t t k tκρ σµ σ θ−≤ − − − − −ξ ω γ J W θ  ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖  

Subsequently, by further employing Barbalat's lemma, one can finally ensure that 

3lim { ( ), ( ), ( )}t bt btt t t→∞ = 0ξ ω θ . The proof is complete. 
 
 

Numerical Simulations 
 
To evaluate the performance of the proposed method regarding parameter convergence, an 
attitude stabilization problem (i.e. tracking a non-PE zero reference trajectory: T[0,0,0]t

ti =ω ) 
is employed. The parameter vector of the rigid body is T=[20,1.2,0.9,17,1.4,15]θ kg·m2, initial 
states are set to be T[0.5916, 0.6,0.2,0.5]bt = −q , T[0.05, 0.05,0.1]b

bt = −ω rad/s, and 
Tˆ=[12,-2,1,10,0,30]θ  kg·m2. Control gains are kp=2, kd=5, =10µ , ka=1, kl=1, =0.01σ , a=0.05, 

and the simulation step is set to be 0.1s. 
 
Time histories of tracking errors and also parameter estimation errors are illustrated in Fig. 1. 
A remarkable feature observed in this figure is that the parameter estimation error vector θ̂  
asymptotically converges to zero even when tracking errors are (nearly) eliminated ( bt I→q q , 

3
b
bt → 0ω ), which is impossible to be achieved by employing conventional adaptive control 

methods in stabilization problems. To further analyze the convergence process of the inertia 
estimates, the trajectories of main elements (diagonal entries) of 11 22 33

ˆ ˆ ˆ ˆ= , ,θ θ θθ , are illustrated 
in Figs. 3 and 4, and the update directions induced by current data (the I\&I-based part in 
adaptive law) and historical data (the learning part in adaptive law) of every step are indicated 
by blue arrows and red arrows, respectively. It is evident that, at the beginning (the transient 
phase), convergence trajectories of estimates are driven by both current data and historical data, 
then the influence of current data decreases with the decaying of state errors (steady-state 
phase), while under the effect of historical data, all parameters are still able to converge to their 
corresponding true values even when the reference signal is not PE. 
 
 

Conclusion 
 
A novel adaptive controller for attitude tracking control problems of rigid bodies is proposed in 
this paper. The most important feature of this new adaptive scheme is the guarantee of precise 
convergence of not only state tracking errors but also parameter estimation errors, subject to the 
satisfaction of a finite excitation condition. The overall implication of this result is improved 
closed-loop performance which comes at the added cost in terms of buffer memory that is 
required for retaining measurements of past state values (historical data). Numerical simulation 
results illustrate the various features of the proposed method. Further work in this direction 
would consider robustness modifications to account of imperfect measurements and possible 
presence of unmodeled dynamics. 
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(a) system states                 (b) parameter estimation errors 
Fig. 1 Simulation results of system states and parameter estimation errors 

Fig. 2 Convergence trajectories of 11 22 33
ˆ ˆ ˆ, ,θ θ θ  
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