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Abstract 

 
Space object tracking and surveillance has become an imperative task as the near-Earth space 
environment has been contaminated and crowded by these objects and their number is still 
increasing fast due to new launches and break-up/collision events. However, the imperfect 
orbit dynamics makes this task very challenging. In order to improve the tracking 
performance for multiple space objects, this paper proposes a consider probability hypothesis 
density (PHD) filter. In comparison with the conventional PHD filter, this new filter 
additionally considers an uncertain parameter (i.e., the area-to-mass ratio (AMR)) involved in 
the orbit dynamics model that leads to inaccurate orbit prediction, and deteriorated tracking 
and state estimation performances for these objects subsequently. More specifically, the 
covariance associated with such parameters has been considered via the formulation of 
Gaussian mixture consider unscented Kalman filtering, based on which the consider PHD 
filter is implemented. Numerical simulation results indicate the consider PHD filter is more 
advantageous than a traditional PHD filter that estimates the uncertain model parameters 
together with other state variables.  
 
 
Keywords: space tracking, probability hypothesis density filter, consider parameter, area-to-
mass ratio  
 

Introduction 
 
Space technology has been beneficial to human beings in many areas since the space era 
began in the 1950s. Many daily-life services rely on satellites that are orbiting the Earth. 
However, as the population of residential space objects (RSOs) increases, the near-Earth 
space becomes congested. It has been reported by the National Aeronautics and Space 
Administration (America's space agency) that there are more than 5,000,000 pieces of space 
debris in the near-Earth orbit and this number is still increasing fast, through collisions and 
further launching of satellites.  Among them, over 20,000 space objects have size larger than 
10 centimetres [1]. Most of these objects are nonoperational and uncontrolled, and flying at 
great speeds, hence pose severe threats to operational satellites. In order to avoid collisions 
between any space objects, the acquisition of accurate and reliable state information of these 
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threatening objects is necessary, which is the fundamental task that multiple object tracking 
(MOT) has to solve.  
 
The main objectives of MOT are to detect space objects, maintain their identities, and predict 
their individual trajectories given applicable observations (e.g., angles, ranges, etc). Classical 
MOT approaches, e.g., multiple hypotheses tracking (MHT) [2] and joint probabilistic data 
association (JPDA) [3], generally simplify the MOT problem as multiple single-object 
tracking problems by way of data associations. A relatively new approach to MOT leverages 
the theory of random finite sets (RFSs) to represent multi-object states. Unlike MHT and 
JPDA, RFS filtering realises Bayes' recursion for multi-object densities through time, and no 
extra data association process is needed [4]. Although the Bayesian multi-object filter is 
theoretically optimal, it is intractable for most practical applications. Hence, many 
approximations have been proposed to circumvent the intractability, which can be categorised 
into two groups, the moment approximation filters and the multi-Bernoulli approximation 
filters. The former group predict and update only the low-order moment of the multi-object 
density instead of the full distribution, e.g., the first-order moment, resulting in the probability 
hypothesis density (PHD) filter [5] and cardinalized PHD filter [6]. The second group 
approximate the multi-object density by the multi-Bernoulli function, resulting in multi-
Bernoulli filters [4] and -generalized labeled multi-Bernoulli filters [7]. 
 
A prominent challenge arising in space object tracking is uncertainty in the equations of 
motion resulting from perturbing forces. For example, uncertainties associated with the 
physical parameters of such an object lead to more difficulties in state estimation. In addition, 
less accurate state estimation results in uncertain environmental effects on the object, causing 
poor parameter identification and vice versa.  
 
In order to improve the tracking performance for single and multiple space objects, McCabe 
and DeMars derived a Gaussian mixture (GM) consider PHD filter based on the linear 
Bayesian formulations [8]. This work develops the consider scheme in the framework of GM 
unscented Kalman filtering and applies it to the space tracking problem. In comparison with 
the conventional PHD filter, this new filter additionally considers an extra uncertain 
parameter, i.e., the area-to-mass ratio (AMR) involved in the orbit dynamics models that leads 
to inaccurate orbit prediction, and deteriorated tracking and state estimation performances for 
these objects subsequently. More specifically, the covariance associated with such a parameter 
has been considered via the formulation of Gaussian mixture consider unscented Kalman 
filtering, based on which the consider PHD filter is implemented.  
 
The rest of the paper is organised as follows: Section 2 revisits the Bayesian multi-object 
filtering theory in a concise way, followed by the general formulation of the PHD filter given 
in Section 3. Section 4 revisits the consider Kalman filter and Section 5 introduces the 
Gaussian mixture implementation for PHD recursion and the consider Kalman filter scheme is 
used in the measurement update step to consider the parametric uncertainty. Three numerical 
tests for the space tracking application, a simple one and two more realistic ones, have been 
used to demonstrate the efficacy of the consider PHD filter. The results indicate the consider 
PHD filter can achieve better state estimation accuracy than a traditional PHD filter that 
estimates the uncertain model parameters together with other state variables. Finally, some 
concluding remarks are given.   
 

Bayesian Multi-Object Filtering  
 
In the formulation of RFSs, the system equations for a multi-object system can be expressed 
as  
   (1) 

δ

Xk = x k ,1,…,x k ,N (k ){ },
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   (2) 

 
At the time epoch , there are  objects , respectively taking values from 

an unlabelled state space , and  measurements  , respectively taking 
values from an observation space . 
 
Chapman-Kolmogorov Equation  
 
Suppose that the multi-object density is denoted as  at the current time epoch, then 
the Chapman-Kolmogorov equation is used to propagate it to the next time epoch:  
   (3) 

where  denotes the superposition of surviving, spawn and new born objects, and the 
integral is a set integral defined for any multi-object transition kernel function  
by: 

   (4) 

 
Bayesian Inference 
 
Given the measurement history  up to the time epoch , the multi-object posterior density 

  can be calculated via the Bayesian inference: 

   (5) 

where  denotes the multi-object likelihood function and the multiple-target measurement 
 is given by [5]: 

  (6) 

The measurement model in Eq.(6) considers detection uncertainty and false alarm (clutter 
measurement). A given object  is either detected with probability  or missed with 
probability  . If detected, the probability density of receiving an observation  
from  is  . Then an RFS  is used to express the detection uncertainty, i.e., it 
takes on  if detected or  if missed. The clutter measurement is problem independent, 
which is elaborated in the subsection of Clutter Model. 
Eqs (3) and (5) are required to be calculated recursively in the filtering process. However, 
they are generally computationally intractable for practical applications. Many approximation 
approaches have been proposed to obtain tractable solutions for Bayesian multi-object 
filtering, one of which is the PHD filter. 
 

Probability Hypothesis Density Filter  
 
Instead of propagating the entire multi-object posterior probability density, the PHD filter 
propagates only the first order moment, or intensity. The PHD recursion is given as below 
[5]: 
   (7) 

Zk = zk ,1,…, zk ,M (k ){ }.
k N (k) x k ,1,…,x k ,N (k )

X M k( ) zk ,1,…, zk ,M (k )
!

π (X | Z )

π k|k−1(Xk | Z1:k−1) = fk|k−1∫ (Xk | X)π k−1(X | Z1:k−1)δX,

Xk

f :F (X)→ !

f∫ (X)δX = 1
i!i=0

∞

∑ f∫ ({x1,!,x i})d(x1,!,x i ).

Z1:k k
π k

π k (X | Z ) =
gk (Zk | Xk )π k|k−1(Xk | Z1:k−1)

gk∫ (Zk | X)π k|k−1(X | Z1:k−1)δX
,

gk
Zk

( ) .
k

k k kx X
Z C xy

Î

é ù= È Èê úë û

xk ∈Xk pD
1− pD zk ∈!

xk gk (zk | xk ) ψ k

zk ∅ kC

vk|k−1(xA) = pS ,k∫ (ξ ) fk|k−1(xA |ξ )vk−1(ξ )dξ + βk|k−1∫ (xA |ξ )vk−1(ξ )dξ + vB,k (xA),
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   (8) 

where  and  indicate the intensities associated with the multi-object posterior density 

 and the multi-object predicted density ;  is the surviving probability of an 

object that exists at time  given that its previous state is ;  is the intensity of the 

RFS spawned by an object with previous state ;  is the intensity of the birth 

PHD ;  is the probability of detection given a state ; is the intensity of 

clutter PHD .  
Via Eqns. (7)-(8), PHD filters reduce the integration to the single-object state space  
instead of the multi-object state space  . They provide multi-object state estimates and 
the total number of objects; however, they do not retain object identity information. Panta et 
al proposed a relatively simple and effective modification of the PHD recursion to identify the 
object with a separate track table [9]. The object identity is ignored in this work. The total 
mass  gives the expected number of objects.  To further simplify the integrals in 
Eqns. (7)-(8), Vo et al. proposed a Gaussian mixture to approximate the PHD [5], this leads to 
the formulation of GM PHD introduced in the next section. 
 
Birth Model 
 
In the space tracking mission, when a new-birth object without prior information is coming 
into the sensor, an initial orbit determination (IOD) process is needed. Classical IOD solutions 
require several measurements to determine a six-dimensional orbit. Instead, birth models 
using the constrained admissible region (CAR) and the probabilistic admissible region (PAR) 
[10, 11] have been developed for space object tracking. Recently authors also proposed a 
BVP (boundary value problem) approach and applied it to the labeled multi-Bernoulli filter 
[12]. This study only uses CAR for IOD of new objects.  
 
Clutter Model 
 
For space tracking applications, the clutter is modelled as a Poisson RFS  with the intensity 
uniformly distributed in the field of view (FOV) of the sensor (e.g., telescope camera) [13]: 
   (9) 

    (10) 

where  is the mean return rate of the measurement clutter, and   is the sensor volume. 
 

Consider Unscented Kalman Filtering 
 

Given the systematic equations for a single object in Eqns. (1)-(2): 

   (11) 

where  consists of both state variables and parameters, and the subscript  
indicates the time index. Additive process noise  and measurement noise  are considered. 
Specifically, these distributions are assumed to be Gaussian. Frequently, state estimation of 
the system in Eqn (11) depends on parameters whose values are only known imprecisely. In 

vk (xA) = [1− pD ,k (xA)]vk|k−1(xA)+
pD ,k (xA)gk (z | xA)vk|k−1(xA)

κ k (z)+ pD ,k∫ (ξ )gk (z |ξ )vk|k−1(ξ )dξz∈Zk

∑ ,

vk vk|k−1
π k π k|k−1 pS ,k ξ( )

k ξ βk|k−1 ⋅ |ξ( )
Bk|k−1 ξ vB,k ⋅( )
Γ k pD ,k x( ) x κ k ⋅( )

kC
X

F (X)

N̂ = v∫ (x)dx

kC

κ (z) = λc ⋅U (z),

U (z) =
1/Vs , if z ∈FOV;

0, if z ∉FOV,

⎧
⎨
⎪

⎩⎪
λc Vs

xA,k = f (xA,k−1)+ wk , wk ~ N (xA;0,Qk )

zk = g(xA,k )+ vk , vk ~ N (z;0,Rk )

xA = x,c( )! k
w v
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some cases, these uncertain parameters can be estimated together with state variables. 
Unfortunately, these parameters may not all be observable, so the resulting estimates may be 
deteriorated to some extent. For these reasons, Schmidt proposed an approach to account for 
the uncertainties associated with these nuisance parameters by including the propagation and 
update of their covariance into the conventional Kaman filter, which is the basic concept of 
the so-called Schmidt-Kalman filter or consider Kalman filter (CKF). The CKF is derived by 
first applying the Kalman filter scheme to the augmented system  [14]. The consider 
unscented Kalman filter (CUKF) algorithm is summarized as below. Different from Ref. [15], 
a formulation of unscaled CUKF used in [16] is given here. 
 
Time Update 
 
   (12) 

   (13) 

   (14) 

   (15) 

   (16) 

 
Measurement Update 
   (17) 

   (18) 

  (19) 

 

   (20) 

   (21) 

   (22) 
 

xA

Pk−1
+ = Sk−1Sk−1

T ,

Sk−1 = s1,k−1!sn,k−1
⎡
⎣⎢

⎤
⎦⎥
,

Xl ,k−1 =  
xA,k−1
+ + nsl ,k−1, l = 1,…,n;

xA,k−1
+ − nsl−n,k−1, l = n+1,…,2n;

⎧
⎨
⎪

⎩⎪

Xl ,k = f (Xl ,k−1) ∀ l ∈{1,…,2n},

mk /k−1 =
1
2nl=1

2n

∑ Xl ,k ,

Pk /k−1
− = 1

2nl=1

2n

∑ (Xl ,k −mk /k−1)(Xl ,k −mk /k−1)
T +Qk−1.

Zl ,k = g(Xl ,k ) ∀ l ∈{1,…,2n},

m(z) = 1
2nl=1

2n

∑ Zl ,k ,

Pzz ,k =
1
2nl=1

2n

∑ (Zl ,k −m(z))(Zl ,k −m(z))
⊤ + Rk ,

Pxz ,k =
1
2nl=1

2n

∑ (Xl ,k −mk /k−1)(Yl ,k −m(z))
⊤ ,

Kk = Pxz ,k (Pzz ,k )
−1 =

Kx ,k
Kc,k

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
,

( ) 1 ,
, , ,

0
x k

k xz k zz k

K
K P P

- é ù
= = ê ú

ë û
mx ,k|k = mx ,k|k−1 + Kx ,k (zk −m(z)),

mc,k|k = mc,k|k−1,

Px ,k|k = Px ,k|k−1 − Kx ,k Pzz ,k Kx ,k
⊤ ,

Pxc,k|k = Pxc,k|k−1 − Kx ,k Pzz ,k Kc,k
⊤ = Pcx ,k|k

⊤ ,

Pc,k|k = Pc,k|k−1.
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The Gaussian Mixture PHD Recursion 

 
The posterior intensity   at time  and its prediction to time   are both given as 
forms of Gaussian mixture: 

   (23) 

   (24) 

where  

   (25) 

with 

   (26) 

and  and  are numbers of Gaussian mixture components.  is an augmented vector, 
in which  denotes the orbital state vector and  indicates the consider orbital parameter 
vector. It is assumed hereafter that the probability of detection is state-independent, and the 
clutter intensity is uniform distributed over the tracking region, i.e.,  
   
 
Time update  
 
Without considering the object spawning, the predicted intensity for time  is also a Gaussian 
mixture given by: 
   (27) 

   (28) 

   (29) 

   (30) 

   (31) 

 
Measurement Update 
 
Substituting the predicted PHD in Eqn 12 into the second item of the numerator of Eqn 8 
yields: 

   (32) 

 
Similarly, the denominator of Eqn 8 can be written as:  

vk−1(x) k −1 k

vk|k−1(xA) = ω k|k−1
( i)

i=1

Jk|k−1

∑ p
N
(xA;mk|k−1( i) ,Pk|k−1

( i) ),

vk−1(xA) = ω k−1
( i)

i=1

Jk−1

∑ p
N
(xA;mk−1( i) ,Pk−1( i) ),

p
N
(xA;m,P) =[det(2πP)]−1/2exp[−

1
2
(xA −m)

⊤P−1(xA −m)],

m = x
c

⎡

⎣
⎢

⎤

⎦
⎥ , P =

Px Pxc
Pcx Pc

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,

Jk−1 Jk|k−1 xA
x c

pD ,k (x) ≡ pD ,k , κ k
( i) ≡κ k .

k

vk|k−1(xA) = vS ,k|k−1(xA)+ vB,k (xA),

vB,k (xA) = ω B,k
( i)

i=1

JB ,k

∑ p
N
(xA;mB,k( i) ,PB,k( i) ),

vS ,k|k−1(x) = pS ,k ω k−1
( i)

i=1

Jk−1

∑ p
N
(xA;mS ,k|k−1( i) ,PS ,k|k−1

( i) ),

mS ,k|k−1
( i) = ω

X
j=0

2n

∑ ( j) f (Xk−1( i) ( j)),

PS ,k|k−1
( i) = wP

j=0

2n

∑ ( j)( f (Xk−1( i) ( j))−mS ,k|k−1( i) )( f (Xk−1( i) ( j))−mS ,k|k−1( i) )⊤ +Qk−1.

pD ,k ω k|k−1
( i)

i=1

Jk|k−1

∑ p
N
(z;h(xA),R)pN (xA;mk|k−1( i) ,Pk|k−1

( i) )

= pD ,k ω k|k−1
( i)

i=1

Jk|k−1

∑ p
N
(z;z ( i) ,Pzz( i))pN (xA;mk|k( i) (z),Pk|k( i)).
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 . (33) 

The posterior intensity at time  is a Gaussian mixture given by: 
 , (34) 

where 

   (35) 

 
 are calculated using sigma points  : 

   (36) 

 
Multi-Object State Extraction 
 
The object states are extracted with weights larger than a given threshold (e.g., 0.5 [5]): 
 .  (37) 
The multi-object state is given by: 
 
 . (38) 
 
 
 

κ k (z)+ pD ,k ω k|k−1
( i)

i=1

Jk|k−1

∑ p
N
(z;z ( i) ,Pzz( i))

k
vk (xA) = [1− pD ,k (xA)]vk|k−1(xA)+ vD ,k

z∈Zk

∑ (xA, z)

vD ,k (xA, z) = ω k
( i)

i=1

Jk|k−1

∑ (z)p
N
(xA;mk|k( i) (z),Pk|k( i)),

ω k
( i) (z) =

pD ,kω k|k−1
( i) qk

( i) (z)

κ k + pD ,k ω k|k−1
(ℓ)

ℓ

Jk|k−1

∑ qk
(ℓ) (z)

,

qk
( i) (z) = p

N
(z;zk( i) ,Pzz ,k( i) ).

zk
( i) ,Pzz ,k

( i) Xk
( i) ( j)

zk
( i) = ω

X
j=0

2n

∑ ( j)h(Xk( i) ( j)),

Pzz ,k
( i) = wP

j=0

2n

∑ ( j)(h(Xk( i) ( j))− zk( i))(h(Xk( i) ( j))− zk( i))⊤ + Rk ,

Pxz ,k
( i) = wP

i=0

2n

∑ ( j)(Xk( i) ( j)−mS ,k|k−1( i) )(h(Xk( i) ( j))− zk( i))⊤ ,

Kk
( i) = Pxz ,k

( i) (Pzz ,k( i) )−1 =
Kx ,k
( i)

Kc,k
( i)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥ =

Kx ,k
( i)

0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,

mx ,k|k
( i) = mx ,k|k−1

( i) + Kx ,k
( i) (z − zk

( i) ),

mc,k|k
( i) = mc,k|k−1

( i) ,

Px ,k|k
( i) = Px ,k|k−1

( i) − Kx ,k
( i)Pzz ,k

( i) (Kx ,k( i) )⊤ ,
Pxc,k|k
( i) = Pxc,k|k−1

( i) − Kx ,k
( i)Pzz ,k

( i) ,

Kc,k
⊤ = (Pcx ,k|k( i) )⊤Pc,k|k( i) = Pc,k|k−1

( i) ,

Pk|k
( i) =

Px ,k|k
( i) Pxc,k|k

( i)

Pcx ,k|k
( i) Pc,k|k

( i)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.

N̂k ={Nk
i :ω k

i > 0.5}

Xk|k ={xk|k
i :Nk

i ∈N̂ j , j = 1,…,k}
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Numerical Simulations 
 
To compare the consider PHD filter and PHD filter in the MOT application, two numerical 
examples are tested in this paper: a simple scenario of two space objects and two more 
realistic scenarios of tracking threeobjects. In the first scenario, no miss-detected, spawn, birth 
and death objects are considered. The measurement is free of clutter. Two space objects 
(Object 1 and 2) are tracked from the beginning to the end. The second scenario considers all 
the above models except target spawning. One more target (Object 3) is considered as a birth 
from the 5th epoch and one target (Object 2) disappears from the 21th epoch. Similar with the 
second scenario, the third one considers three space objects (Object 1, 4, 5) in the MOT 
scenario, with the third one as birth. All the objects are generated by adding noise of [100m, 
1e-6, 1e-6 rad, 1e-6 rad, 1e-6 rad, 1e-6 rad] (standard deviation) to the first set of Keplerian 
elements in order to test the filters for closely located space objects. The initial Keplerian 
elements are given in Table 1. Initial state and parameter values for filters are randomly 
generated with standard deviations given in Table 2. A single ground station is used for 
simulating the optical observations with the Earth centred Earth fixed (ECEF) coordinates 
given in Table 3. Force models and parameters for space objects are summarised in Table 4. 
Table 5 gives the process noise added for the position, velocity and the parameter of AMR. 
AMR is accounted for in addition to orbital state in the consider PHD filter. Standard 
deviations for angular and angular-rate measurements are given in Table 6. To compare the 
PHD filters, a consistent metric, i.e., optimal sub-pattern assignment (OSPA), is used for 
performance evaluation [17]. All OSPA calculations in this paper are parameterised by a -
norm of 2, cutoff values of 50 km for position and 10 m/s for velocity respectively. 
 

Table 1:  GEO objects initial Keplerian elements [18] 
 

 
 

Table 2:  Initial state standard deviations 
 

 
 

Table 3: Ground station ECEF coordinate (Socorro, NM, US)  
 

 
 
 
 
 
 
 
 
 

p
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Table 4:  GEO objects force models and parameters 

 

 
 

Table 5:  Process noise standard deviations 
 

 
 

Table 6:  Measurement standard deviations 

 
 

Table 7:  OSPA errors regarding different quantile values at the final epoch in Test 1 (10 
MCs) 

 
 
Test 1 
 
First a simple scenario is tested. Angles and angular rate measurements are generated for two 
geostationary objects (Object 1 and Object 2) in 10 Monte Carlo simulations (MCs). They are 
assumed to be in the FOV of the telescope camera for one night. 15 measurements are 
randomly collected within a time duration of four hours. The detection probability is given as 
1, which means no miss detections. No clutter measurements are considered. The OSPA 
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distances for position and velocity and the estimated cardinality using the PHD filter and 
consider PHD filter are given in Fig. 1 and Fig. 2, respectively. Different curve patterns 
indicate different quantile values. For both filters, the  quantile curves have the largest 
OSPA error.  
 
It is indicated from two figures that both filters converge as OSPA errors for position and 
velocity reduce along with the time. The cardinality of each filter stays at two through the 
simulation time. The consider PHD filter achieves faster convergence than the PHD filter as 
shown in the OSPA curves at approximately the 5  epoch. Position and velocity OSPA errors 
regarding different quantile values for the last epoch are shown in Table 6. The consider PHD 
filter does not outperform the PHD filter for each of these metrics.  
 

 
 

Fig. 1:  OSPA distances and estimated cardinality using the PHD filter in Test 1 (10 MCs) 
 

Test 2 
 
In this test, 100 MCs are executed in a tracking window of two nights with a total of 30 
measurements randomly generated. Both object birth and death are considered for a more 
realistic scenario. Object 3 is modelled as birth from the 5  epoch and its Keplerian elements 
are Object 2 dies at the 21  epoch. The detection probability is given as 0.99. The FOV of 
the camera is set as [−1.2 , 1.2 ] for right ascension and [−2.4 , 2.4 ] for declination. The 
Poisson average rate of the uniform clutter is given as 1 per scan. Fig. 3 and Fig. 4 depict the 
OSPA distances for position and velocity and the estimated cardinality using the PHD filter 
and the consider PHD filter, respectively. Different curve patterns indicate different quantile 
values.  
 
Position and velocity OSPA errors regarding different quantile values for the last epoch are 
shown in Table 8. The consider PHD filter outperforms the PHD filter in terms of position 
OSPA errors regarding all quantile values except for the 25% quantile value. Regarding the 
velocity OSPA error of the last epoch, the consider PHD filter outperforms the PHD filter. 
Table 9 gives the statistical OSPA errors for two filters in 100 MCs. It is shown that the 
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consider PHD filter has slightly smaller errors than the PHD filter for both position and 
velocity in terms of mean, standard deviation and root mean square. The OSPA distances and 
estimated cardinality using two filters are given in Figs. 3 and 4. After one night, both filters 
tend to converge so the OSPA errors decrease. It is clearly both two filters suffer from the 
cardinality estimation biases for the first night but can track the survival space objects at the 
last stage. The consider PHD filter has less cardinality estimation error jumps than the PHD 
filter. That is why the consider PHD filter yields better accuracy in terms of statistical values 
shown in Table 9.  
 

 
 
Fig. 2:  Consider OSPA distances and estimated cardinality using the Consider PHD filter in 

Test 1 (10 MCs) 
 

Table 8:  OSPA errors regarding different quantile values at the final epoch in Test 2 (100 
MCs) 

 
 

Table 9:  Statistical OSPA errors for 100 MCs in Test 2 
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Fig. 3:  OSPA distances and estimated cardinality using the PHD filter in Test 2 (100 MCs) 

 
Test 3 
 
Based on the settings in Test 2, this test further considers closely orbiting space objects. A 
lower detection probability of 0.95 is used for testing different filters. In Fig. 5, the left 
subfigure depicts the angular measurements, i.e., right ascension and declination, generated 
for three space objects, and the right subfigure depicts angle difference of Object 4 and 5 with 
respect to Object 1. Note that to generate these plots, no clutter measurements are considered, 
and the probability of detection is given very closely to 1. But the test scenario considers the 
clutter return and a detection probability of 0.95. Obviously, all three space objects can be 
captured by the FOV of the telescope camera.  
 
100 MCs are executed. The OSPA errors regarding different quantile values at the final epoch 
are compared in Table 9 for two filters. The consider PHD filter only generates smaller 
position OSPA errors in terms of the 95% quantile value in compared to the PHD filter. 
OSPA distances and estimated cardinality using two filters are plotted in Fig. 7 and 8, 
respectively. It is shown that the 5% quantile cardinality estimation via two filters are both 
suffering one space object loss compared to the truth. There is much chance that the close 
distances among three space objects lead to the cardinality estimation biases, and these biases 
result in larger OSPA errors of 50%, 75% and 95% quantile than 5% quantile for two PHD 
filters. The 5% quantile OSPA position and velocity errors have spikes via the PHD filter 
while those error are more stable via the consider PHD filter at the final stage of the 
simulation. The statistical OSPA errors by the consider PHD filter are smaller than the PHD 
filter for the standard deviation and root mean square of both position and velocity results, 
which is shown in Table 10.  
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Fig. 4:  OSPA distances and estimated cardinality using the Consider PHD filter in Test 2 

(100 MCs) 
 

 
Fig. 5: Angular measurements and angle difference for all Object Tracks 

 
Table 9:  OSPA errors regarding different quantile values at the final epoch in Test 3 (100 

MCs) 
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Table 10:  Statistical OSPA errors for 100 MCs in Test 3 

 

 
Fig. 7: OSPA distances and estimated cardinality using the PHD filter in Test 3 (100 MCs)   

 
Fig. 8: OSPA distances and estimated cardinality using the Consider PHD filter in Test 3 

(100 MCs)   
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Conclusions 

 
This paper presents a consider probability hypothesis density filter for multi-object tracking as 
applied to the specific space tracking problem. With the help of the consider filter scheme, the 
uncertainty associated with the area-to-mass ratio can be taken into consideration. Hence, an 
improved multi-object tracking performance in terms of statistical OSPA errors is achieved 
by the consider PHD filter in comparison to the conventional PHD filter. However, it is 
known that the PHD filter follows the Poisson assumption for the object number (cardinality) 
distribution, which yields deteriorated performance in the object number estimates as	shown	
in Test 3 as the “object death” phenomenon. This phenomenon becomes even more obvious 
with lower probability of detection and closely located space objects. Hence the OSPA errors 
surge to large values accordingly. Future work will be focused on integrating the consider 
scheme into more accurate multi-Bernoulli approximation filters, e.g., the labeled multi-
Bernoulli filter, for the space object tracking problem. 	
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