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Abstract – This paper presents an end-of-life 

disposal manoeuvres design technique targeting an 

Earth re-entry, using a triple-averaged model for 

orbital perturbations. The natural perturbations are 

enhanced by impulsive manoeuvres which moves a 

spacecraft into a trajectory evolving naturally to 

Earth re-entry. The exploitation of the triple- 

averaged model significantly reduces computational 

burden of manoeuvre optimisation. The proposed 

technique is applied to a Highly Elliptical Orbit 

mission and the results obtained are validated 

through a high-fidelity model. 

 

I. INTRODUCTION 

Modern society benefits a lot from services provide by 

space activities, while these activities have a cost of 

creating large numbers of space objects. The space 

object population has been increasing for many years 

and becoming more rapidly in last decades due to the 

deployment of mega-constellations. Since the beginning 

of space era, about 16,990 satellites have been placed 

into Earth orbit and only about 9000 of them are still 

functioning. About 35,150 debris objects are regularly 

tracked by Space Surveillance Networks (SSN) and 

maintained in their catalogue [1][2] The increasing 

number of space objects increases probability of 

collisions between objects leading to a cascade process, 

known as the Kessler’s syndrome [3]. In response to this 

situation, the Inter-Agency Space Debris Coordination 

Committee (IADC) published space debris mitigation 

guidelines specifying different mitigation measures, one 

of which is to design end-of-life disposal strategies for 

spacecrafts, preventing prolonged stay in geostationary 

orbit (GEO) and limiting passage in low Earth orbit 

(LEO) [4] and is now discussing measures also for the 

GNSS regions.  

Successful end-of-life disposals make large contribution 

to debris mitigation and remediation. However, 

implementation of end-of-life disposal could consume 

large amount of propellant and hence significantly 

increases the economic cost, which decreases feasibility 

of disposal strategies and discourages spacecraft 

operators from implementing disposal strategies and 

meeting mitigation guidelines. Therefore, end-of-life 

disposal manoeuvres should be optimised so that least 

propellant is needed for a successful disposal, this can 

be achieved if the natural long-term dynamics of natural 

orbit perturbations is enhanced [5]. On the other hand, 

one of the most important problems for manoeuvre 

optimisation is expensive computational cost since long-

term numerical orbit propagation is involved. Using 

semianalytical models in the manoeuvre optimisation 

could help mitigate this problem, this could also 

contribute to implementing such computation 

autonomously on-board since due to the long deorbiting 

time some corrections may be needed. 

This paper develops a triple averaged model for orbital 

perturbations, averaging disturbing functions over the 

period of a spacecraft orbit, the period of a third body 

and the period of right ascension of ascending node. The 

triple averaged disturbing functions allow one to get a 

Hamiltonian of one-degree-of-freedom with introducing 

the famous Kozai parameter. The averaged model is 

used in manoeuvre optimisation for end-of-life disposal 

of a spacecraft in a Highly Elliptical Orbit (HEO), which 

is mainly perturbed by the Earth oblateness and 

gravitational attractions due to the Moon and the Sun. 

The paper is organised as follows. Section II develops 

the triple averaged model for orbital perturbation and 

obtain the averaged Hamiltonian. Section III reports the 

end-of-life disposal strategy design of a HEO spacecraft. 

Section IV gives a case study of applying the proposed 

technique to a HEO mission. Finally, Section V 

concludes the paper and summarizes the main results of 

the paper. 

 

II. SEMIANALYTICAL MODELS FOR ORBITAL 

PERTURBATIONS 

The dynamics of a perturbed orbit of a spacecraft is 

described by the well-known Lagrangian planetary 

equations [6], 
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where 𝑎, 𝑒, 𝑖, Ω, 𝜔, 𝑀  are classical Keplerian elements, 

𝑛 = √𝜇 𝑎3⁄  in which 𝜇 is the gravitational parameter of 

the Earth, and 𝑅 is a disturbing function depending on 

the perturbations of interest. 

The orbit of a spacecraft in HEO is mainly affected by 

the Earth’s oblateness, and lunisolar perturbations. The 

disturbing function of perturbation due to the Earth’s 

oblateness is given by [7]: 

𝑅𝐽2
= −

𝜇

𝑟
𝐽2 (

𝑅⊕

𝑟
)

2 1

2
(3 sin2(𝜔 + 𝑓) sin2 𝑖 − 1), (2) 

where 𝐽2  is the second zonal harmonics, 𝑅⊕  is the 

equatorial radius of the Earth, and 𝑟 is the radial distance 

between a spacecraft and the Earth given by 

𝑟 =
𝑎(1 − 𝑒2)

1 + 𝑒 cos 𝑓
, (3) 

where 𝑓 is true anomaly of a spacecraft. 

The disturbing function of third-body perturbation is 

given by: 

𝑅3𝑏 =
𝜇3

𝑟3

∑ (
𝑟

𝑟3

)
𝑙

𝑃𝑙(cos 𝑆)

∞

𝑙=2

, (4) 

where 𝜇3, 𝑟3  is the gravitational parameter of the third 

body and the radial distance between the third body and 

the Earth, respectively, 𝑃𝑙(⋅) is the 𝑙-th order Legendre 

polynomial and 𝑆  is the angle between the position 

vector of a spacecraft and the one of a third body, which 

is given by [8] 

cos 𝑆 = 𝐫̂ ⋅ 𝐫̂3 = (𝐩 cos 𝑓 + 𝐪̂ sin 𝑓) ⋅ 𝐫̂3 
= 𝐴 cos 𝑓 + 𝐵 sin 𝑓 , (5) 

where 𝐫̂, 𝐫̂3 represent the directions of a spacecraft and a 

third body, respectively, 𝐩 is the unit vector pointing the 

perigee and 𝐪̂ is orthogonal to 𝐩 in the orbital plane. 

The partial derivatives of a disturbing function with 

respect to Keplerian elements can be computed and the 

evolution of a spacecraft orbit can hence be obtained by 

numerically integrating (1). However, numerical 

integration leads to slow computation, especially when 

the dynamics is included in the context of manoeuvre 

optimisation or trajectory design process. On the other 

hand, only long periodic and secular variations are of 

interest in many applications. 

The semianalytical models based on averaging 

techniques can tackle this problem. The idea is to 

average the disturbing function over fast angles, to 

eliminate the short periodic terms in the disturbing 

function. 

The disturbing function of the 𝐽2  perturbation is 

averaged over one orbital period of a spacecraft [6], 

𝑅𝐽2
=

𝜇𝐽2𝑅⊕
2

4𝑎3𝜂3
(2 − 3 sin2 𝑖), (6) 

where 𝜂 = √1 − 𝑒2  is defined for convenience of 

computation. In the same manner, the disturbing 

function of third-body perturbation [7] is averaged as 

𝑅3𝑏 =
𝜇3

𝑟3

∑ (
𝑎

𝑟3

)
𝑙

∞

𝑙=2

𝐹𝑙(𝐴, 𝐵, 𝑒), (7) 

and averaged again over one orbital period of the 

perturbing body, 

𝑅3𝑏 =
𝜇3

𝑎3

∑ (
𝑎

𝑎3

)
𝑙

∞

𝑙=2

𝐹𝑙(𝛼𝐴, 𝛽𝐴, 𝛼𝐵 , 𝛽𝐵 , 𝑒), (8) 

where 𝛼𝐴, 𝛽𝐴, 𝛼𝐵 , 𝛽𝐵 are defined as 

𝛼𝐴 = 𝐩 ⋅ 𝐩3, 𝛽𝐴 = 𝐩 ⋅ 𝐪̂3, 𝛼𝐵 = 𝐪̂ ⋅ 𝐩3, 𝛽𝐴 = 𝐪̂ ⋅ 𝐪̂3, 
in which 𝐩3, 𝐪̂3 are defined in the same manner as 𝐩, 𝐪̂. 

The total single- and double-averaged disturbing 

functions are following, 

𝑅 = 𝑅𝐽2
+ 𝑅𝑆𝑢𝑛 + 𝑅𝑀𝑜𝑜𝑛 , (9) 

𝑅 = 𝑅𝐽2
+ 𝑅𝑆𝑢𝑛 + 𝑅𝑀𝑜𝑜𝑛 . (10) 

To further simplify the dynamics model, one can 

average the third body disturbing function over period 

of variation of 𝛺, also known as elimination of the node, 

𝑅3𝑏 =
𝜇3

𝑎3

∑ (
𝑎

𝑎3

)
𝑙

∞

𝑙=2

𝐹𝑙(𝑒, 𝑖, 𝜔, 𝑒3, 𝑖3, 𝜔3), (11) 

where the node of the third body’s orbit Ω3  is also 

eliminated since it is coupled with node of a spacecraft 

orbit. 

The averaging technique allows one to eliminate fast 

angles in the disturbing function, hence separating long-

periodic and secular effects from the short-periodic ones. 

This procedure is of importance since it simplifies the 

manoeuvre optimisation process a lot. The simplified 

model is validated by comparing with the high-fidelity 

model obtained by propagating Gauss’ planetary 

equation. 

Fig 1 shows that the single- and double-averaged model 

(orange and yellow lines) coincide well with the high-

fidelity model (blue line), while the triple-averaged 

model (purple line) shows considerable large 

discrepancies with the results obtained from other 

models. This is due to the complexity of dynamics of the 

Earth-Moon-Sun system, that the Moon’s orbit is about 

5.145 degrees inclined with respect to the ecliptic and 

the ecliptic has an obliquity of about 23.45 degrees [9]. 

Nevertheless, the simplification by elimination of the 

node offers advantage of less computational resources 

and can be used for preliminary analysis as will be 

discussed in the following section. 
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Fig 1. Orbit evolution using averaged and high-fidelity 

models, High-fidelity: high-fidelity model using Gauss’ 

equations, SA: single averaged model, DA: double 

averaged model, TA: triple averaged model. 

The Hamiltonian formulation of a system allows to 

understand the behaviours and qualitative insights of 

dynamics, especially in the long-term evolution. The 

Hamiltonian of a perturbed two-body system consists of 

the Hamiltonian of a two-body system and disturbing 

potentials, which are the negative of corresponding 

disturbing functions. The Hamiltonian of an orbit 

around the Earth and perturbed by 𝐽2  and lunisolar 

perturbations is defined as 

𝐻 = −
𝜇

2𝑎
− 𝑅𝐽2

− 𝑅𝑀𝑜𝑜𝑛 − 𝑅𝑆𝑢𝑛. (12) 

In the application of end-of-life disposal manoeuvre 

design, the terms in the Hamiltonian corresponding to 

short-periodic effects could be removed through 

abovementioned averaging procedures as only the 

secular and long-periodic effects of perturbations are of 

interest. The double-averaged Hamiltonian is retrieved 

as 

𝐻 = −
𝜇

2𝑎
− 𝑅𝐽2

− 𝑅𝑀𝑜𝑜𝑛 − 𝑅𝑆𝑢𝑛 

= 𝐻(𝑎, 𝑒, 𝑖, Ω, 𝜔, 𝑖𝑀𝑜𝑜𝑛(𝑡), Ω𝑀𝑜𝑜𝑛(𝑡), 𝜔𝑀𝑜𝑜𝑛(𝑡)). (13) 

Here semimajor axis 𝑎𝑀𝑜𝑜𝑛  and eccentricity 𝑒𝑀𝑜𝑜𝑛  of 

the Moon’s orbit is regarded as constants, while 

𝑖𝑀𝑜𝑜𝑛(𝑡), Ω𝑀𝑜𝑜𝑛(𝑡), 𝜔𝑀𝑜𝑜𝑛(𝑡) are time dependent. The 

Keplerian elements of the Sun are regarded as constants 

too except for the mean anomaly which is already 

averaged out. 

Thanks to further simplification of elimination of the 

node, the Hamiltonian can be reduced to a form of 

𝐻(𝑒, 𝑖, 𝜔, 𝑖𝑀𝑜𝑜𝑛(𝑡), 𝜔𝑀𝑜𝑜𝑛(𝑡)), and after dropping the 

time dependent terms, one could get a Hamiltonian only 

depending on eccentricity, inclination, and argument of 

perigee of a spacecraft orbit, 𝐻(𝑒, 𝑖, 𝜔). Note that both 

𝐽2 and lunisolar perturbations do not affect semimajor 

axis of a spacecraft orbit in the long term. 

Furthermore, the so-called Kozai parameter Θ = (1 −
𝑒2) cos2 𝑖 is a constant [10] since the 𝑧-component of 

angular momentum is conserved. Hence, one can get a 

Hamiltonian of one degree-of-freedom 𝐻(𝑒, 𝜔)  and 

phase space maps of dynamics. The phase space maps 

are of importance to both analysis of dynamics and 

validation of optimal manoeuvres obtained from 

disposal design process. 

As an example, Fig 2 shows the phase space portrait of 

orbits with a semimajor same as the INTEGRAL 

mission [11] and the position of the INTEGRAL 

mission in the phase space using red curve, considering 

lunar perturbation only. It shows that spacecraft orbits 

evolve in a libration manner and the maximum and 

minimum eccentricities are attained when 𝜔 = 𝜋 2⁄ . It 

could be identified that natural evolution of orbits can be 

enhanced by impulsive manoeuvres at certain points of 

a phase curve, and the post-manoeuvre orbits evolve at 

a different phase curve under natural perturbations and 

reach re-entry conditions by entering the critical region 

after curtain time. 

 
Fig 2. Phase space portrait of the INTEGRAL mission, 

red: initial phase curve of the INTEGRAL mission, grey 

zone: critical eccentricity. 

 

III. DISPOSAL MANOEUVRES DESIGN 

The framework described in the previous section is now 

applied to the design of the end-of-life disposal for a 

spacecraft targeting an Earth re-entry, particularly a 

spacecraft in HEO. The re-entry condition of a 

spacecraft is defined through the minimum perigee 

height that the spacecraft can reach. A re-entry is 

deemed as successful if the minimum perigee height is 

lower than the atmospheric interface of the Earth, that is, 
ℎ𝑝,𝑚𝑖𝑛 = min ℎ𝑝(𝑡) < ℎ𝑝,𝑡𝑎𝑟𝑔𝑒𝑡 , (14) 

where perigee height is retrieved by Keplerian elements, 
ℎ𝑝 = 𝑎(1 − 𝑒) − 𝑅⊕. (15) 

As semimajor axis of an orbit is not affected secularly 

by 𝐽2  and lunisolar perturbation, the value of perigee 

height depends only on eccentricity, 
ℎ𝑝,𝑚𝑖𝑛 = 𝑎(1 − 𝑒𝑚𝑎𝑥) − 𝑅⊕, (16) 

and hence the re-entry condition is translated as 
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𝑒𝑚𝑎𝑥 > 𝑒𝑐𝑟𝑖𝑡 , (17) 
where 𝑒𝑐𝑟𝑖𝑡 is the critical eccentricity defined as 

𝑒𝑐𝑟𝑖𝑡 = 1 −
ℎ𝑝,𝑡𝑎𝑟𝑔𝑒𝑡 + 𝑅⊕

𝑎
. (18) 

The natural orbital evolution under the influence of the 

Earth’s oblateness and lunisolar perturbations is 

enhanced by impulsive manoeuvres. The manoeuvre is 

modelled as [12][13] 

Δ𝐯 = [

Δ𝑣𝑇

Δ𝑣𝑁

Δ𝑣𝐻

] = Δ𝑣 [

cos 𝛼 cos 𝛽
sin 𝛼 cos 𝛽

sin 𝛽
] , (19) 

in the (𝑇, 𝑁, 𝐻)  reference frame where 𝑇  axis is 

tangential to the orbit and always points to the velocity 

vector, the 𝑁 axis lies in the orbital plane, normal to the 

velocity vector, and the 𝐻 axis is normal to the orbital 

plane. The variation of Keplerian elements Δ𝑘𝑒𝑝 after 

an impulsive manoeuvre at time 𝑡𝑚 can be obtained by 

Gauss’ variational equations [14], which is following, 

𝛥𝑎 =
2

𝑛√1 − 𝑒2
√1 + 2𝑒 cos 𝑓𝑚 + 𝑒2 𝛥𝑣𝑇

𝛥𝑒 =
√1 − 𝑒2

𝑛𝑎√1 + 2𝑒 cos 𝑓𝑚 + 𝑒2

 [2(cos 𝑓𝑚 + 𝑒)𝛥𝑣𝑇 − √1 − 𝑒2 sin 𝐸𝑚 𝛥𝑣𝑁]

𝛥𝑖 =
𝑟 cos 𝑢

𝑛𝑎2√1 − 𝑒2
𝛥𝑣𝐻

𝛥𝛺 =
𝑟 sin 𝑢

𝑛𝑎2√1 − 𝑒2 sin 𝑖
𝛥𝑣𝐻

𝛥𝜔 =
√1 − 𝑒2

𝑛𝑎𝑒√1 + 2𝑒 cos 𝑓𝑚 + 𝑒2

[2 sin 𝑓𝑚 𝛥𝑣𝑇 + (cos 𝐸𝑚 + 𝑒)𝛥𝑣𝑁] − cos 𝑖 𝛥𝛺

𝛥𝑀 = 𝑛 −
1 − 𝑒2

𝑛𝑎𝑒√1 + 2𝑒 cos 𝑓𝑚 + 𝑒2

[
(2 sin 𝑓𝑚 +

2𝑒2

√1 − 𝑒2
sin 𝐸𝑚) 𝛥𝑣𝑇

+(cos 𝐸𝑚 − 𝑒)𝛥𝑣𝑁

]

(20) 

where 𝑓𝑚 is the true anomaly where the manoeuvre is 

applied, 𝐸𝑚 is given following, 

𝑡𝑎𝑛
𝐸𝑚

2
= √

1 − 𝑒

1 + 𝑒
𝑡𝑎𝑛

𝑓𝑚

2
, (21) 

and 𝑢 = 𝜔 + 𝑓𝑚. 

The Keplerian elements after manoeuvre could be 

obtained through 
𝑘𝑒𝑝𝑝𝑜𝑠𝑡 = 𝑘𝑒𝑝𝑝𝑟𝑒 + 𝛥𝑘𝑒𝑝, (22) 

and hence the triply averaged Hamiltonian of dynamics 

is computed. The new elements define a trajectory in the 

new phase space after the manoeuvre, corresponding to 

the new Hamiltonian 𝐻(𝑒, 𝜔) . The maximum and 

minimum eccentricity condition is 𝜔 = 𝜋 2⁄ , then 

finding the maximum eccentricity is a problem of 

solving a nonlinear equation 𝐻(𝑒𝑚𝑎𝑥 , 𝜋 2⁄ ) =

𝐻(𝑒𝑝𝑜𝑠𝑡 , 𝜔𝑝𝑜𝑠𝑡), for which various tools are available. 

The re-entry is deemed successful if (17) is satisfied. 

 

The greatest advantage of using triple averaged 

Hamiltonian to obtain the maximum eccentricity and 

hence the minimum perigee height is that it transfers a 

constraint of differential equations to a constraint of a 

nonlinear equation, which avoid the heavy computation 

due to numerical orbit propagation.  

The cost function of optimisation is defined by a 

weighted sum of the terminal error and Δ𝑣 as 

𝐽 = max (
ℎ𝑝,𝑚𝑖𝑛 − ℎ𝑝,𝑡𝑎𝑟𝑔𝑒𝑡

ℎ𝑝,𝑡𝑎𝑟𝑔𝑒𝑡

, 0) + 𝑤Δ𝑣, (23) 

where 𝑤  is a user-defined weight based on mission 

scenarios. 

 

IV. CASE STUDY 

As a case study, this paper computes the possible 

disposal manoeuvres for a HEO mission. The Keplerian 

elements of spacecraft at 12:00 on 22/03/2013 is given 

as initial conditions. 

Table 1. Initial orbital elements at 12:00 on 22/03/2013 

𝑎 [km] 𝑒 𝑖 [deg] Ω [deg] 𝜔 [deg] 𝑀 [deg] 
87720 0.8766 61.8 266.4 253.2 188.3 

 

The time interval for disposal design is set from the 

initial time to 01/01/2023, and whole interval is divided 

into 40 points evenly as initial conditions for manoeuvre 

optimisation. The target perigee height for re-entry is set 

as 120 km and the weight in the cost function is set as 

0.01. 

The required magnitudes of Δ𝑣 between 22/03/2013 and 

01/01/2023 are shown in Fig 3. It could be identified that 

there are two periods, from 2015 to mid-2016, and from 

2019 to 2020, when no manoeuvre is needed to reach the 

re-entry condition, while there are other two periods, 

from initial time to 2014, and from 2022 to 2023, the 

required Δ𝑣  reaches our limit for the manoeuvre 

magnitude. Fig 4 shows the directions of manoeuvres 

performed in terms of in-plane and out-of-plane angles 

𝛼, 𝛽. It is shown that most manoeuvres stay in the 𝑇𝑁 

plane, since most values of the angle 𝛽 are near 0, and 

that most manoeuvres are close to the tangential 

direction or the opposite of tangential direction, since 

most values of the angle 𝛼  are near 0, 180, and 360 

degrees. 
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Fig 3. Disposal manoeuvres of a HEO mission 

 

Fig 4. In-plane and out-of-plane angles for manoeuvres 

To validate the results of optimisation, the manoeuvres 

are substituted into double averaged dynamics to 

propagate the orbits as in Fig 5. It is shown that for one 

solution the re-entry can be performed in 2020 and for 

other solutions the re-entries can be performed in 2028. 

Some solutions do not lead to successful re-entries, 

which may be due to the low accuracy of the triple 

averaged model. Nevertheless, the propagation shows 

that using the proposed technique disposal manoeuvres 

are successfully computed with a considerably short 

computational time. The results obtained here serve as a 

preliminary investigation and could be used as a first 

guess for refinement of the solution by optimisation 

using double averaged model or high-fidelity models. 

 
Fig. 5 Validation of the optimisation results 

V. CONCLUSION 

This paper proposed a disposal manoeuvre design 

technique targeting an Earth re-entry based on semi-

analytical models for orbital perturbations, in which 

disturbing functions and hence the Hamiltonian are 

averaged three times over one period of a spacecraft 

orbit, one period of a third body, and one period of 

variation of right ascension of the ascending node. The 

triple averaged model has a discrepancy compared with 

the double averaged model and the high-fidelity ones, 

due to the complexity of the Earth-Moon-Sun system. 

Nevertheless, the triple averaged model simplifies the 

manoeuvre optimisation process by transforming a 

constraint of ordinary differential equations to a 

constraint of nonlinear algebraic equation, which 

considerably reduces the computational burden of 

manoeuvre optimisation process. 

The proposed technique is applied to a HEO mission, as 

a case study. The disposal manoeuvres are computed 

using triple averaged Hamiltonian, considering a time 

window from 22/03/2013 to 01/01/2023, and are 

validated through propagating by a double averaged 

model. The results shows that the proposed technique is 

effective in computing the disposal manoeuvres with 

much less computational time compared to the method 

using double averaged model. Although the model has 

relatively less accuracy, the results obtained from the 

triple averaged model could still be used as a 

preliminary investigation and first guess for 

optimisation using the more accurate double averaged 

model or high-fidelity models to refine the solution.  
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