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Abstract 
 
An analytical solution to the quasi-satellite orbit problem is provided based on the secular 
terms of the restricted three body problem in the Hill problem approximation. The validity of 
this solution restricts to the case of co-orbital motion in the 1:1 resonance with either small or 
moderate oscillations of the orbit about the primary. The evaluation of the secular terms alone 
is computationally undemanding, and provides an instant way of exploring quasi-satellite 
orbit evolution. Furthermore, the secular frequencies of the orbital motion can be used as 
design parameters in the search for initial conditions of periodic orbits. Application of the 
analytical solution to the computation of distant retrograde orbits is illustrated with several 
examples, and its performance is compared with the Lindstedt series solution already existing 
in the literature. 
 
Keywords: Distant Retrograde Orbits; Quasi-Satellite Orbits; Hill Problem; Perturbation 
Methods; Lindstedt Series; Special Functions. 
 

Introduction 
 
Quasi-satellite orbits [1], also called distant retrograde orbits [2], have been pointed out as 
useful solutions for different solar system missions. In particular, because these kinds of orbits 
may enjoy stability for very long times, distant retrograde orbits are appealing candidates for 
quarantine orbits [3]. But quasi-satellite orbits have been also pointed out as prospective orbits 
for surveying the Martian moons, a case in which direct orbiting is not viewed as an option 
due to their low mass [4,5]. Analytical solutions to the quasi-satellite orbit problem have not 
being found yet, not even in the simplifications provided by the restricted three body problem 
model. Still, rough solutions based on averaging the higher frequencies of the motion have 
revealed useful in the qualitative explanation of the long-term dynamics [6,7]. On the other 
hand, it has been recently shown that analytical approximations of the dynamics that can be 
useful in the preliminary mission design of distant retrograde orbits (DRO) can be computed 
by perturbation techniques, and a high order Lindstedt series solution to the DRO problem has 
been brought to the scene [8,9]. 
 
As an alternative to the Lindstedt series approach, it is shown that standard perturbation 
theory can be used to provide an analytical solution to the DRO problem by finding the 
secular terms of the restricted three body problem Hamiltonian in the Hill problem 
approximation. The validity of the perturbation solution restricts to the case of co-orbital 
motion in the 1:1 resonance with either small or moderate oscillations of the quasi-satellite 
orbit about the primary of lesser mass, hereafter called librations. 
 



NON-PEER REVIEW 
 

18th Australian Aerospace Congress, 24-28 February 2018, Melbourne 
 

The evaluation of the secular terms of the new analytical solution is computationally 
undemanding and provides an instant way of exploring DRO evolution. In addition, when 
required, the computation of ephemeris is straightforward, because osculating elements are 
easily obtained by adding periodic corrections to the secular solution. These corrections 
comprise both long- and short-period effects, and are obtained analytically as a result of the 
perturbation procedure. Furthermore, the secular frequencies of the motion can be used as 
design parameters in the search for initial conditions of periodic orbits. Indeed, 
commensurability between the (secular) periods of the orbital and librational motions results 
in approximately periodic orbits of the Hill problem whose periodicity is easily improved by 
the standard computation of differential corrections to the initial conditions. Application of the 
analytical solution to the computation of DRO is illustrated with several examples, and its 
performance is compared with the capabilities of the Lindstedt series solution already existing 
in the literature. 
 

Body of the Paper 
 
Long-Period Hamiltonian 
 
The 1:1 co-orbital motion in the planar Hill problem approximation is traditionally 
approached in epicyclic canonical variables (!,q,Φ,Q), whose relation with Cartesian 
variables (x,y,X,Y) is 
 

 
 
in which 
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formation, and is conveniently chosen as " = 3/4. 
 
In the epicyclic variables, quasi-satellite orbits are viewed like ellipses whose semi-major axis 
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oscillates slowly about the origin. 
 
After removing the short-period terms by a canonical transformation from osculating to mean 
variables, the Hill problem Hamiltonian in mean variables only depends on long-period 
effects and is conveniently rearranged in the form of a truncated Taylor series 
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where ' ≡ 1 is a formal small parameter used to show the strength of each perturbation term. 
When constraining to the terms that have been used in [9] for the construction of the high 
order Lindstedt series solution, the summands Hm are  
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K ̃ = K(k2)/π, E ̃ = E(k2)/π, with K and E denoting the complete elliptic integrals of first and 
second kind, respectively, of modulus k, and the auxiliary non-dimensional variable 

 
where µ is the gravitational parameter of the Hill problem model, is used for convenience. 
 
Because ! is a cyclic coordinate in Eq. (8), its conjugate momentum Φ is an integral of the 
averaged motion, and hence the size and shape of the ellipse remain constant, cf. Eq. (5). In 
consequence, the flow decouples into the fast motion determined by the phase ! along this 
constant ellipse, and the slow motion of the guiding center of the reference ellipse, determined 
by (q, Q) as follows from Eq. (7). 
 
The term H0 of the long-period Hamiltonian (8) clearly shows that the guiding center of the 
ellipse evolves with perturbed harmonic motion. Indeed, 
 

 
 
where ℱ(Φ) comprises all the terms that are free from q and Q in H0, Ω ≡ Ω(Φ) is the libration 
frequency 
 

 
 
and δ ≡ δ(Φ) is computed fromEq. (9). 
 
Solutions to the Hamiltonian flow in Eq. (8) are trivial for the zeroth order truncation given by 
Eq. (10), and can be computed by the Lindsted series technique for the higher orders of the 

After removing the short-period terms by a canonical transformation from osculating
to mean variables, the Hill problem Hamiltonian in mean variables only depends on long-
period e↵ects [6, 7], and is conveniently rearranged in the form of a truncated Taylor
series

H =
X

m�0

✏
m

m!
Hm(�, q,�, Q), (8)

where ✏ ⌘ 1 is a formal small parameter. When constraining to the terms used in the
construction of the high order Lindstedt series solution of [7] the terms Hm are written

H0 = F � !�


3⇠2 +

4

3
(K̃ � Ẽ)�⌘2
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◆
�
3

�
,
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(71Ẽ � 50K̃)�⌘6 +

8

3

h
2(2K̃ � 5Ẽ)� K̃ � 26Ẽ
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2(2K̃ � 5Ẽ)� K̃ � 26Ẽ
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long-term Hamiltonian (8), cf. [8,9]. Alternatively, a new canonical transformation can be 
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elements, in this way reducing it to its secular terms. This last approach is the contribution of 
the current paper. 
 
 
Secular Hamiltonian 
 
The transformation from mean to secular variables is better achieved when using harmonic 
oscillator-type variables, given by 
 

 
 
After applying the canonical transformation in Eqs. (12)–(15) to the long-period Hamiltonian 
(8), viz. 
 

 
 
a new canonical transformation (ψ,θ,Ψ,Θ) → (ψ′,θ′,Ψ′ Θ′; ') is applied to remove the long-
period angle θ. Because Ψ = Φ is already an integral of the mean elements Hamiltonian, this 
variable is not affected by the transformation. Thus, Ψ′ = Ψ = Φ, and, in consequence, Ω 
remains unaltered. 
 
The transformation to prime variables is obtained by perturbation theory. After applying this 
transformation to Eq. (16), the secular Hamiltonian 
 

 
 
is obtained, which discloses the secular motion as the combination of two (perturbed) 
harmonic oscillations of frequencies ω, for the motion along the reference ellipse, and Ω, for 
the motion of its guiding center. 
 
The exact numeric coefficients hm and hi,k in the secular Hamiltonian (17) are functions of the 
complete elliptic integrals of the first and second kind. Their exact, as well as their 
approximate values, are 

3 Secular Hamiltonian

The transformation from mean to secular variables is better achieved when using harmonic
oscillator-type variables, given by

� =  , (12)

� =  + k
2
⇥

�
sin ✓ cos ✓, (13)

Q =
p

2⇥⌦ cos ✓, (14)

q =
p

2⇥/⌦ sin ✓, (15)

After applying the canonical transformation in Eqs. (12)–(15) to the long-period
Hamiltonian (8), viz.

H =
X

m�0

✏
m

m!
Hm(�, ✓,�,⇥), (16)

a new canonical transformation ( , ✓, ,⇥) �! ( 0
, ✓

0
, 0

,⇥0; ✏) is applied to remove the
long-period angle ✓. Because  is already an integral of the mean elements Hamiltonian,
this variable is not a↵ected by the transformation. Thus,  0 =  , and, in consequence,
⌦ remains unaltered.

The, the secular Hamiltonian is

H = ! 
3X

m=0

hm

✓
⌦

!

◆2m

� ⌦⇥0
2X

i=0

"
2�iX

j=0

hi,j

✓
⌦

!

◆2j
#✓

⇥0
/ 

⌦/!

◆i

(17)

where the exact numeric coe�cients hm and hi,k and their approximate values are

h0 = 1

h1 = �
2K̃

K̃ � Ẽ
= �4.56184

h2 = �
4K̃2

� 1

2(K̃ � Ẽ)2
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= 2.07095

h0,2 = �
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= �0.199537

h1,0 =
3(11K̃ � 14Ẽ)
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(14) and (15), the guiding center of the reference ellipse Eq. (7) turns into 
 

 
 

3 Secular Hamiltonian

The transformation from mean to secular variables is better achieved when using harmonic
oscillator-type variables, given by

� =  , (12)

� =  + k
2
⇥

�
sin ✓ cos ✓, (13)

Q =
p

2⇥⌦ cos ✓, (14)

q =
p
2⇥/⌦ sin ✓, (15)

After applying the canonical transformation in Eqs. (12)–(15) to the long-period
Hamiltonian (8), viz.

H =
X

m�0

✏
m

m!
Hm(�, ✓,�,⇥), (16)

a new canonical transformation ( , ✓, ,⇥) �! ( 0
, ✓

0
, 0

,⇥0; ✏) is applied to remove the
long-period angle ✓. Because  is already an integral of the mean elements Hamiltonian,
this variable is not a↵ected by the transformation. Thus,  0 =  , and, in consequence,
⌦ remains unaltered.

where the exact numeric coe�cients hm and hi,k and their approximate values are

h0 = 1

h1 = �
2K̃

K̃ � Ẽ
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4 Orbit design parameters

Remarkably,  0 and ⇥0 can be used like orbit design parameters. These parameters give
control to the designer on the size of the orbit and how close the orbiter can approach to
the origin [11, 12]. Indeed, using Eq. (14) and (15), the guiding center of the reference
ellipse Eq. (7) turns into
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The maximum elongation of ycenter in the y axis direction happens each time ✓0

0
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(2m� 1)⇡/2, with m integer, and can be used to fix the minimum distance

ymin = a� 2kM, (24)

or, from Eq. (7), ymin = a(1 � ⌘max), that the orbit will approach the origin along the y

axis.
Other design parameter comes from the ratio R = R( ,⇥) ⌘ n /n✓. When rational,

the secular solution will correspond to a secular periodic orbit. In general, this ratio
will not be rational for arbitrary values a and ymin. Still, fixing, for instance, ymin, and
varying a will result in the desired commensurability from a simple root finding procedure
in  , because a = a( ), from Eq. (5), and ⇥ = ⇥( ; ymin), fom Eq. (??), implies that
R = R( ; ymin).

The periodicity obtained in this way is not constrained to the secular elements orbit
and applies also to the complete analytical solution. Indeed, because the long-period
corrections only depend on the secular elements, which have been made periodic by design,
the periodicity will be preserved also in the mean elements with the same period. In the
same way, for the short-period corrections are function of the mean elements, which are
periodic, the periodicity in the osculating orbit is likewise achieved. However, the true
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corrections only depend on the secular elements, which have been made periodic by design,
the periodicity will be preserved also in the mean elements with the same period. In the
same way, for the short-period corrections are function of the mean elements, which are
periodic, the periodicity in the osculating orbit is likewise achieved. However, the true
orbit corresponding to the initial conditions of the orbit in osculating elements will be
only approximately periodic due to the truncation order of the perturbation solution.
Nevertheless, if desired, straightforward di↵erential corrections can be applied to the
initial conditions in order to obtain a true periodic orbit with the desired characteristics.
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= 0.0220455

Both  and ⇥0 are constant in Eq. (17), whereas �0 and ✓0 grow linearly with time in the
prime variables. That is

 
0 =  

0
0
+ n t, (18)

✓
0 = ✓

0
0
+ n✓t, (19)

and the constant, secular frequencies are computed from Hamilton equations:

n = @H/@ , n✓ = @H/@⇥0
. (20)

4 Orbit design parameters

Remarkably,  0 and ⇥0 can be used like orbit design parameters. These parameters give
control to the designer on the size of the orbit and how close the orbiter can approach to
the origin [11, 12]. Indeed, using Eq. (14) and (15), the guiding center of the reference
ellipse Eq. (7) turns into

xcenter =
1

k

⌦

!
M cos(✓0

0
+ n✓t), (21)

ycenter = 2kM sin(✓0
0
+ n✓t), (22)

where,
M =

p
2⇥0/⌦, (23)

is constant because both ⇥0 and  , and hence ⌦ ⌘ ⌦( ) are constant.
The maximum elongation of ycenter in the y axis direction happens each time ✓0

0
+n✓t =

(2m� 1)⇡/2, with m integer, and can be used to fix the minimum distance

ymin = a� 2kM, (24)

or, from Eq. (7), ymin = a(1 � ⌘max), that the orbit will approach the origin along the y

axis.
Other design parameter comes from the ratio R = R( ,⇥) ⌘ n /n✓. When rational,

the secular solution will correspond to a secular periodic orbit. In general, this ratio
will not be rational for arbitrary values a and ymin. Still, fixing, for instance, ymin, and
varying a will result in the desired commensurability from a simple root finding procedure
in  , because a = a( ), from Eq. (5), and ⇥ = ⇥( ; ymin), fom Eq. (??), implies that
R = R( ; ymin).

The periodicity obtained in this way is not constrained to the secular elements orbit
and applies also to the complete analytical solution. Indeed, because the long-period
corrections only depend on the secular elements, which have been made periodic by design,
the periodicity will be preserved also in the mean elements with the same period. In the
same way, for the short-period corrections are function of the mean elements, which are
periodic, the periodicity in the osculating orbit is likewise achieved. However, the true

5



NON-PEER REVIEW 
 

18th Australian Aerospace Congress, 24-28 February 2018, Melbourne 
 

where 

             
is constant because both Θ′ and Ψ, and hence Ω ≡ Ω(Ψ) are constant. 
 
The maximum elongation of ycenter in the y axis direction happens each time θ′ takes the value 
θ′ = θ0 + nθ t = (m – 1/2) π, with m integer, and this fact can be used to fix the minimum 
distance 

 
or, from Eq. (7), ymin = a (1 − ηmax), that the orbiter will approach the origin along the y axis 
direction. 
 
Other useful design parameter comes from the ratio R = R(Ψ,Θ′) ≡ nψ/nθ between the orbital 
and libration secular frequencies. When R is a rational number, the secular solution will 
correspond to a secular periodic orbit. In general, this ratio will not be rational for arbitrary 
values of a and ymin. Still, fixing, for instance, ymin, and varying a will result in the desired 
commensurability from a simple root finding procedure in Ψ. Indeed, in view of a = a(Ψ), as 
follows from Eq. (5), and Θ′ = Θ′(Ψ; ymin), as follows from Eqs. (23) and (24), it happens that 
the ratio depends only on Ψ in addition to design parameter ymin, viz. R = R(Ψ; ymin). 
 
The periodicity obtained in this way is not constrained to the secular elements orbit and 
applies also to the complete analytical solution. Certainly, because the long-period corrections 
only depend on the secular elements, which have been made periodic by design, the 
periodicity will be preserved also in mean elements with the same period. In the same way, 
for the short-period corrections are function of the mean elements, which are periodic by 
construction, the periodicity in the osculating orbit is likewise achieved. However, the true 
orbit corresponding to the initial conditions of the periodic orbit in osculating elements will be 
only approximately periodic due to the truncation order of the perturbation solution. 
Nevertheless, if desired, straightforward differential corrections can be applied to the initial 
conditions in order to obtain a true periodic orbit with the desired characteristics. 
 
 
Performance Evaluation 
 
The performance of the analytical solution has been compared with the higher order Lindstedt 
series solution computed in [11], finding that, as expected, it produces solutions of 
comparable accuracy. However, the procedure is expedited now because the number of 
operations involved in the evaluation of the solution is abridged. Indeed, the evaluation of 
secular terms from Eqs. (18) and (19) is computationally inexpensive while the long- period 
corrections are notably shorter than the Lindstedt series in [11] (the short-period corrections 
are the same in both cases). 
 
On the other hand, the computation of a periodic orbit is straightforward in the secular 
variables, while it involves the evaluation of two different Lindsted series in [11]. The 
computation of periodic DROs using the current analytical solution is illustrated in the 
following examples. 
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= 0.0220455

Both  and ⇥0 are constant in Eq. (17), whereas �0 and ✓0 grow linearly with time in the
prime variables. That is

 
0 =  

0
0
+ n t, (18)

✓
0 = ✓

0
0
+ n✓t, (19)

and the constant, secular frequencies are computed from Hamilton equations:

n = @H/@ , n✓ = @H/@⇥0
. (20)

4 Orbit design parameters

Remarkably,  0 and ⇥0 can be used like orbit design parameters. These parameters give
control to the designer on the size of the orbit and how close the orbiter can approach to
the origin [11, 12]. Indeed, using Eq. (14) and (15), the guiding center of the reference
ellipse Eq. (7) turns into

xcenter =
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0
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ycenter = 2kM sin(✓0
0
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where,
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is constant because both ⇥0 and  , and hence ⌦ ⌘ ⌦( ) are constant.
The maximum elongation of ycenter in the y axis direction happens each time ✓0

0
+n✓t =

(2m� 1)⇡/2, with m integer, and can be used to fix the minimum distance

ymin = a� 2kM, (24)

or, from Eq. (7), ymin = a(1 � ⌘max), that the orbit will approach the origin along the y

axis.
Other design parameter comes from the ratio R = R( ,⇥) ⌘ n /n✓. When rational,

the secular solution will correspond to a secular periodic orbit. In general, this ratio
will not be rational for arbitrary values a and ymin. Still, fixing, for instance, ymin, and
varying a will result in the desired commensurability from a simple root finding procedure
in  , because a = a( ), from Eq. (5), and ⇥ = ⇥( ; ymin), fom Eq. (??), implies that
R = R( ; ymin).

The periodicity obtained in this way is not constrained to the secular elements orbit
and applies also to the complete analytical solution. Indeed, because the long-period
corrections only depend on the secular elements, which have been made periodic by design,
the periodicity will be preserved also in the mean elements with the same period. In the
same way, for the short-period corrections are function of the mean elements, which are
periodic, the periodicity in the osculating orbit is likewise achieved. However, the true
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Large amplitude libration 
 
A periodic DRO with initial design parameters a = 10 and ymin = 2.5, in Hill’s problem units 
(. = / = 1), that is, with large amplitude librations, is computed first. Starting from these 
values, the approximate values: M = 4.33, from Eq. (24), Ψ = Φ = 12.5, from the definition of 
a in Eq. (5), Ω = 0.049, from Eqs. (9) and (11), and, finally Θ′ = 0.46, from Eq. (23), are 
computed. Then, the secular frequencies nθ = −0.0638, and nψ = 1.0072 are computed from 
Eq. (20). These values of the secular frequencies are not commensurable, yielding a ratio 
libration period orbit period R1 = 15.784. However, successive iterations of the secant method 
 

 
 
for the closest integer value R = 16 to the ratio R1 obtained in the initial design, result into the 
Ψ value that yields the required commensurability of the secular frequencies nψ = 16 × nθ . 
Straightforward evaluation of Eqs. (18) and (19) will produce the desired secular, periodic 
DRO that, by direct application of Eqs. (12)–(15), first, and Eqs. (1)–(4), then, is displayed in 
(secular) Cartesian coordinates in Fig. 1 
 
 

 
Fig. 1: Left: 16 revolutions secular periodic orbit. The x axis is centered at y = ymin = 2.5 to 

highlight that the secular orbit agrees with the orbit design stipulation. Right: Detail showing 
that ascending and descending trajectories get very close to each other. 

 
 
 
The orbit also remains periodic in mean elements, which are obtained after applying the direct 
long-period corrections, because these corrections only depend on secular terms, which have 
been made periodic by design. The differences between the mean and secular orbits are 

5 Performance evaluation

The performance of the analytical solution has been compared with the higher order Lind-
stedt series solution computed in [12], finding that, as expected, it produces solutions of
comparable accuracy. However, the procedure is expedited now because the number of
operations involved in the evaluation of the solution is abridged. Indeed, the evaluation
of secular terms from Eqs. (18) and (19) is computationally inexpensive while the long-
period corrections are notably shorter than the Lindstedt series in [12]. The short-period
corrections are the same in both cases. On the other hand, the computation of a periodic
orbit is straightforward in the secular terms, while it involves the evaluation of two di↵er-
ent Lindsted series in [12]. The computation of periodic DROs using the current solution
is illustrated in following examples.

5.1 Large amplitude libration

A DRO with design parameters a = 10 and ymin = 2.5, in Hill’s problem units, that is,
with large amplitude librations, is computed first. Starting from these values, the sequence
described in Section 3 leads to the approximate values: M = 4.33,  = 12.5, ⌦ = 0.049,
and ⇥0 = 0.46. Then, the secular frequencies n✓ = �0.0638, and n = 1.0072 are
computed from Eq. (20). These values are not commensurable, yielding a ratio libration
period orbit period R1 = 15.784. However, successive iterations of the secant method

 =  n +
 n+1 � n

Rn+1 �Rn

(R�Rn) (25)

for the closest integer value R = 16, result into the  value that yields the required
commensurability of the secular frequencies n = 16n✓. Straightforward evaluation of
Eqs. (18) and (19) will produce the desired secular, periodic DRO that, by direct appli-
cation of Eqs. (12)–(15), first, and Eqs. (1)–(4), then, is displayed in (secular) Cartesian
coordinates in Fig. 1

The orbit remains periodic in mean elements, which are obtained after applying the
direct long-period corrections, because these corrections only depend on periodic secular
terms.

The di↵erences between the mean and secular orbits are mainly due to the di↵erences
in the trajectories of the centers of the corresponding reference ellipses, as expected from
the small amplitudes of the long-period corrections of  , as illustrated in Fig. 2.
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Figure 1: Left: 16 revolutions secular periodic orbit. The x axis is centered at y = 2.5
to highlight that the secular orbit agrees with the orbit design stipulation (design param-
eters a = 10.1022, ymin = 2.5). Right: Detail showing that ascending and descending
trajectories get very close to each other.
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mainly due to the differences in the trajectories of the centers of the corresponding reference 
ellipses, as illustrated in Fig. 2. 
 
 
 

 
 

Fig. 2: Left: Sample periodic orbit after 16 revolutions in mean elements (dots) superimposed 
to its secular partner (full line). Right: differences between the secular and mean orbits in 

Cartesian coordinates (full line) with corresponding differences between their guiding centers 
superimposed (dots). 

 
 
The analytical solution also remains periodic in osculating elements, since the transformation 
from mean to osculating elements only depends on mean elements, which have been already 
shown to be periodic. However, one must note, that due to the truncation order of the 
perturbation theory, when propagating the osculating initial conditions predicted by the 
analytical solution directly in the original, non averaged Hill problem model, the orbit 
obtained is only almost periodic after one libration period.  
 
This lack of periodicity of the true orbit is clearly noted in Fig. 3, where the initial and final 
points are highlighted with black dots. The periodicity error is about six hundredths the size of 
the orbit, for the coordinates, and one hundredth the size of the hodograph for the conjugate 
momenta. 
 
The periodicity of the numerical orbit is easily improved using a differential corrections 
algorithm, as, for instance, the one in [12]. The improved periodic orbit remains very close to 
the analytical osculating prediction, as shown in Fig. 4. 
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Figure 2: Left: Sample periodic orbit after 16 revolutions in mean elements (dots) su-
perimposed to its secular partner (full line). Right: di↵erences between the secular and
mean orbits in Cartesian coordinates (full line) with corresponding di↵erences between
the guiding centers superimposed (dots).
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Fig. 3: Non-periodic, true orbit of the Hill problem numerically propagated from the initial 
conditions and libration period predicted by the analytical sample solution periodic after 16 

revolutions. 
 
 
 

 
Fig. 4: Improved, periodic orbit of the Hill problem (dots) with the osculating analytical 

sample periodic solution after 16 revolutions superimposed (full, bright line). 
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Figure 4: Non-periodic, true orbit of the Hill problem numerically propagated from the
initial conditions and libration period predicted by the analytical sample solution periodic
after 16 revolutions. Black dots mark the end points of each trajectory.
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Figure 5: Errors between the epicyclic elements of the sample osculating periodic solution
after 16 revolutions and the numerically integrated orbit for the same initial conditions.
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Figure 6: Improved, periodic orbit of the Hill problem (dots) with the osculating the
analytical sample solution periodic after 16 revolutions superimposed (full, bright line).
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1:1 resonance 
 
In spite of low order resonances are excluded from the phase space encompassed by the 
perturbation solution, which implicitly assumes that Ω << ω, one can find the periodic analogs 
of 1:1 resonant orbits directly from secular predictions of orbits with negligible libration 
amplitude. 
 
For instance, the choice of the design parameter a = 10 is made as in the previous example, 
but now ymin = a. This new selection of the design parameters produces the values: M = 0, Ψ = 
12.5, Ω ≈ 0.049, and Θ′ = 0, after which the secular frequencies nθ = −0.0493, and nψ = 1.0056 
are computed from Eq. (20). The non commensurability of nθ, and nψ yields a ratio libration 
period orbit period R = 20.3916. But a slightly shorter semi-major axis of the reference ellipse 
is computed by successive iterations of the secant method making R = 20 (the closest integer 
to the value obtained from the initial design) in Eq. (25).  
 
Then, straightforward evaluation of Eqs. (18) and (19) with the new value of a will produce 
the desired secular, periodic DRO. This orbit is depicted in Fig. 5, where it is shown that the 
amplitude of the librational motion after the prefixed 20 orbital periods, ore the equivalent one 
libration period, is very small. 
 
 

 
 

Fig. 5: Periodic analytical solution with small amplitude libration after 20 revolutions. 
 
 
Due to the small amplitude of the libration, and to the strong stability character of 1:1 DROs, 
when differential corrections are applied to the approximate initial conditions of this orbit in 
Cartesian coordinates they will naturally converge to find a true periodic orbit after one, 
contrary to 20, orbital period. In fact, the differential corrections algorithm fails when trying 
to converge to the 1:20 resonant periodic orbit. 
 
 
 

5.2 1:1 resonance

In spite of low resonances are excluded from the phase space encompassed by the pertur-
bation solution, one can find their periodic analogs directly from secular predictions of
orbits with negligible libration amplitude.

For instance, the choice of the design parameter a = 10 is made as before, but now
ymin = a. The sequence in Section 3 now leads to the values: M = 03,  = 12.5, ⌦ ⇡

0.049, and ⇥0 = 0, after which the secular frequencies n✓ = �0.0493, and n = 1.0056 are
computed from Eq. (20). The non commensurability of n✓, and n yields a ratio libration
period orbit period R = 20.3916. But a slightly shorter semi-major axis of the reference
ellipse is computed by successive iterations of the secant method in Eq. (25) for R = 20.
After 5 iterations, the value  = 12.181831612973578, and hence a = 9.871912322533493
are obtained.

Repeating again the sequence in Section 3 for the new semi-major axis of the reference
ellipse gives⇥0 = 0.13678959600476874⇥10�3, the orbital period TO = 6.2471566024223275
and a libration period TL = 20TO. Straightforward evaluation of Eqs. (18) and (19) will
produce the desired secular, periodic DRO after one libration period, which is shown in
Fig. 7.
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Figure 7: Periodic analytical solution with small amplitude libration after 20 revolutions.

Due to the small amplitude of the libration, and to the strong stability character of
1:1 DROs, when di↵erential corrections are applied to the approximate initial conditions
of this orbit in Cartesian coordinates

x0 = 0.00427175, y0 = 9.87191, X0 = �4.93596, Y0 = �0.00213587,

they will naturally converge to find a true periodic orbit after one orbital period. In fact,
the di↵erential corrections algorithm fails when trying to converge to the 1:20 resonant
periodic orbit. The evolution of the center of the reference ellipse in epicyclic coordinates
is depicted in Fig. 8
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Conclusion 
 
The dynamics of a large class of distant retrograde orbits of the Hill problem is efficiently 
characterized by an analytical perturbation solution that provides the secular terms of the 
Hamiltonian flow. This analytical solution captures the bulk of the dynamics of common 
quasi-satellite orbits even in the case of orbits with large oscillations about the origin. Besides, 
the size of the orbit as well as the size of its oscillations are easily turned into mission design 
parameters in the secular variables space. Furthermore, periodic orbits are easily obtained by 
adding to the design parameters a commensurability condition. Since the analytical solution is 
only approximate, the obtained periodic orbits are only almost periodic in the original space. 
Still, these approximate orbits are amenable of improvement by usual differential corrections 
procedures to get true periodic distant retrograde orbits of the Hill problem. 
 
The Hill problem has been chosen as a demonstration problem for its simplicity and 
generality, but the same methods can be applied to more realistic dynamical models. 
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