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Abstract – This paper presents a highly reliable 

generating method for Precise Repeat-Track (PRT), 

driven by interferometric mapping applications of 

Synthetic Aperture Radar (SAR) satellite system. 

Under highly nonlinear high-order perturbation, 

design optimization process employing traditional 

numerical gradient methods or convex optimization 

approaches may encounter issues of unstable 

convergence in results. To address this issue, this 

paper introduces an adaptive search strategy with 

superior adaptability, providing increased flexibility 

to effectively address the complex response 

distribution. The proposed method not only 

circumvents the computational challenges posed by 

global optimization but also mitigates the limitations 

of numerical gradient optimization. This method 

enhances the reliability of convergence, providing 

assurance for the rapid and dependable on-orbit 

redesign requirements in practical missions. 

Simulation demonstrates advantages of the proposed 

design method in both computational efficiency and 

convergence success rate, while ensuring 

convergence accuracy. 

 

I. INTRODUCTION 

The Nüwa constellation is China's first large-scale 

commercial remote satellite constellation. The initial 

phase of the plan consists of 54 satellites, including 44 

SAR satellites. In the later stages, the plan aims to 

expand to approximately 200 satellites. Four satellites, 

among them, have been launched in 2023 and are 

currently operational in orbit. The SAR satellites within 

this constellation are designed to have the capability of 

Differential Synthetic Aperture Radar interferometry 

(D-InSAR). This requires the satellite to achieve high-

precision regression in the three-dimensional space of 

the Earth-fixed frame. Therefore, orbital design must 

ensure that the Earth-fixed trajectory of the orbit 

seamlessly connects at the beginning and the end within 

a single regression cycle. Missions such as Terra-SAR, 

ALOS, Sentinel, etc., have adopted the PRT designs 

[1,2,3,4,5]. Among these, the classical design method 

proposed by D'Amico, etc., has been widely adopted and 

referenced. In the classical method, the design 

architecture introduces at least 2 additional “virtual 

maneuvers”, bringing the total number of design 

variables up to 14, along with the introduction of 12 

constraints [ 6 ]. As a result, during the optimization 

process, there is a tendency to fall into local optimum 

too early, while success of convergence is influenced by 

initial conditions and hyperparameters. Later 

researchers have proposed various design methods 

within direct shooting framework, including GA, 

NSGA-II, differential correction, gradient descent, etc. 

Under high-order perturbations, the strong non-linear 

characteristics of the problem result in the objective 

function presenting noise-like distribution 

characteristics at small scales. Heavily relying on 

gradient matrix or Jacobian matrix, traditional numerical 

gradient methods and optimizers based on linear 

regression often struggle to acquire effective gradient 

information, resulting in convergence failures. In 

practical engineering, especially in commercial 

missions, there is often a requirement to promptly enter 

the “control tube” defined about a PRT shortly after the 

satellite is placed in orbit. This necessitates redesigning 

of the PRT based on the actual orbital conditions to 

avoid unnecessary orbital adjustments. Therefore, it is 

essential to establish an efficient and reliable 

optimization design process to ensure convergence 

without manual intervention.  

In this paper, comprehensive design approach that meets 

the previously mentioned requirements is discussed. The 

proposed method essentially inherits the widely adopted 

multi-stage design architecture. Semimajor axis and 

inclination are defined as the design variables in this 

work. In the discussion of the “Regression Refinement” 

stage, distributions of the response for objective 

function are plotted, considering high-order non-

spherical perturbations, based on which non-smooth 

behaviour in the distribution is illustrated. This raises the 

numerical computation issues of the gradient matrix 

faced by traditional gradient methods. To address the 

decrease in convergence reliability caused by this issue, 

an adaptive optimization design approach is 

incorporated into the Newton's method and employed in 

terms of multi-round iteration. On the other hand, this 

work presents the fact that achieving precise regression 

over an integer number of days inherently satisfies sun-

synchronous characteristic. Hence, the “SSO 

Refinement” stage is integrated into other stage. Next, a 

considerable number of simulation cases are carried out 

under various design conditions. All cases get 

convergence reliably, ensuring that the state difference 

between the initial and final points of each cycle in 

Earth-fixed coordinate system is within 1 meter. Finally, 

the convergence characteristics of the proposed method 

are compared with traditional derivative-information-
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based optimization approach. The comparative results 

indicate that this method presents significantly better 

convergence success rates compared to traditional local 

optimization methods and achieves considerably faster 

convergence compared to global optimization. 

 

II. PROBLEM DESCRIPTION 

In some classical methods, the design process of PRT is 

often described as [6] 

design:      [𝑎̅0 𝑖𝑜̅] 

objective:     minimize 𝛿𝑃 = |𝐏𝑡 − 𝐏0| 

subject to:    Sun-synchronous constraint 

in which, 𝑎̅0 , 𝑖𝑜̅  are the mean orbital elements of the 

semi-major axis and inclination at the initial epoch, 

respectively. 𝐏0 represents the expression of the initial 

orbital position vector in the Earth-Fixed frame (WGS-

84). 𝐏𝑡 is the position vector in the Earth-Fixed frame at 

time 𝑡 , where 𝑡  is one regression period. 𝛿𝑃  is the 

discontinuity between the two." 

By optimizing the mean elements of the semi-major axis 

and inclination, the discontinuity between the initial 

position in the Earth-Fixed frame and its final position 

after one regression period is minimized. Typically, this 

discontinuity is required to be less than 1 meter, which 

is a commonly adopted design standard in practical 

engineering tasks. 

Given 𝐏0, 𝐏𝑡 is obtained through numerical integration 

with an integral duration of one regression period, using 

a standard Earth non-spherical gravitational perturbation 

model such as EGM2008 or GGM01. Other 

perturbations, such as third-body, solar radiation 

pressure, atmospheric drag, etc., are not considered. 

This is because these perturbations are typically of small 

magnitude and cannot be accurately predicted in 

practice; therefore, they are generally treated as 

unknown perturbations during the precise orbital control 

about the “tube”. 

In the practical design process of PRT, no matter how 

the mean semi-major axis 𝑎̅0 and the mean inclination 

𝑖𝑜̅  are improved (written as the "Regression 

Improvement" in below), convergence accuracy of only 

kilometer level can be achieved. This is because the 

orbital frozen condition is not fulfilled. Specifically, at 

this stage, 𝐏0 and 𝐏𝑡 can only coincide in the horizontal 

direction in terms of longitude and latitude, while there 

exists a significant difference in the altitude direction. 

Therefore, it is necessary to introduce a frozen orbit 

refinement phase. This phase can be conducted 

independently from the regression refinement phase 

mentioned above. Subsequently, by carrying out the 

second regression improvement phase, the discontinuity 

𝛿𝑃 can get converged to the required accuracy. Hence, 

a classical optimization structure with three independent 

stages is formed. 

III. PROBLEM ANALYSIS 

A. Non-linear Problem Characteristics 

In ideal circumstances, the two regression improvement 

phases among the three-stage optimization structure, can 

be conducted employing optimization methods 

dependent on gradient information, e.g., differential 

corrections and Newton's method. The use of gradient 

methods necessitates the repeated calculation of 

Jacobian matrices and sometimes Hessian matrices. This 

requires accurate and reliable computational result. 

Numerical method is the most common way to compute 

partial derivative matrices. The formulas for calculating 

the Jacobian and Hessian matrices of a binary function 

are given by the following equations: 

  ∇𝑓 = [
𝑓𝑥(𝑥0, 𝑦0)

𝑓𝑦(𝑥0, 𝑦0)
] = [

𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦

]  

 = [

𝑓(𝑥0+ℎ,𝑦0)−𝑓(𝑥0𝑦0)

ℎ
𝑓(𝑥0,𝑦0+ℎ)−𝑓(𝑥0,𝑦0)

ℎ

]                                   (1) 

 

∇2𝑓 = [
𝑓𝑥𝑥(𝑥0, 𝑦0) 𝑓𝑥𝑦(𝑥0, 𝑦0)

𝑓𝑦𝑥(𝑥0, 𝑦0) 𝑓𝑦𝑦(𝑥0, 𝑦0)
] = [

𝜕𝑓𝑥

𝜕𝑥

𝜕𝑓𝑥

𝜕𝑦

𝜕𝑓𝑦

𝜕𝑥

𝜕𝑓𝑦

𝜕𝑦

]         =

[

𝑓𝑥(𝑥0+ℎ,𝑦0)−𝑓𝑥(𝑥0,𝑦0)

ℎ

𝑓𝑥(𝑥0,𝑦0+ℎ)−𝑓𝑥(𝑥0,𝑦0)

ℎ
𝑓𝑦(𝑥0+ℎ,𝑦0)−𝑓𝑦(𝑥0,𝑦0)

ℎ

𝑓𝑦(𝑥0,𝑦0+ℎ)−𝑓𝑦(𝑥0,𝑦0)

ℎ

] (2) 

where h is a small quantity, typically ranging from 

10−6 to 1 × 10−8, in units of km or rad depending on 

specific problems. For continuous and smooth surfaces 

or curves, such calculations are often feasible. However, 

for non-smooth surfaces or curves, incorrect results may 

arise. Fig. 1 illustrates the situation of derivative 

calculation on a non-smooth curve, which can be 

extended to higher dimensions. As shown in the figure, 

if high-frequency effects are neglected, ∇𝑓 < 0  and 

∇2𝑓 > 0 should be determined on the focusing position. 

However, due to the presence of oscillations, the 

algorithm based on (1) and (2) may lead to uncertain 

Fig. 1. Explanation for Calculation Defects of 
Derivatives on Unsmooth Distribution Surface/Curve 
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results, as indicated by the red dashed lines and arrows 

in the figure. They result in either ∇f<0 or ∇f>0. As the 

result, the calculation yields ∇2𝑓 < 0 in this example. It 

is easy to understand that such results have a significant 

negative impact on the convergence process of gradient 

optimization methods. 

As mentioned in the previous section, the core issue of 

the improvement phase can be seen as an optimization 

problem of the binary function 𝛿𝑃 = 𝑓(𝑎̅0, 𝑖𝑜̅). (Note: 

For simplicity, 𝑎̅0 and 𝑖𝑜̅ will be denoted as a and i in 

below). Investigation focuses on the distribution of the 

objective value 𝛿𝑃  with respect to a and i. Fig. 2 

illustrates a case of 2×0 (degree×order) non-spherical 

perturbation. The surface distribution in the figure 

appears smooth and thus suitable for gradient methods. 

Investigation found that this surface distribution also 

presents smoothness at a small scale. 

 

 

Fig. 2. Distribution Surface under 2×0 Perturbation 

 

Fig. 3. Distribution Surface under 90×90 Perturbation 

 

Fig. 4. Distribution Surface under 90×90 Perturbation

（zoomed） 

 

Fig. 5. Distribution Surface under 90×90 Perturbation

（zoomed to small scale） 

However, in practical engineering design, it is often 

required to design PRT with higher-order perturbations 

to minimize the cost of orbital maintenance around the 

nominal trajectory [ 7 , 8 ]. Fig. 3 illustrates the 

distribution under 90×90 order non-spherical 

perturbations. The scale shown in the figure is a typical 

one at the beginning of the 2nd Regression Refinement 

Phase. It is indicated in the figure that the distribution 

remains smooth at this level of scale. The scale involved 

in the 1st Regression Refinement Phase is larger than in 

this figure. This explains why gradient methods can be 

applied to the 1st phase. When appropriately magnifying 

the vicinity of the minimum of this surface, a noisy-like 

distribution can be observed. This is because during the 

integral duration of up to several days, high-order 

harmonic terms and tesseral terms in the satellite's path 

causes nonlinear changes in the entire integration path 

and dynamic condition, once starts from a small initial 

variation. This can also be understood as a chaotic effect. 

At this scale, gradient methods are no longer applicable. 

Subsequently, the vicinity near the minimum is further 
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magnified, as shown in Fig. 5. The figure illustrates a 

noteworthy situation. At this scale, most local minima 

are still greater than 1 meter, so converging only to this 

level of small scale and to any local minimum is not 

sufficient. This would still be considered premature 

termination of the optimization process. In such a 

distribution, it is understandable that global optimization 

methods such as GA (Genetic Algorithms), PSO 

(Particle Swarm Optimization), DE (Differential 

Evolution), or SA (Simulated Annealing) cannot 

guarantee convergence to the global minimum. On the 

other hand, global optimization algorithms are also not 

feasible due to the need for an extremely large number 

of evaluations. Therefore, an effective optimization 

algorithm is required in this work. 

 

B. Description of the Unconstrainted Problem 

In some studies [6, 9 ], the sun-synchronous 

characteristic needs to be examined and is given 

attention during the optimization process. In some 

optimization phases, it is treated as a constraint. 

However, quantification of sun-synchronous 

characteristic as a constraint is seldom mentioned by 

previous studies. On the other hand, the addition of 

constraints also increases the burden of the optimization 

process. At very small scales, as discussed in the 

previous section, it is not easy to converge smoothly to 

the specified accuracy even without constraints. 

Therefore, additional discussion of sun-synchronous 

fulfilments can have a negative impact on the 

convergence process. 

A sun-synchronous orbit is defined as one where, 

regardless of being at the ascending node, descending 

node, or any point along the orbit, the satellite remains 

at the same time of day (mean sidereal time) whenever 

it is above the same point on the Earth's surface [10]. 

Take an example of a sun-synchronous orbit with a 

descending node passage at 08:00 local time. Set the 

sub-satellite point when the satellite passes the 

descending node at time 0 as Point A. At this moment, 

the local time at Point A is 08:00. After several whole 

days, i.e., one regression period (denoted as time t at this 

end of this duration), the local time at Point A remains 

precisely at 08:00. Meanwhile, the satellite completes 

regression, indicating that the satellite is precisely 

located at the descending node and at the same location 

as at time 0. This means there is no change in local time 

at the descending node of the orbit. This cycle repeats 

from time t onwards, ensuring that the local time at the 

descending node of the orbit remains constant. 

As a conclusion, for orbits with an integer number of 

regression period, i.e., of which the integral duration 

equals an integer number of days, it is not necessary to 

consider the sun-synchronous factor throughout the 

entire optimization process. The convergence of the 

optimization ensures sun-synchronous characteristics. 

 

IV. MULTISTAGE OPTIMIZATION STRUCTURE 

In Section II, it is mentioned that the problem in this 

work generally adopts the classical three-stage 

independent optimization structure. Fig. 6 presents a 

simulation architecture built upon this classical 

Fig. 6. Simulation Structure Diagram 
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framework. In this architecture, a set of regression 

orbital elements is first provided under J2 perturbations. 

Although it is not essential for sun-synchronous orbits, 

we still propagate this orbit to the ascending node for 

ease of data processing and analysis. The mean orbital 

elements at the ascending node are then taken as the 

initial guess for optimization. Subsequently, based on 

this, optimization process is to be conducted in three 

stages. 

 

A. 1st Regression Refinement & Frozen Refinement 

Under a perturbation model of specified order, the 

semimajor axis and inclination are designed using 

differential corrections. Iterations are conducted 

multiple times to ensure that the sub-satellite point 

trajectory regresses while simultaneously satisfying the 

requirements for sun-synchronous. 

Given the semimajor axis a, inclination i, and other 

initial orbital elements, the initial orbit is numerically 

propagated precisely for one regression period. This 

yields the mapping relationship with longitude and 

latitude corresponding to its position. 

[𝜆, 𝜙] = 𝑓(𝑎,i)                         (3) 

In the context of J2 perturbation, the above function can 

be expressed analytically. However, under higher-order 

perturbations, it can only be obtained through numerical 

propagation. 

The objective function in this phase can also be directly 

defined with 

𝛿𝑃 = 𝑓(𝑎,i)                           (4) 

Investigations suggest that, regardless of the order of 

perturbations, the scale in the 1st Regression 

Refinement Phase is relatively large, making traditional 

gradient methods such as Newton's method and 

differential corrections effective for convergence. For 

details about gradient methods and related algorithms, 

please refer to [11,12,13]. 

In the Frozen Optimization Phase, the frozen 

characteristics is optimized through designing the 

eccentricity vectors. This allows the orbit to regress in 

the altitude direction as well [14].  

Utilizing the long-term evolution characteristics of 

eccentricity e and argument of perigee ω under high-

precision perturbations, the orbit is numerically 

propagated for several regression periods to form a 

closed elliptical curve with eccentricity vector 𝑒𝑥 = 𝑒 ∙
cos(𝜔) , 𝑒𝑦 = 𝑒 ∙ sin (𝜔). By iteratively improving the 

eccentricity vectors [𝑒𝑥, 𝑒𝑦], the size scale of this curve 

is reduced. Therefore, the variation amplitude of the 

eccentricity vector under long-term propagation is 

suppressed, which ensures regression in the altitude 

direction. 

 

B. CLASSICAL OPTIMIZATION METHOD for the 2nd 

Regression Refinement 

In the 2nd Regression Refinement Phase, as described in 

Section III, the gradient methods applied in the 1st 

Regression Refinement phase are not suitable for the 

needs of this phase. Therefore, nonlinear optimization 

tools must be employed for classical methods to 

optimize to a PRT under higher-order gravity field 

models [6]. 

In a fixed-duration orbit, 𝑛  intermediate points M1, 

M2,…, Mn are set as virtual impulse maneuver points 

(position continuous, velocity discontinuous) to achieve 

a smooth connection between the beginning and end of 

the orbit. Each virtual impulse point has a pre-set epoch 

time, denoted as T1, T2 ,…, Tn. Hence, this problem is 

described as a system with 7n degrees of freedom, 

subject to constraints: the positions of the intermediate 

points are the same, and the positions and velocities of 

the two end points (T0, Tf) are also the same, with a total 

of 3n+6 constraints. The objective is to minimize the 

total virtual impulse velocities at the n intermediate 

points (reaching zero for smooth trajectory). Therefore, 

the optimization problem can be written as follows: 

                min
𝑇𝑖,x

𝑖
𝑝

,Δv𝑖∈𝕽𝑛
∑‖Δv𝑖‖

𝑛

𝑖=1

, 𝑖 = 1, … , 𝑛           (5) 

subject to 

x𝑖
𝑝(𝑇𝑖) = x𝑖+1

𝑝 (𝑇𝑖), 𝑖 = 1, … , 𝑛 − 1 (6) 

x𝑛+1
𝑝

(𝑇𝑓) = x1
𝑝(𝑇𝑖)                                (7) 

x𝑛+1
𝑣 (𝑇𝑓) = x1

𝑣(𝑇𝑖)                                (8) 

where 
Δv𝑖 = x𝑖+1

𝑣 (𝑇𝑖) − x𝑖
𝑣(𝑇𝑖), 𝑖 = 1, … , 𝑛 − 1  (9) 

x𝑖
𝑝

 and x𝑖
𝑣  denotes the position and velocity vectors at 

the i-th maneuver, separately. 

This approach essentially increases the degrees of 

freedom in the problem, providing a greater chance for 

convergence in cases where the original problem had a 

high convergence difficulty. However, there are also 

several practical considerations to be aware of: 

a) The search dimension is high. When n is set to 1, 

the search dimension is not even higher than the 

constraint dimension, making the optimization 

process infeasible. Therefore, n must be at least 2. 

At this point, the problem dimension is 14, with 12 

constraints. This results in significant 

computational complexity and a complex search 

process, often requiring specialized optimization 

tools and imposing certain demands on 

computational resources. 

b) There is currently no relevant research on its 

convergence reliability. 
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c) The generated trajectory is not one strictly defined 

dynamical trajectory. The presence of virtual 

velocity increments leads to velocity 

discontinuities at the n intermediate points. 

Additionally, the accuracy of constraint 

satisfaction cannot be perfectly equal to zero, 

leading to minor positional jumps. Consequently, 

in practical PRT orbital control processes, this can 

cause abrupt changes in the trajectory evolution 

within the tube. They are required to be recognized 

as sudden disturbances or perturbations in 

trajectory control strategy design and needs to be 

particularly emphasized and addressed during the 

design of orbital control strategies. 

 

C. Nelder-Mead Method for the 2nd Regression 

Refinement 

To meet the requirements of " Fast Computation and 

Rapid acquisition" in practical engineering, there is a 

need for an optimization method with a simpler and 

more straightforward logic, ensuring reliable 

convergence. 

The Nelder-Mead method, also known as the downhill 

simplex method, stands as a prominent technique within 

the domain of optimization, particularly suited for 

unconstrained optimization tasks. Classified under the 

category of direct search methods, this approach 

diverges from conventional methods by eschewing the 

necessity for derivative information of the objective 

function. Instead, it leverages a geometric framework 

centered around a simplex structure — a polytope with 

n+1 vertices embedded within an n-dimensional space, 

where n = 2 in this work.  

During each iteration, the Nelder-Mead method 

meticulously evaluates the objective function at the 

vertices of the simplex and undertakes strategic 

transformations guided by the function's values. These 

transformations encompass reflection, expansion, 

contraction, and shrinkage operations, collectively 

steering the simplex towards the global minimum of the 

objective function. For details, refer to [15,16]. 

 

V. SIMULATIONS 

A 529 km sun-synchronous orbit with 8-day regression 

is used as a typical case for simulation. The initial setup 

is presented in Tabel 1. 

Tabel 1. Initial Orbit Parameters 

Epoch 00:00:00 1 Jan 2023 UTC 

Semimajor Axis 6900.763 km 

Eccentricity 0.001 

Inclination 97.5° 

RAAN 190.391° 

Argument of Perigee 90° 

True Anomaly 90° 

In the 1st Regression Phase, the convergence accuracy is 

at kilometer-level. The problem scale is not sufficiently 

small, so the non-convexity of the response distribution 

of the objective function is not notable. In this phase, 

traditional gradient optimization methods can still 

effectively achieve convergence regardless of the 

perturbation order. 

In the Frozen Refinement Phase, even under high-order 

perturbations of 90x90, converge can still be achieved to 

an accuracy level of 10-4 km ( 𝑒𝑥  𝑎𝑛𝑑 𝑒𝑦 ), which is 

sufficient. 

As mentioned earlier, similar to the first one, the 2nd 

Regression Refinement Phase is also an unconstrained 

two-dimensional optimization problem. Firstly, 

optimization convergence under a 2x0 perturbation 

order is conducted. The convergence process is 

illustrated in Fig. 7, where the horizontal axis represents 

the total number of evaluations of the objective function, 

while the vertical axis shows the residual difference after 

convergence. Each block represents one iteration. The 

figure indicates that both the Nelder-Mead method and 

traditional optimization methods utilizing gradient 

information can converge to the specified accuracy, i.e., 

within 1 meter.  

 

Fig. 7.Converging history (2×0) 

Tabel 2. Comparison of Methods (2×0) 

Method 
Convergence 

residual 

Number of 

Evaluations 

Modified Newton 0.05 m 440 

Nelder-Mead 0.024 m 75 

The convergence residual and the total number of 

evaluations are also listed in Table 2. From the table, 

although convergence can be achieved, the Modified 

Newton method significantly requires more evaluations 

of the evaluation function compared to the Nelder-Mead 

method. This is because gradient descent methods 

require repeated computation of the partial derivative 

matrix and multiple one-dimensional searches in the 
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search direction, all of which necessitate multiple 

executions of the evaluation function. 

Next, the convergence behaviour by both methods under 

90×90 non-spherical perturbation is compared. Notably, 

in order to compare the different characteristics of 

convergence at small scales, the processes of the 1st 

Regression Refinement and the Frozen Refinement in 

this experiment are exactly the same as those under the 

2×0 case. From Fig. 8, it can be observed that only the 

Nelder-Mead method successfully converges to the 

optimal value, while decreasing trend is not shown on 

traditional gradient methods. As mentioned earlier, the 

non-linear characteristics of the evaluation function 

distribution under high-order perturbations lead to an 

unreliable gradient matrix, resulting in the optimization 

process not proceeding as expected. In Tabel 3, since the 

gradient method are not able to converge, its 

convergence residuals and number of evaluations are not 

given out. 

 

Fig. 8.Converging history (90×90) 

Tabel 3. Comparison of Methods (90×90) 

Method 
Convergence 

residual 

Number of 

Evaluations 

Modified Newton / / 

Nelder-Mead 0.24 69 

To compare the convergence stability, 40 cases with 

different initial orbits for optimization calculations are 

defined. These 40 cases include 10 different orbit 

altitudes and 4 different right ascension of ascending 

nodes (RAAN). Among them, the 10 orbit altitudes are 

all 8-day regressive orbits between 200km and 1000km, 

demonstrating the suitability of the proposed method for 

various altitudes of sun-synchronous orbits. The 

altitudes are specifically 240.791km, 310.180km, 

381.417km, 454.580km, 529.752km, 607.021km, 

686.489km, 768.256km, 852.426km, and 939.113km. 

The 4 RAAN values are selected to simulate 

convergence along different gravity field paths while 

also representing different local times of descending 

nodes, specifically 0°, 90°, 180°, and 270°. The other 

parameters are the same as listed in Tabel 1. The same 

convergence process as described earlier is performed 

under each case. Here, "successful convergence" is 

defined as a convergence residual difference of being 

less than 1m and keeping in this range for several 

consecutive iterations. 

 

Fig. 9. Converging Success Rate of Modified Newton 
Method based on 2×0 Perturbation 

 

Fig. 10. Converging Success Rate of Nealer-Mead 
Method based on 2×0 Perturbation 

Fig. 9 and Fig. 10 presents the convergence success or 

failure of the 40 cases under both methods, respectively. 

All cases in the figures are indicated in green, indicating 

that they all converged successfully to the specified 

accuracy of less than 1m. As mentioned earlier, in the 

case of low-order perturbations, all methods are 

applicable. 

Expanding the above experiments to higher-order 

perturbations, significant differences between the 

methods can be easily observed. Fig. 11 and Fig. 12 

compare two methods under 90×90 order non-spherical 

perturbations. In  Fig. 11, red squares represent cases 

where convergence totally failed, while yellow boxes 

represent cases where the stable state to somewhat 

extent was reached but the results does not meet the 1m 

accuracy requirement. It is evident from the graph that 

the gradient method has a significantly lower success 

rate in convergence. Fig. 12 indicates that the Nelder-

Mead method can still converge stably to the specified 

accuracy for all initial conditions even under high-order 

gravity fields. 
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Fig. 11. Converging Success Rate of Modified Newton 
Method based on 90×90 Perturbation 

 

Fig. 12. Converging Success Rate of Nealer-Mead 
Method based on 90×90 Perturbation 

 

VI. CONCLUSIONS 

This paper outlined the optimization architecture and 

process for PRT. Considering that an integer-day 

regressive orbit is a sufficient condition for meeting the 

sun-synchronous characteristics, the problem is 

described as a simple unconstrained two-dimensional 

optimization problem. This avoids complex large-scale 

optimization processes and reduces the requirements on 

the optimizer itself. The Nelder-Mead algorithm is 

applied in the final stage of the optimization process。 

Simulations shows that this algorithm can adapt well 

even under irregular response distributions caused by 

high-order perturbations. Moreover, in terms of 

numbers of evaluation, the Nelder-Mead algorithm 

reliably achieves convergence with significantly fewer 

evaluation times compared to traditional gradient 

methods in cases where convergence is achieved. Unlike 

other studies that have only provided a single case, this 

research has presented multiple cases to demonstrate 

that the algorithm can consistently and effectively 

converge to the specified accuracy under various 

conditions. This has significant implications for 

practical engineering applications. 

Future works are as follows, 

a) It is worth noting that there are hyperparameters in 

Nelder-Mead algorithm. Hyperparameters can be 

improved to make the convergence process more 

aggressive in the initial stages and adaptively 

conservative in the final small-scale stages. After 

training these parameters, it is expected that the 

optimization efficiency can be further improved. 

b) Adaptability of this method in non-sun-

synchronous orbits needs to be validated. In non-

sun-synchronous orbits, the integral duration is no 

longer an integer number of days but a complex 

function related to the semi-major axis and some 

other factors. The combination of the proposed 

method and the integration process terminated by 

events is worthy to be explored. 
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