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Abstract 

 

The purpose of this study is to establish the methodology to estimate the mass property 

accurately enough from cargo spacecraft dynamics data and improve the control performance. 

For the estimation, the most plausible mass property to explain the response relationship 

between the control and feedback of spacecraft dynamics is calculated by applying the 

regression method as one of the machine learning algorithms and collecting training data from 

the existing HTV operation and simulation. To utilize this method in the actual HTV-X 

operation, the following two results derived from machine learning must be acceptable for the 

operators: 1) the variation and amount of operation data for sufficiently accurate estimation, 

and 2) the integrity of regression coefficients against the actual spacecraft characteristics. By 

considering these two points, the feasibility of this mass property estimation method is 

discussed.   
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Introduction 

JAXA has successfully launched and operated HTV (H-II Transfer Vehicle)  which is 

rendezvous mission to the ISS six times by 2017. The mass property of the visiting vehicle such 

as the HTV is more easily changed than that of general spacecraft from the influence of 

propellant consumption, the cargo, and the refuse. Therefore, there is a demand to carefully 

place the cargo. A new-generation cargo vehicle called the HTV-X is now being developed [1]. 

The HTV-X has some noticeable characteristics compared with the current HTV. One of the 

major characteristics is the module composition concept. As shown in Fig. 1, the HTV-X 

consists of two modules—the Service Module and the Pressurized Module. Due to the reduced 

number of modules, the mass property of the HTV-X is influenced by external and internal 

changes more than the HTV. The mass property of the HTV is estimated prior to launch of the 

spacecraft. The mass property is updated during the operation using only the data estimated 

prior to launch. The mass property is not updated using data that can be obtained during the 

operation, such as telemetry data. However, the mass property calculated prior to launch is 

unreliable, particularly during the return operation due to the uncertainty regarding the 

placement of refuse. The calculated error results in wasted propellant consumption because of 

the control disturbance caused by the error. The National Aeronautics and Space Administration 

(NASA) has recently planned to hand over the ISS to a commercial organization in the mid-

2020’s. Should various commercial demands emerge for the transport of supplies to the ISS in 

the future, flexibility will become a vital factor in meeting such demands. And in a future lunar 

transfer vehicle extended from the HTV-X, a lunar probe could also be loaded as cargo. 

Therefore, in order to flexibly and efficiently operate the current ISS resupply mission by the  



NON-PEER REVIEW 

 

18th Australian Aerospace Congress, 24-28 February 2018, Melbourne 

 

 
Fig. 1:  Comparison between HTV and HTV-X 

 

HTV-X, as well as prepare for future diverse cargo demands, it is an essential functionality to 

adaptively estimate the mass property [2,3] and update the vehicle control algorithm based on 

the estimation. 

Approach 

 

Machine learning methods such as Deep Learning have achieved great results. However, in this 

research, we adopt a method of fitting the operational data of spacecraft to the equation of 

motion. More specifically, training data consisting of thruster ejection data and observation data 

of motion state change is fitted to the equation of motion, and the mass property and other 

aspects of the spacecraft are estimated as parameters. The reasons for using such a method are 

as follows: First, the spacecraft’s behavior as the subject of this research can be described by 

classical equations of motion except for the influence of disturbances; therefore, parameters can 

be estimated with high accuracy by fitting to that equation. When fitting to a complicated model 

such as Deep Learning, etc., over-learning occurs and there is a high possibility that the 

spacecraft’s actual behavior cannot be modeled appropriately, thereby affecting the reliability 

of the estimation result. Such methods as Deep Learning often use a model as a black box. 

However, as reliability is regarded as being important in the operation of spacecraft, it is 

currently difficult to use the value estimated from the black box. Conversely, in the case of 

recursive estimation based on the equation of motion, the model is a white box and can be easily 

verified by using the existing simulator. Therefore, we have an advantage in terms of reliability 

when using the estimation results of actual spacecraft operations. Finally, such application to 

various types of future spacecraft may be possible. The estimation of mass property is needed 

not only for the transfer vehicle for the ISS such as the HTV but also for the planetary probe to 

return large mass samples and for future transport vehicles that reciprocate between space 

stations and the ground while exchanging packages. While the system architecture of such 

spacecraft varies, this model is mainly occupied by general dynamics information, thus making 

it difficult to be affected by the architecture. Hence, it is a simple and versatile estimation model, 

and the expansion of future application is also expected. 

 

 

Modelling Problem as Regression Analysis 

 

In this study, the feasibility of mass property estimation based on regression analysis is 

demonstrated by using the actual HTV design and operation data. Because its regression 

equations are obvious and undoubtedly reliable, the analysis looks relatively simple. While this 

analysis is a case of classic simple machine learning, there are specific difficulties due to the 

spacecraft characteristics. Therefore, the challenge of this study is to apply the classic regression 

analysis approach for a specific spacecraft while maintaining the simplicity. The following 

subsections describe the analysis in detail. 
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HTV model 

 

Although the HTV has been already operated six times, the vehicle design largely remains 

unchanged. In particular, the thruster design is common to all six vehicles. The thruster 

subsystem is composed of two strings, with each string having 14 thrusters. Except for large 

burn maneuvers, all small and medium burn maneuvers and attitude controls are executed by 

this 14-thruster set. Each thruster has a different position and orientation at the body fixed 

coordination (BFC) to realize 6 DoF control. The following equations represent the position 

and orientation of the 14 thrusters. 

    pos⃗⃗ ⃗⃗ ⃗⃗  𝑛
𝐵𝐹𝐶 = [

𝑝𝑜𝑠_𝑥𝑛
𝐵𝐹𝐶

𝑝𝑜𝑠_𝑦𝑛
𝐵𝐹𝐶

𝑝𝑜𝑠_𝑧𝑛
𝐵𝐹𝐶

]                               (1) 

    ori⃗⃗⃗⃗  ⃗𝑛
𝐵𝐹𝐶 = [

𝑜𝑟𝑖_𝑥𝑛
𝐵𝐹𝐶

𝑜𝑟𝑖_𝑦𝑛
𝐵𝐹𝐶

𝑜𝑟𝑖_𝑧𝑛
𝐵𝐹𝐶

]                                (2) 

where pos⃗⃗ ⃗⃗ ⃗⃗  𝑛
𝐵𝐹𝐶 and ori⃗⃗⃗⃗  ⃗𝑛

𝐵𝐹𝐶  are the 3-dimensional vectors of nth thruster position and orientation 

at the BFC, respectively, and n is an integer to show the index of 14 thrusters (1 ≤ 𝑛 ≤ 14). 

In each control, the flight software automatically assigns a specific firing time duration called 

on-time to a specific thruster. Although the thrusting impulse is expected to be proportional to 

the on-time, the actual force deviates slightly from the expected force due to the condition of 

each thruster. The deviation is mainly governed by the interval time that indicates the elapsed 

time after the last firing. Therefore, the model used to estimate the firing force of a thruster with 

a given on-time and interval time can be defined. The model is generally called an impulse bit 

model. Once a constant thrusting force such as thrst = 120 [N] is given, the thrusting force of 

the nth thruster is estimated by the following equation: 

 

    frc =  thrst ×  𝐼𝐵(𝑜𝑛𝑇𝑛, 𝑖𝑛𝑡𝑟𝑣𝑙𝑇𝑛)                     (3) 

 

where frc is the force result by thruster firing, IB is the impulse bit model and 𝑜𝑛𝑇𝑛  and 

𝑖𝑛𝑡𝑟𝑣𝑙𝑇𝑛 are the on-time and interval time of the nth thruster, respectively. In this study, the 

impulse bit model was created based on the curve fitting of ground experiments. Therefore, it 

entails a substantial amount of uncertainty. 

As the translational force and rotational torque imposed by the sum of 14 thruster firings 

ultimately control the dynamics of the vehicle, the force (𝐹⃗⃗⃗⃗ 𝐵𝐹𝐶) and torque around the center 

of gravity (𝑇⃗⃗⃗⃗ 𝐶𝐺) are defined by Eqs. 4, 5, 6 and 7 as follows: 

 

𝐹 𝐵𝐹𝐶 = ∑ −frc(𝑜𝑛𝑇𝑛, 𝑖𝑛𝑡𝑟𝑣𝑙𝑇𝑛) ∙ ori⃗⃗⃗⃗  ⃗𝑛
𝐵𝐹𝐶14

𝑛=1                    (4) 

�⃗� 𝐶𝐺 = ∑ −frc(𝑜𝑛𝑇𝑛, 𝑖𝑛𝑡𝑟𝑣𝑙𝑇𝑛) pos⃗⃗ ⃗⃗ ⃗⃗  𝑛
𝐶𝐺  ×  𝑜𝑟𝑖⃗⃗ ⃗⃗  ⃗𝑛

𝐶𝐺14
𝑛=1               (5) 

    pos⃗⃗ ⃗⃗ ⃗⃗  𝑛
𝐶𝐺 = pos⃗⃗ ⃗⃗ ⃗⃗  𝑛

𝐵𝐹𝐶 − 𝑐𝑔⃗⃗⃗⃗ 𝐵𝐹𝐶                             (6) 

     ori⃗⃗⃗⃗  ⃗𝑛
𝐶𝐺 = ori⃗⃗⃗⃗  ⃗𝑛

𝐵𝐹𝐶                                (7) 

where Eqs. 4 and 5 are derived from the Newton’s equation and Euler’s equation, and pos⃗⃗ ⃗⃗ ⃗⃗  𝑛
𝐶𝐺 

indicates the thruster position at the Center of Gravity coordination (CG) that moves along 

𝑐𝑔⃗⃗⃗⃗ 𝐵𝐹𝐶 = [𝑐𝑔𝑥
𝐵𝐹𝐶 , 𝑐𝑔𝑦

𝐵𝐹𝐶 , 𝑐𝑔𝑧
𝐵𝐹𝐶], the center of gravity position vector at the BFC, while keeping 

parallel to the BFC. Because the CG is parallel to the BFC, as shown in Eq. 7, the thruster 

orientation vector is exactly the same at both CG and BFC. 

 

Learning Data 

 

The actual HTV is equipped with several dynamics sensors: the gyro sensor, Earth Sensor 

Assembly (ESA), GPS, and an accelerometer. Obviously, the accelerometer data can be directly 
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compared with the calculation result of Newton’s equation. To use Euler’s equation as a 

regression equation, angular acceleration data is essential. However, the HTV does not directly 

measure the angular acceleration, which in this study is calculated from the time variation of 

the angular velocity measured by the gyro sensor. 

Unfortunately, there is currently no sensor to count the actual on-time and interval time, but the 

on-time and interval time set by the software are downloaded to the ground from the vehicle as 

telemetry data. Then this data is applied to estimate the translational force and torque based on 

Eqs. 4 and 5. 

One of the difficulties in this parameter estimation is that the mass property chronologically 

changes due to propellant consumption. Although this chronological property change also might 

be modelled, it will surely increase the uncertainty about the estimation and adversely affect 

accuracy. In case the time span is sufficiently short without any large burn thrusting during the 

span, the mass property could be assumed using constant parameters. Therefore, this study 

basically utilized a relatively small amount of data acquired from attitude control without any 

large burn maneuver. 

 

Regression Analysis 

 

In this regression analysis, the objective variables (y) are the acceleration vector  (d𝑣 ) and 

angular acceleration vector (d�⃗⃗� ). The learning data gives the two measured objective vectors: 

d𝑣 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 and d�⃗⃗� 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑. Both vectors are also estimated based on the Newton’s equation 

and Euler’s equation with the measured on-time and interval time. Therefore, the following 

equations can be defined as the problem formulation of this regression analysis. 

 

minL(y𝑚𝑠𝑟𝑑 , y𝑒𝑠𝑡𝑚𝑡𝑑  ) = |d𝑣 𝑚𝑠𝑟𝑑 − d𝑣 𝑒𝑠𝑡𝑚𝑡𝑑| + |d�⃗⃗� 𝑚𝑠𝑟𝑑 − d�⃗⃗� 𝑒𝑠𝑡𝑚𝑡𝑑|          (8) 

  d𝑣 𝑒𝑠𝑡𝑚𝑡𝑑 = dt ∙ 𝐹 𝐵𝐹𝐶(𝑜𝑛𝑇𝑛
𝑚𝑠𝑟𝑑 , 𝑖𝑛𝑡𝑟𝑣𝑙𝑇𝑛

𝑚𝑠𝑟𝑑) 𝑀⁄               (9) 

              d�⃗⃗� 𝑒𝑠𝑡𝑚𝑡𝑑 = dt ∙  �⃗� 𝐶𝐺(𝑜𝑛𝑇𝑛
𝑚𝑠𝑟𝑑 , 𝑖𝑛𝑡𝑟𝑣𝑙𝑇𝑛

𝑚𝑠𝑟𝑑) 𝐼𝐶𝐺⁄              (10) 

 

where dt is the sampling time of the data, 𝑀 is the vehicle mass, and 𝐼𝐶𝐺  is the moment of inertia 

around the center of gravity. Obviously, the explanatory variables are the measured on-time 

(𝑜𝑛𝑇𝑛
𝑚𝑠𝑟𝑑 ) and measured interval time (𝑖𝑛𝑡𝑟𝑣𝑙𝑇𝑛

𝑚𝑠𝑟𝑑 ) in this regression analysis. Several 

regression parameters are generally optimized to minimize a loss function as in Eq. 8. 

 

Optimization Algorithm 

 

As defined in Eq. 8, a mathematical minimization process is essential to solve this problem. 

Although there are various optimization approaches, a simple global optimization method is 

applied here. To eliminate the initial value dependency and avoid a local minimum, the 

minimization process starts from optimization based on a heuristic algorithm—the Genetic 

Algorithm (GA). After the GA finds an optimum parameter set as the result of a random and 

wide search, the parameters are used as initial values for a gradient-based algorithm 

optimization known as Sequential Quadratic Programming (SQP). While the SQP result 

depends on the initial values, it can also return a well minimized result by using the derivatives. 

This combination is expected to lead a global optimum parameter set. 

 

Result 

 

In order to use this parameter estimation in actual HTV or HTV-X operations, its reliability 

must be verified in advance. Thus, first of all, the performance of the estimation method is 

checked against the simulation data. The advantage of using simulation data is cheating the 

right parameters, which means that reliability can be discussed by directly comparing the 

estimated parameters and the right parameters. On the other hand, the obvious disadvantage is 
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not using the actual data. In the actual operation data, various and unexpected noises are 

imposed because of internal and external uncertainty; moreover, the data rate is also not constant 

due to the limitations of space communication. Of course, the noises can be simulated even in 

the simulation data. However, the simulated noises are generated by some models, which are 

different from reality to some extent. Therefore, it is also essential to check whether the method 

works properly with the actual data. 

In this study, feasibility is discussed by combining the estimation based on simulation data and 

that based on HTV-6 operation data. In the estimation, the range of each parameter is 

normalized. The range is set to the true value of each parameter ±5 𝑐𝑚, which is normalized 

±0.9 when the true value of each parameter is set to 0, therefore the estimation result is non-

dimensional. 

 

Estimation Based on Simulation Data 

 

As the estimation only uses dynamics data, a simple 6 DoF simulator was created by 

MATLAB/Simulink. Although the actual flight software is not applied, the control algorithm 

of the simulator is almost equivalent. To effectively utilize the simulator, the following three 

features should be implemented: 1) mass property parameter setting variation, 2) random noise 

generation, and 3) maneuver setting variation. To show the robustness of the estimation 

algorithm, the algorithm should be capable of estimating various mass property parameters; 

therefore, the mass property parameters should be flexibly changed on the simulator. While 

various noises are imposed on the dynamics as discussed above, some noises can be estimated. 

For example, the position and orientation of a thruster may slightly deviate from the design. 

This deviation range is determined by the HTV contractor’s manufacturing capability, and the 

distribution is expected to be the standard deviation distribution. Likewise, each sensor and the 

thruster also have a constant bias and random noise that can be calculated based on engineering 

data. These noises are also implemented in the simulator and randomly changed at each run. 

Figs. 2 and 3 show the GNC simulation model and an example of sensor data from simulation, 

respectively. Table 1 shows the estimation results using the simulation data.  

 
Fig. 2. HTV GNC Simulink model  

 

  
Fig. 3: acceleration data by simulation Fig. 4: angular velocity data  by simulation 
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Table. 1. Estimation results using simulation data  
x y z 

true value 0 0 0 

estimated value 0.000494 -0.00019 -0.01267 

 

Estimation Based on HTV-6 Operation Data 

 

Estimation is conducted using HTV-6 operation data as well as simulation data. The data for 

estimation is selected from the perspective of conducting translation maneuver using the 

selected data on which the maneuver is fired by RCS and not the main engine. Table 2 shows 

the estimation results using operation data. The center of gravity value analysed prior to launch 

is set to the true value. Compared to using simulation data, there are two issues to discuss. One 

is the estimation result in the x direction. The second is the accuracy of estimation. The x 

direction cannot be estimated using operation data, as the operation data is not considered 

suitable for estimation of the x direction since this data is for the x direction maneuver. The  

Table. 2. Estimation results using operation data  
x y z 

true value 0 0 0 

estimated value -0.9 -0.1014 0.118162 

 

estimation accuracy is thus reduced compared to using simulation data. This is because the 

simulation data is very ideal and the operation data has noise that is not considered during the 

simulation. Therefore, the accuracy is reduced. 

 

 

Conclusion 

 

In this study, the methodology to estimate the mass property with sufficient accuracy from cargo 

spacecraft dynamics data and improve the control performance was established.  

For the estimation, the most plausible mass property to explain the response relationship 

between the control and feedback of spacecraft dynamics is calculated by applying the 

regression method as one of the machine learning algorithms and collecting training data from 

the existing HTV operation and simulation. To utilize this method in the actual HTV-X 

operation, the following two results derived from machine learning must be acceptable for the 

operators: 1) the variation and amount of operation data for sufficiently accurate estimation, 

and 2) the integrity of regression coefficients against the actual spacecraft characteristics. By 

considering these two points, the feasibility of this mass property estimation method is 

discussed. The issues are also discussed using operation data. For future work, the types of 

operation data needed to estimate all directions must be discussed. Moreover, the algorithm 

must be improved to increase the accuracy of estimation. 
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