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Abstract 

The error budget analysis is presented which quantifies the effects of different error sources in 
the Earth-based orbit determination process when the orbit estimation filter is used to reduce 
radio metric data. The estimator strategy differs from more traditional filtering methods in the 
nearly all of the principal ground system calibration errors affecting the data are represented 
as filter parameters. Random nongravitational accelerations were found   to  be the  largest 
source of error   contributing to  the  individual error budgets. 
The article reviews the fundamental concepts of reduced-order filtering theory, which are 
essential for sensitivity analysis and error budget development. 
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Introduction 

Development of improved navigation techniques which utilize radiometric ( Ranging and 
Doppler ) data acquired from some ground stations have received considerable study in 
several years, as these data types are routinely collected in tracking, telemetry, and command 
operations. A sequential data filtering strategy currently under study is the orbit estimator, in 
which most if not all of the major systematic ground system calibration error sources are 
treated as estimated parameters, along with the spacecraft trajectory parameters. This strategy 
differs from current practice, in which the ground system calibration error sources are 
represented as unestimated bias parameters, accounted for only when computing the error 
covariance of the filter ( estimator ) parameters. 
This article reviews the fundamental concepts of reduced-order filtering theory, which are 
essential for sensitivity analysis and error budget development. The theory is then applied to 
the development of an error budget for a Mars mission cruise scenario in which enhanced 
orbit estimation is used to reduce X-band Doppler and ranging data. The filter model is 
described and error budgets are given for two different strategies: Doppler only, Doppler plus 
ranging. 
For this study, the filter model is assumed to be correct representation of the physical world. 

Reduced-Order filter 

In some navigation applications, it is not practical to implement a full-order or the optimal 
filter when system model, with all major error and noise sources, is of high order. 
Use of reduced-order filter allows the analyst to obtain estimates of key parameters of interest, 
with reduced computational burden and with moderate complexity in the filter model. Thus, 
reduced-order or suboptimal  filters are results of design trade-offs in which sources of error 



PEER REVIEW 

18th Australian International Aerospace Congress, 24-28 February 2019, Melbourne 

are most critical to over all system performance. In general, the spacecraft orbit  estimation 
process is executed entirely on the ground and thus flight computer memory  limitations are  
not  a significant  factor.  Nevertheless, there are reasons for not always using a full-order 
optimal filter for spacecraft orbit estimation.  
Some of reasons includes : (1) there may be a lack of adequate models for an actual physical 
effect; (2) certain parameters, such as the station location, may be held fixed in order to define 
reference frame and/or length scale; (3) if estimated, the computed uncertainty in model 
parameters would be reduced far below the level warranted by model accuracy.  

Estimation evaluation 

There are a number of error analysis methods which can be used to evaluate estimator ( filter ) 
models and predict filter performance. Reduced-order error analysis techniques enable an 
analyst to study the effects of using incorrect a priori statistics, data-noise/data-weight 
assumptions, or process noise model on the filter design. 
If the filter is optimal, then the filter and truth models coincide. If the filter is suboptimal, then 
the filter model is of equal or lower order (i.e., reduced-order) than the truth model and 
possibly represents a subset of the states of the truth model. In practice, a fully detailed truth 
model may be difficult to develop and thus one typically evaluates a range of ‘reasonable’ 
truth models to assess whether the filter results are especially sensitive to a particular elements 
of the filtering strategy being used. The objective is to design a filter model to achieve the best 
possible accuracy, but which is also robust, so that its performance will not be adversely 
affected by the use of slightly incorrect filter parameters. 
In a special case of reduced-order error analysis, various systematic error sources are treated 
as unmodeled parameters which are not estimated, but whose effects are accounted for in 
computing the error covariance of the estimated parameters. In a consider state analysis, the 
sensitivity of the estimated parameter set to various unmodeled consider parameters can be 
computed via partial derivatives of the state estimate with respect to the consider parameters 
set. The filter has no knowledge about the contribution the unmodeled parameters to the 
uncertainty in the state estimate since the modified covariance, which includes effects from 
both the estimated and consider parameters, is not fed back to the filter. 

Tables and figures must be integrated with the text and numbered consecutively with Arabic 
numerals in the order in which reference is made to them in the text of the paper. All captions 
must be italicised and centrally located above a table and below a figure. The first table or 
figure caption would be referred to in the text as Table 1 or Fig. 1 and be presented as follows: 

Optimal and suboptimal estimator 

Restricting the discussion to the filter measurement up-date equations, the mathematical 
model presented here is the estimator form of the measurement up-date. 
Let  x  represent the state estimate and P represent the error covariance matrix. Using the 
convention that ‘(-)’ denotes a pre-observation up-date value and ‘(+)’ denotes a post-
observation up-date value, the filter observation up-date equations for Extended Kalman 
type’s estimator are given by 

State estimate   :    x̂k
(+ ) = x̂k

(-) +

Kk zk - Hxk x̂k

(-)⎡⎣ ⎤⎦   (1) 

Error  covariance : Pk
(+ ) = I −


KkHxk⎡⎣ ⎤⎦Pk

(− )              (2) 

 Gain matrix  :   

Kk = α k

−1Pk
(− )Hxk

T           (3) 
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where zk  is the observation vector defined by the measurement model, Hxk  is observation 
matrix of measurement partial derivatives, I is simply the unit matrix, and 
α k = HxkPk

(− )Hxk
T +Wk

−1  is the innovation covariance. Wk represents the weighting matrix, the 
inverse of which is taken to be the diagonal observation covariance Vk ; thus for  i = 1,…,m
observations,  Wk

−1 ≡ Vk = diag v1,, vm[ ]  for observation variances vi . The filter equations 
described by Eqn. 1 through 3 can be employed without loss of generality, since whitening 
procedures can be used to statistically decouple the measurements in the presence of 
correlated observation noise and obtain a diagonal Vk . The gain matrix Kk  is used to up-date 
estimates of the filter parameters as each measurement is processed. And denote that Eqn. 2 is 
valid only for the optimal gain 


Kk  

The use of Eqn 2 to compute the error covariance matrix has historically been suspect due to 
finit computer word length limitations. As a result, a utilized alternative is the stabilized form 
of the up-date, expressed as 

Pk
(+ ) = (I − KkHxk )Pk

(− ) (I − KkHxk )
T + KkWk

−1Kk
T  (4) 

Although this form of the covariance observation up-date is more stable numerically than Eqn 
2, it requires a greater number of computations; however, a further advantage is that it is valid 
for arbitary gain matrices; therefore, Kk  in Eqn 4 need not be optimal. 
In some cases, the observation up-date equation may also be deficient numerically. As a 
result, factorization methods have been developed to help alleviate the numerical deficiencies 
of the up-date algorithms. The details of the factorization procedures will not be discussed 
here; hoever, an important observation from the literature and critical to the general evaluation 
mode of the filter is the observation that Eq.(4) can be written in an equivalent form as 

        Pk(+ ) = (I − KkHxk )Pk
(− ) +α k (Kk − K̂k )(Kk − K̂k )

T                              (5) 

where Kk  is an suboptimal gain matrix and K̂k is the optimal gain matrix. This equation of the 
error covariance observation up-date is referred to as the suboptimal observation up-date since 
it includes a correlation based on the gain difference between the filter evaluation run and the 
original estimation run. In the general evaluation mode, the estimator uses suboptimal gains 
saved in an evaluation filter from an earlier filter which is run purposely with what is believed 
to be an incorrect model, in order to generate suboptimal gains. It is this strategy of the 
suboptimal observation up-date which will be critical to the error described in the following 
section. It is important to note that the time in the filter evaluation mode takes the same style 
as the original estimator time up-date, except that in the presence of process noise modeling 
parameters, the original estimator stochastic time constants and process noise (system noise) 
uncertainties are replaced with evaluation mode time constants and process noise terms. 

Observation strategy and the estimation 

Observation strategy 

Observation data acquisition plan is assumed, containing several passes of two-way Doppler 
and ranging data per week. And also, the data schedule consisted of about 6 hours tracking 
pass of two-way Doppler and of about 2 hours tracking pass of two-way range from USUDA 
station basis from ME (Mars encounter) – 30 days to ME-10 days. 
To account for observation noise, an assumed one-sigma random measurement uncertainty of 
0.02 mm/sec was chosen for two-way Doppler, and for two-way ranging, the one-sigma 



PEER REVIEW 

18th Australian International Aerospace Congress, 24-28 February 2019, Melbourne 

random measurement uncertainty was assumed to be about 5 m. It should be noted that the 
data weights quoted here are for the round trip range-rate and range, respectively. Both data 
types were collected at a rate of one point every 10 min., and the noise variances were 
adjusted by an elevation-dependent function for USUDA station, to reduce the weight of the 
low elevation data; furthermore, no data were acquired at elevations of less than 13 deg. 

The estimation 

The estimators which make up the filter model, along with a priori statistics, steady state 
uncertainties for the Gauss-Markov parameters, and noise densities for the random-walk 
parameters. All of the parameters were treated as filter ( estimator ) parameters and grouped 
into three categories: spacecraft epoch state, spacecraft nongravitational force model, and 
ground system error model. Effects of uncertainty in the ephemeris and mass of the planet 
were believed to be relatively small in this scenario. 

Table 1:  Estimation parameters (Aassumed) 

Estimate parameter Uncertainty (one-sigma)
State vector

Position element
Velocity element 1 km/s

Nongaravitational force
SRP ���

Anoumalous accelerations
Range biase 5 m

Station location (USUDA)
Spin radious 0.02 m

Z-hight 0.02 m
Longitudu

1× 107    km

1×10−12    km/sec2

3×10−9    deg

The simplified spacecraft nongravitational force model was used. There were filter parameters 
representing solar radiation pressure (SRP) forces as well as small anomalous forces due to 
gas leaks and attitude control thruster misalignments, and so on. 
For processing the two-way range data, the filter model included a stochastic bias parameter 
associated with each ranging pass from the station, in order to approximate the slowly 
varying, nongeometric delays in ranging observations that are caused principally by station 
delay calibration errors and uncalibrated solar-plasma effects.  
The station location covariance represents the uncertainty in the station location. 

The error values 

The purpose of developing an error budget is to determine the contribution of individual error 
sources, or groups of error sources, to the total navigational uncertainty. In general, an error 
budget is a catalog of the contributions of the error sources which contribute to errors in the 
filter estimate at a particular point in time, whether explicitly modeled in the filter or not. For 
the first analysis, it is assumed that filter is optimal, that estimator model is an accurate 
representation of the physical world. 
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In order to establish an error budget, it is necessary to compute a time history of the filter gain 
matrix for the complete filter and to subsequently use these gains in the sensitivity 
calculations ( Eqn 4) during repeated filter evaluation mode runs, in which only selected error 
sources or groups of error sources are ‘turned on’ in each particular run. In this way, the 
individual contributions of each error sources or group of error sources to the total statistics 
uncertainty obtained for all of the filter parameters for given radiometric data set can be 
established. 
Using the reduced observation data schedule and the filter model derived for Mars mission 
scenario, orbit estimation error statistics were computed for Doppler-only and Doppler-plus-
ranging observation data sets. The orbit estimation were propagated to the nominal time of 
Mars encounter and expressed as dispersions in a Mars centered aiming plane, or B-plane, 
coordinate system; specifically, the one-sigma magnitude uncertainty of the miss vector, 
resolved into respective miss components B ⋅T ( parallel to planetary equatorial plane) and 
B ⋅R (normal to planetary equatorial plane. This plane definite Fig. 1. 

Fig. 1:  Definition of B-plane ellipse 

Additional, the one-sigma uncertainty on the linearized time of flight (LTF). The LTF defines 
the time from encounter ( point of closest approach ) and specifies what the time of flight to 
encounter would be if the magnitude of the miss vector were zero. In the case, the errors were 
expressed as dispersion ellipses in the B-plane to graphically significant groups of error 
sources. 

In the case of 2-way Doppler only 

With the reduced-filter, the 2-way Doppler data allowed determination of the B ⋅T  component 
of the miss vector to about 50 km and the B ⋅R component of miss vector to about 25 km, with 
the LTF determined approximately 8 sec. These results summarized in Fig.2, which gives the 
magnitude of the B-plane error ellipse around the nominal aim point for the groups of the 
filter model error sources to the total statistical uncertainty, in a root-sum-square. 
The most dominant error source groups were the random nongravitational acceleration, 
followed by solar radiation pressure coefficient uncertainty, and ground system calibration 
error. For this encounter phase, the direction of the Earth-spacecraft range is closely aligned 
with semmimajor (SMMA) axis  of the B-plane error ellipse. The Doppler data alone were 
able to determine this component of the solution to only about 55 km. 
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Fig. 2:  The error ellipse on the B-plane for 2-way Doppler only at closest approach 

In the case of 2-way Doppler plus ranging 

More one case in which both the 2-way Doppler plus ranging data were used, the B ⋅T  
component of the miss vector was determined to about 6 km and the B ⋅R component to about 
5 km, with the LTF determined approximately 5 sec. 

Fig. 3:  The error ellipse on the B-plane for 2-way Doppler plus ranging at closest approach 

Similar to the results for the Doppler-only data strategies (See “In the case of 2-way Doppler 
only”), random nongravitational accelerations were the dominant error source group. 
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Fig. 4:  Sensitivity of the estimation error to perturbation 
(Two-way Doppler only) 

As seen from the figures, a quadratic growth in the sensitivity is evident for scale factor values 
ranging from 1 to 3, and a nearly linear growth is exhibited for scale factor values ranging 
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In additional ranging data to Doppler data, the dispersion is reduced compare with only 
Doppler observation strategy. B-plane error ellipse are also provided ( see Fig. 3), illustrating 
the contributions of the major source groups to the total root-sum-square error and the 
orientation of the ellipses in the aiming plane. In this case, the accuracy with which the Earth-
spacecraft range component at encounter was determined was roughly 12 km. 

Sensitivity analysis 

The results of the linearity assumptions used to develop error budgets is that sensitivity values 
can readily bee generated. These values graphically illustrate the effects of using different 
prescribed values of the error source statistics on the estimation errors, with the assumption 
that the reduced-order filter.  
The procedure for sensitivity values development is repeated here for completeness:  

(1) Subtract the contribution of the error source under     consideration from total mean-
square navigation     error. 

(2) To compute the effect of changing the error source by a preset scale factor, multiply its 
contributions to the mean-square errors by the square of the scale factor value. 

(3) Replace the original contribution to mean-square       error by the one computed in the 
previous step. 

(4) Take the square root of the newly computed mean-square error to obtain the total root-
sum square navigation error. 

Several cases were used to generate sensitivity curves for the major groups of error sources in 
the filter ( estimator ).  Fig. 4 and Fig. 5 give the sensitivity curves for the random 
nongarvitational accelerations and illustrate the sensitivity of this error source group to 
various scale factor values. Random nongravitationnal acceleration dominated the error 
budget in two data strategy cases considered. 
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from 4 to 10. On average, for two data strategies considered, an order of magnitude increase 
in the preset scale factor resulted in about a factor of three to six increase in the root-mean-
square estimation errors. In the case of two-way Doppler plus ranging, it is illustrated one-
sigma uncertainty in the linearized time of flight (LTF). 
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Fig. 5:  Sensitivity of the estimation error to perturbation 
(Two-way Doppler plus ranging) 

Conclusions 

A sensitivity analysis was conducted for a reduced-order filter referred to as the enhanced 
orbit estimation filter. In practice, the enhanced filter attempts to represent all or nearly all of 
the principal ground system error sources affecting radiometric data types as filter parameters. 
A reduced-order filter technique were reviewed and utilized to perform the sensitivity 
analysis, and, in particular, to develop navigation error budgets for two different data 
acquisition strategies.  
Error budget performed for the assumed mission strategy revealed that the most significant 
error source for two data-acquisition strategies studied was spacecraft random 
nongravitational accelerations, indicating that, for the reference error model, the enhanced 
filter is most sensitive to mismodelling of small anomalous forces affecting spacecraft. These 
results suggest that if high-precision navigation performance is to be achieved, the error 
sources requiring the most accurate modelling are spacecraft nongravitational accelerations 
error. 
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